1
|
Helbing J, Hamm P. Versatile Femtosecond Laser Synchronization for Multiple-Timescale Transient Infrared Spectroscopy. J Phys Chem A 2023. [PMID: 37478282 DOI: 10.1021/acs.jpca.3c03526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Several ways to electronically synchronize different types of amplified femtosecond laser systems are presented based on a single freely programmable electronics hardware: arbitrary-detuning asynchronous optical sampling (ADASOPS), as well as actively locking two femtosecond laser oscillators, albeit not necessarily to the same round-trip frequency. They allow us to rapidly probe a very wide range of timescales, from picoseconds to potentially seconds, in a single transient absorption experiment without the need to move any delay stage. Experiments become possible that address a largely unexplored aspect of many photochemical reactions, in particular in the context of photo-catalysis as well as photoactive proteins, where an initial femtosecond trigger very often initiates a long-lasting cascade of follow-up processes. The approach is very versatile and allows us to synchronize very different lasers, such as a Ti:Sa amplifier and a 100 kHz Yb-laser system. The jitter of the synchronization, and therewith the time-resolution in the transient experiment, lies in the range from 1 to 3 ps, depending on the method. For illustration, transient IR measurements of the excited state solvation and decay of a metal carbonyl complex as well as the full reaction cycle of bacteriorhodopsin are shown. The pros and cons of the various methods are discussed, with regard to the scientific question one might want to address, and also with regard to the laser systems that might be already existent in a laser lab.
Collapse
Affiliation(s)
- Jan Helbing
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
2
|
Yang Y, Stensitzki T, Lang C, Hughes J, Mroginski MA, Heyne K. Ultrafast protein response in the Pfr state of Cph1 phytochrome. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:919-930. [PMID: 36653574 DOI: 10.1007/s43630-023-00362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Photoisomerization is a fundamental process in several classes of photoreceptors. Phytochromes sense red and far-red light in their Pr and Pfr states, respectively. Upon light absorption, these states react via individual photoreactions to the other state. Cph1 phytochrome shows a photoisomerization of its phycocyanobilin (PCB) chromophore in the Pfr state with a time constant of 0.7 ps. The dynamics of the PCB chromophore has been described, but whether or not the apoprotein exhibits an ultrafast response too, is not known. Here, we compare the photoreaction of 13C/15N labeled apoprotein with unlabeled apoprotein to unravel ultrafast apoprotein dynamics in Cph1. In the spectral range from 1750 to 1620 cm-1 we assigned several signals due to ultrafast apoprotein dynamics. A bleaching signal at 1724 cm-1 is tentatively assigned to deprotonation of a carboxylic acid, probably Asp207, and signals around 1670 cm-1 are assigned to amide I vibrations of the capping helix close to the chromophore. These signals remain after photoisomerization. The apoprotein dynamics appear upon photoexcitation or concomitant with chromophore isomerization. Thus, apoprotein dynamics occur prior to and after photoisomerization on an ultrafast time-scale. We discuss the origin of the ultrafast apoprotein response with the 'Coulomb hammer' mechanism, i.e. an impulsive change of electric field and Coulombic force around the chromophore upon excitation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Till Stensitzki
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig Universität Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig Universität Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Maria Andrea Mroginski
- Institut Für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Karsten Heyne
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
3
|
Heyne K. Impact of Ultrafast Electric Field Changes on Photoreceptor Protein Dynamics. J Phys Chem B 2022; 126:581-587. [PMID: 35026113 DOI: 10.1021/acs.jpcb.1c08131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies on photoreceptors provide a wealth of information on cofactor and protein dynamics on the microsecond to seconds time-scale. Up to now, ultrafast dynamics addresses mainly the cofactor or chromophore, but ultrafast protein dynamics are poorly understood. Increasing evidence show that protein responses can occur even faster than the cofactor dynamics. The causal reason for the ultrafast protein response cannot be explained by the localized cofactor excitation or its excited-state decay, alone. We propose a Coulomb interaction mechanism started by a shock wave and stabilized by a dipole moment change at least partially responsible for coherent oscillations in proteins, protonation changes, water dislocations, and protein changes prior to and beyond chromophore's excited-state decay. Photoexcitation changes the electron density distribution of the chromophore within a few femtoseconds: The Coulomb shock wave affects polar groups, hydrogen bonds, and protein bound water molecules. The process occurs on a time-scale even faster than excited-state decay of the chromophore. We discuss studies on selected photoreceptors in light of this mechanism and its impact on a detailed understanding of protein dynamics.
Collapse
Affiliation(s)
- Karsten Heyne
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
4
|
Ultrafast Backbone Protonation in Channelrhodopsin-1 Captured by Polarization Resolved Fs Vis-pump-IR-Probe Spectroscopy and Computational Methods. Molecules 2020; 25:molecules25040848. [PMID: 32075128 PMCID: PMC7070883 DOI: 10.3390/molecules25040848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Channelrhodopsins (ChR) are light-gated ion-channels heavily used in optogenetics. Upon light excitation an ultrafast all-trans to 13-cis isomerization of the retinal chromophore takes place. It is still uncertain by what means this reaction leads to further protein changes and channel conductivity. Channelrhodopsin-1 in Chlamydomonas augustae exhibits a 100 fs photoisomerization and a protonated counterion complex. By polarization resolved ultrafast spectroscopy in the mid-IR we show that the initial reaction of the retinal is accompanied by changes in the protein backbone and ultrafast protonation changes at the counterion complex comprising Asp299 and Glu169. In combination with homology modelling and quantum mechanics/molecular mechanics (QM/MM) geometry optimization we assign the protonation dynamics to ultrafast deprotonation of Glu169, and transient protonation of the Glu169 backbone, followed by a proton transfer from the backbone to the carboxylate group of Asp299 on a timescale of tens of picoseconds. The second proton transfer is not related to retinal dynamics and reflects pure protein changes in the first photoproduct. We assume these protein dynamics to be the first steps in a cascade of protein-wide changes resulting in channel conductivity.
Collapse
|
5
|
Ghosh M, Jung KH, Sheves M. Protein conformational alterations induced by the retinal excited state in proton and sodium pumping rhodopsins. Phys Chem Chem Phys 2019; 21:9450-9455. [PMID: 31012470 DOI: 10.1039/c9cp00681h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal proteins' biological activity is triggered by the retinal chromophore's light absorption, which initiates a photocycle. However, the mechanism by which retinal light excitation induces the protein's response is not completely understood. Recently, two new retinal proteins were discovered, namely, King Sejong 1-2 (KS1-2) and Nonlabens (Donghaeana) dokdonensis (DDR2), which exhibit H+ and Na+ pumping activities, respectively. To pinpoint whether protein conformation alterations can be achieved without light-induced retinal C13[double bond, length as m-dash]C14 double-bond isomerization, we utilized the hydroxylamine reaction, which cleaves the protonated Schiff base bond through which the retinal chromophore is covalently bound to the protein. The reaction is accelerated by light even though the cleavage is not a photochemical reaction. Therefore, the cleavage reaction may serve as a tool to detect protein conformation alterations. We discovered that in both KS1-2 and DDR2, the hydroxylamine reaction is light accelerated, even in artificial pigments derived from synthetic retinal in which the crucial C13[double bond, length as m-dash]C14 double-bond isomerization is prevented. Therefore, we propose that in both proteins the light-induced retinal charge redistribution taking place in the retinal excited state polarizes the protein, which, in turn, triggers protein conformation alterations. A further general possible application of the present finding is associated with other photoreceptor proteins having retinal or other non-retinal chromophores whose light excitation may affect the protein conformation.
Collapse
Affiliation(s)
- Mihir Ghosh
- Department of Organic Chemistry, Weizmann Institute of Science Rehovot, Israel.
| | | | | |
Collapse
|
6
|
The role of retinal light induced dipole in halorhodopsin structural alteration. FEBS Lett 2015; 589:3576-80. [PMID: 26467279 DOI: 10.1016/j.febslet.2015.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/05/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022]
Abstract
The present work studies the mechanism of light induced protein conformational changes in the over-expressed mutant of halorhodopsin (phR) from Natronomonas pharaonis. The catalytic effect of light is reflected in accelerating hydroxyl amine reaction rate of light adapted phR. Light catalysis was detected in native phR but also in artificial pigments derived from tailored retinal analogs locked at the crucial C13=C14 double bond. It is proposed that the photoexcited retinal chromophore induces protein concerted motion that decreases the energy gap between reactants ground and transition states. This energy gap is overcome by coupling to specific protein vibrations. Surprisingly, the rate constants show unusual decreasing trend following temperature increase both for native and artificial pigments.
Collapse
|
7
|
Wang H, Wang L, Shen S, Zhang W, Li M, Du L, Zheng X, Phillips DL. Effects of hydrogen bond and solvent polarity on the C=O stretching of bis(2-thienyl)ketone in solution. J Chem Phys 2012; 136:124509. [DOI: 10.1063/1.3697482] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Groma GI, Colonna A, Martin JL, Vos MH. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy. Biophys J 2011; 100:1578-86. [PMID: 21402041 DOI: 10.1016/j.bpj.2011.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process.
Collapse
Affiliation(s)
- Géza I Groma
- Laboratory for Optical Biosciences, Ecole Polytechnique, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Palaiseau, France.
| | | | | | | |
Collapse
|
9
|
Gross R, Wolf MMN, Schumann C, Friedman N, Sheves M, Li L, Engelhard M, Trentmann O, Neuhaus HE, Diller R. Primary photoinduced protein response in bacteriorhodopsin and sensory rhodopsin II. J Am Chem Soc 2010; 131:14868-78. [PMID: 19778046 DOI: 10.1021/ja904218n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Essential for the biological function of the light-driven proton pump, bacteriorhodopsin (BR), and the light sensor, sensory rhodopsin II (SRII), is the coupling of the activated retinal chromophore to the hosting protein moiety. In order to explore the dynamics of this process we have performed ultrafast transient mid-infrared spectroscopy on isotopically labeled BR and SRII samples. These include SRII in D(2)O buffer, BR in H(2)(18)O medium, SRII with (15)N-labeled protein, and BR with (13)C(14)(13)C(15)-labeled retinal chromophore. Via observed shifts of infrared difference bands after photoexcitation and their kinetics we provide evidence for nonchromophore bands in the amide I and the amide II region of BR and SRII. A band around 1550 cm(-1) is very likely due to an amide II vibration. In the amide I region, contributions of modes involving exchangeable protons and modes not involving exchangeable protons can be discerned. Observed bands in the amide I region of BR are not due to bending vibrations of protein-bound water molecules. The observed protein bands appear in the amide I region within the system response of ca. 0.3 ps and in the amide II region within 3 ps, and decay partially in both regions on a slower time scale of 9-18 ps. Similar observations have been presented earlier for BR5.12, containing a nonisomerizable chromophore (R. Gross et al. J. Phys. Chem. B 2009, 113, 7851-7860). Thus, the results suggest a common mechanism for ultrafast protein response in the artificial and the native system besides isomerization, which could be induced by initial chromophore polarization.
Collapse
Affiliation(s)
- Ruth Gross
- University of Kaiserslautern, Department of Physics, Erwin-Schrodinger-Strasse, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|