1
|
Busson B. All-experimental analysis of doubly resonant sum-frequency generation spectra for Franck–Condon and Herzberg–Teller vibronic modes. J Chem Phys 2022; 156:204704. [DOI: 10.1063/5.0091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transform technique applied to the analysis of doubly resonant sum-frequency generation (DR-SFG) spectra is extended to include Herzberg–Teller (HT) vibronic modes. The experimentally measured overlap spectral function generates all the energy resonant amplitudes of the DR-SFG excitation function for both Franck–Condon (FC) and HT modes. When FC modes dominate the DR-SFG spectra, a methodology is provided to perform efficient curve fitting and orientation analysis in order to extract FC activities of the various vibration modes from experimental spectra with the help of a molecular model. Determination of the FC or HT natures of the vibration modes from DR-SFG data is also shown to be possible through their visible line shapes with an appropriate choice of polarizations. As an example, experimental DR-SFG data suggest that a known HT-active mode in the vibronic structure of Rhodamine 6G monomers exhibits a FC behavior in molecular aggregates.
Collapse
Affiliation(s)
- Bertrand Busson
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| |
Collapse
|
2
|
Yamaguchi S, Otosu T. Progress in phase-sensitive sum frequency generation spectroscopy. Phys Chem Chem Phys 2021; 23:18253-18267. [PMID: 34195730 DOI: 10.1039/d1cp01994e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sum frequency generation (SFG) spectroscopy is a unique and powerful tool for investigating surfaces and interfaces at the molecular level. Phase-sensitive SFG (PS-SFG) is an upgraded technique that can overcome the inherent drawbacks of conventional SFG. Here we review several methods of PS-SFG developed and reported in 1990-2020. We introduce how and by which group each PS-SFG method was designed and built in terms of interferometer implementation for optical heterodyne detection, with one exception of a recent numerical method that does not rely on interferometry. We also discuss how PS-SFG solved some typical problems for aqueous interfaces that were once left open by conventional SFG. These problems and their solutions are good examples to demonstrate why PS-SFG is essential. In addition, we briefly note a few terminology issues related with PS-SFG to avoid confusion.
Collapse
Affiliation(s)
- Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | |
Collapse
|
3
|
Busson B, Farhat M, Nini Teunda PJ, Roy S, Jarisz T, Hore DK. All-experimental analysis of doubly resonant sum-frequency generation spectra: Application to aggregated rhodamine films. J Chem Phys 2021; 154:224704. [PMID: 34241238 DOI: 10.1063/5.0048787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new method is proposed to analyze Doubly Resonant infrared-visible Sum-Frequency Generation (DR-SFG) spectra. Based on the transform technique, this approach is free from assumptions about vibronic modes, energies, or line widths and accurately captures through the overlap spectral function all required aspects of the vibronic structure from simple experimental linear absorption spectra. Details and implementation of the method are provided along with three examples treating rhodamine thin films about one monolayer thick. The technique leads to a perfect agreement between experiment and simulations of the visible DR-SFG line shapes, even in the case of complex intermolecular interactions resulting from J-aggregated chromophores in heterogeneous films. For films with mixed H- and J-aggregates, separation of their responses shows that the J-aggregate DR-SFG response is dominant. Our analysis also accounts for the unexplained results published in the early times of DR-SFG experiments.
Collapse
Affiliation(s)
- Bertrand Busson
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Maissa Farhat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | | | - Sandra Roy
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Tasha Jarisz
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Dennis K Hore
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
4
|
Busson B. Doubly resonant SFG and DFG spectroscopies: An analytic model for data analysis including distorted and rotated vibronic levels. II. Applications. J Chem Phys 2020; 153:174702. [DOI: 10.1063/5.0022761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Bertrand Busson
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| |
Collapse
|
5
|
Perets EA, Yan ECY. Chiral Water Superstructures around Antiparallel β-Sheets Observed by Chiral Vibrational Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2019; 10:3395-3401. [PMID: 31070921 PMCID: PMC9059516 DOI: 10.1021/acs.jpclett.9b00878] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydration modulates every aspect of protein structure and function. However, studying water structures in hydration shells remains challenging mostly due to overwhelming background from bulk water. We used vibrational sum frequency generation (SFG) spectroscopy to characterize hydrated films of an antiparallel β-sheet peptide (LK7β) adsorbed on glass slides. The hydrated films give chiral SFG response from water only when the peptide self-assembles into antiparallel β-sheets. Experiments of isotopic labeling, isotopic dilution of water, and H2O-D2O exchange kinetics corroborate the assignments of the chiral SFG response to water stretching modes. Because individual water molecules are achiral, the chiral SFG response indicates formation of chiral superstructures of water around the antiparallel β-sheet, implying that a protein secondary structure can imprint its chirality onto the surrounding water. This result demonstrates chiral SFG spectroscopy as a promising tool for probing water structures in protein hydration and addressing fundamental questions of protein structure-function.
Collapse
Affiliation(s)
- Ethan A. Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520 United States
| | - E. Chui-Ying Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520 United States
| |
Collapse
|
6
|
Bulk-or-interface assignment of heterodyne-detected chiral vibrational sum frequency generation signal by its polarization dependence. J Chem Phys 2018; 149:244703. [DOI: 10.1063/1.5063290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
7
|
Wang Q, Zhang L, Yang D, Li T, Liu M. Chiral signs of TPPS co-assemblies with chiral gelators: role of molecular and supramolecular chirality. Chem Commun (Camb) 2018; 52:12434-12437. [PMID: 27709197 DOI: 10.1039/c6cc05668g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A dianionic tetrakis(4-sulfonatophenyl)porphyrin (TPPS) self-assembled into J-aggregates when it co-assembled with a chiral cationic amphiphile via supramolecular gelation. The chiral signs of TPPS J aggregates followed the supramolecular chirality of amphiphilic assemblies rather than the molecular chirality of the amphiphile.
Collapse
Affiliation(s)
- Qiuling Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, Henan 450001, China. and Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dong Yang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, Henan 450001, China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin, P. R. China
| |
Collapse
|
8
|
Rich CC, Lindberg KA, Krummel AT. Phase Acrobatics: The Influence of Excitonic Resonance and Gold Nonresonant Background on Heterodyne-Detected Vibrational Sum Frequency Generation Emission. J Phys Chem Lett 2017; 8:1331-1337. [PMID: 28267336 DOI: 10.1021/acs.jpclett.7b00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We show how heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy can discriminate between the excitonic and monomeric properties of a helical, nanotube molecular aggregate by monitoring the phase of the VSFG emission associated with different polarization configurations. By keeping track of the "phase acrobatics" associated with the added phase of the nonresonant SFG emission of gold as well as that of the double-resonance conditions achieved when the SF frequency is resonant with an electronic exciton transition, we discover that for aggregates of tetra(sulfonatophenyl)porphyrin (TSPP) the PPP-polarized spectra exhibit double-resonance conditions while SSP-polarized spectra exhibit resonance only with the ground-state vibration. Along with observed shifts in the vibrational frequency, intensity differences, and sign flips in the imaginary second-order susceptibility, χs,Im(2), we conclude that PPP-polarized HD-VSFG spectra reflect the delocalized, excitonic nature of the molecular aggregate, while the SSP-polarized HD-VSFG spectra measure the localized, monomeric nature of the molecular subunits. It is implied from this study that HD-VSFG spectroscopy can be uniquely utilized to measure the excitonic and monomeric properties associated with molecular assemblies for a single sample.
Collapse
Affiliation(s)
- Christopher C Rich
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Kathryn A Lindberg
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Amber T Krummel
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|
9
|
Cao Y, Duan Y, Han L, Che S. Hierarchical chirality transfer in the formation of chiral silica fibres with DNA–porphyrin co-templates. Chem Commun (Camb) 2017; 53:5641-5644. [PMID: 28480934 DOI: 10.1039/c7cc02382k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Screw-like hierarchical chiral fibres were constructed by the co-assembly of two biomolecules, from a multilevel chirality transfer and amplification process.
Collapse
Affiliation(s)
- Yuanyuan Cao
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Yingying Duan
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Lu Han
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
10
|
Wang Z, Fu L, Ma G, Yan ECY. Broad-Bandwidth Chiral Sum Frequency Generation Spectroscopy for Probing the Kinetics of Proteins at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11384-98. [PMID: 26196215 PMCID: PMC4625692 DOI: 10.1021/acs.langmuir.5b02100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Indexed: 05/09/2023]
Abstract
The kinetics of proteins at interfaces plays an important role in biological functions and inspires solutions to fundamental problems in biomedical sciences and engineering. Nonetheless, due to the lack of surface-specific and structural-sensitive biophysical techniques, it still remains challenging to probe protein kinetics in situ and in real time without the use of spectroscopic labels at interfaces. Broad-bandwidth chiral sum frequency generation (SFG) spectroscopy has been recently developed for protein kinetic studies at interfaces by tracking the chiral vibrational signals of proteins. In this article, we review our recent progress in kinetic studies of proteins at interfaces using broad-bandwidth chiral SFG spectroscopy. We illustrate the use of chiral SFG signals of protein side chains in the C-H stretch region to monitor self-assembly processes of proteins at interfaces. We also present the use of chiral SFG signals from the protein backbone in the N-H stretch region to probe the real-time kinetics of proton exchange between protein and water at interfaces. In addition, we demonstrate the applications of spectral features of chiral SFG that are typical of protein secondary structures in both the amide I and the N-H stretch regions for monitoring the kinetics of aggregation of amyloid proteins at membrane surfaces. These studies exhibit the power of broad-bandwidth chiral SFG to study protein kinetics at interfaces and the promise of this technique in research areas of surface science to address fundamental problems in biomedical and material sciences.
Collapse
Affiliation(s)
- Zhuguang Wang
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Li Fu
- William R. Wiley Environment Molecular Sciences Laboratory, Pacific Northwest National Laboratory , P.O. Box 999, Richland, Washington 99352, United States
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Elsa C Y Yan
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Okuno M, Ishibashi TA. Sensitive and Quantitative Probe of Molecular Chirality with Heterodyne-Detected Doubly Resonant Sum Frequency Generation Spectroscopy. Anal Chem 2015; 87:10103-8. [DOI: 10.1021/acs.analchem.5b02787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Masanari Okuno
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 Japan
| | - Taka-aki Ishibashi
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 Japan
| |
Collapse
|
12
|
Fu L, Wang Z, Psciuk BT, Xiao D, Batista VS, Yan EC. Characterization of Parallel β-Sheets at Interfaces by Chiral Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2015; 6:1310-5. [PMID: 26263128 PMCID: PMC6022735 DOI: 10.1021/acs.jpclett.5b00326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Characterization of protein secondary structures at interfaces is still challenging due to the limitations of surface-selective optical techniques. Here, we address the challenge of characterizing parallel β-sheets by combining chiral sum frequency generation (SFG) spectroscopy and computational modeling. We focus on human islet amyloid polypeptide aggregates and a de novo designed short polypeptide at lipid/water and air/glass interfaces. We find that parallel β-sheets adopt distinct orientations at various interfaces and exhibit characteristic chiroptical responses in the amide I and N-H stretch regions. Theoretical analysis indicates that the characteristic chiroptical responses provide valuable information on the symmetry, orientation, and vibrational couplings of parallel β-sheet at interfaces.
Collapse
Affiliation(s)
- Li Fu
- Corresponding Authors: Tel: (203) 436-2509. Fax: (203) 432-6144. , Tel: (509) 371-6755.
| | | | | | | | | | - Elsa C.Y. Yan
- Corresponding Authors: Tel: (203) 436-2509. Fax: (203) 432-6144. , Tel: (509) 371-6755.
| |
Collapse
|
13
|
Okuno M, Ishibashi TA. Chirality Discriminated by Heterodyne-Detected Vibrational Sum Frequency Generation. J Phys Chem Lett 2014; 5:2874-2878. [PMID: 26278092 DOI: 10.1021/jz501158r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We first demonstrated chiral vibrational sum frequency generation (VSFG) in the heterodyne detection, which enables us to uniquely determine chiral second-order nonlinear susceptibility consisting of phase and amplitude and distinguish molecular chirality with high sensitivity. Liquid limonene was measured to evaluate the heterodyne-detected chiral VSFG developed in this study. R-(+)- and S-(-)-limonene showed clearly opposite signs in the complex spectra of the second-order nonlinear susceptibility in the CH stretching region. This is the first report of the chiral distinction by VSFG without any a priori knowledge about chiral and achiral spectral response. Furthermore, from the phase of the chiral VSFG field measured in the heterodyne detection, the origin of the chiral signal was ascribed to the bulk limonene. The heterodyne detection also improves detection limits significantly, allowing us to observe weak chiral signals in reflection. The heterodyne-detected chiral VSFG can provide information on absolute molecular configuration.
Collapse
Affiliation(s)
- Masanari Okuno
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 Japan
| | - Taka-Aki Ishibashi
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 Japan
| |
Collapse
|
14
|
Yan ECY, Fu L, Wang Z, Liu W. Biological Macromolecules at Interfaces Probed by Chiral Vibrational Sum Frequency Generation Spectroscopy. Chem Rev 2014; 114:8471-98. [DOI: 10.1021/cr4006044] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Elsa C. Y. Yan
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| | - Li Fu
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| | - Zhuguang Wang
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| | - Wei Liu
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
15
|
Zhang C, Myers J, Chen Z. Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy. SOFT MATTER 2013; 9:4738-4761. [PMID: 23710244 PMCID: PMC3661304 DOI: 10.1039/c3sm27710k] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sum frequency generation (SFG) vibrational spectroscopy has been developed into an important technique to study surfaces and interfaces. It can probe buried interfaces in situ and provide molecular level structural information such as the presence of various chemical moieties, quantitative molecular functional group orientation, and time dependent kinetics or dynamics at such interfaces. This paper focuses on these three most important advantages of SFG and reviews some of the recent progress in SFG studies on interfaces related to polymer materials and biomolecules. The results discussed here demonstrate that SFG can provide important molecular structural information of buried interfaces in situ and in real time, which is difficult to obtain by other surface sensitive analytical techniques.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
16
|
Arai Y, Segawa H. Significantly enhanced adsorption of bulk self-assembling porphyrins at solid/liquid interfaces through the self-assembly process. J Phys Chem B 2012; 116:13575-81. [PMID: 23057475 DOI: 10.1021/jp309469j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Controlling the adsorption behavior of bulk-phase self-assembling dye molecules at solid/liquid interfaces is of importance for application to various devices. Herein, we report an unexpected phenomenon on the adsorption behaviors of bulk J-aggregating water-soluble porphyrin diacids. A comparative study on the adsorption amounts of J-aggregated meso-tetrakis(4-sulfonatophenyl)porphyrin diacid from freshly prepared and pre-aged solutions revealed enhanced adsorption through the self-assembly process (EASAP). The aggregate structure formed by EASAP is almost identical to the one from preformed J-aggregate solutions. The generation ratio of J-aggregates at an interface and in bulk strongly depends on the interface-to-volume ratio of the solutions. The surface property of cuvettes and coexisting inorganic ions has no significant effects on EASAP. While EASAP occurs in the J-aggregations of the other water-soluble porphyrin diacids, it is suggested that self-assembly properties play an important role in the adsorption proportion. These results will provide new insight into the adsorption equilibrium of bulk self-assembling molecules at solid/liquid interfaces.
Collapse
Affiliation(s)
- Yonbon Arai
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Tokyo.
| | | |
Collapse
|
17
|
Amphiphilic adsorption of human islet amyloid polypeptide aggregates to lipid/aqueous interfaces. J Mol Biol 2011; 421:537-47. [PMID: 22210153 DOI: 10.1016/j.jmb.2011.12.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 11/23/2022]
Abstract
Many amyloid proteins misfold into β-sheet aggregates upon interacting with biomembranes at the onset of diseases, such as Parkinson's disease and type II diabetes. The molecular mechanisms triggering aggregation depend on the orientation of β-sheets at the cell membranes. However, understanding how β-sheets adsorb onto lipid/aqueous interfaces is challenging. Here, we combine chiral sum frequency generation (SFG) spectroscopy and ab initio quantum chemistry calculations based on a divide-and-conquer strategy to characterize the orientation of human islet amyloid polypeptides (hIAPPs) at lipid/aqueous interfaces. We show that the aggregates bind with β-strands oriented at 48° relative to the interface. This orientation reflects the amphiphilic properties of hIAPP β-sheet aggregates and suggests the potential disruptive effect on membrane integrity.
Collapse
|
18
|
Fu L, Wang Z, Yan EC. Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy. Int J Mol Sci 2011; 12:9404-25. [PMID: 22272140 PMCID: PMC3257137 DOI: 10.3390/ijms12129404] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 12/04/2022] Open
Abstract
We review the recent development of chiral sum frequency generation (SFG) spectroscopy and its applications to study chiral vibrational structures at interfaces. This review summarizes observations of chiral SFG signals from various molecular systems and describes the molecular origins of chiral SFG response. It focuses on the chiral vibrational structures of proteins and presents the chiral SFG spectra of proteins at interfaces in the C-H stretch, amide I, and N-H stretch regions. In particular, a combination of chiral amide I and N-H stretches of the peptide backbone provides highly characteristic vibrational signatures, unique to various secondary structures, which demonstrate the capacity of chiral SFG spectroscopy to distinguish protein secondary structures at interfaces. On the basis of these recent developments, we further discuss the advantages of chiral SFG spectroscopy and its potential application in various fields of science and technology. We conclude that chiral SFG spectroscopy can be a new approach to probe chiral vibrational structures of protein at interfaces, providing structural and dynamic information to study in situ and in real time protein structures and dynamics at interfaces.
Collapse
Affiliation(s)
- Li Fu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06520, USA; E-Mails: (L.F.); (Z.W.)
| | - Zhuguang Wang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06520, USA; E-Mails: (L.F.); (Z.W.)
| | - Elsa C.Y. Yan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06520, USA; E-Mails: (L.F.); (Z.W.)
| |
Collapse
|
19
|
Fu L, Liu J, Yan ECY. Chiral Sum Frequency Generation Spectroscopy for Characterizing Protein Secondary Structures at Interfaces. J Am Chem Soc 2011; 133:8094-7. [DOI: 10.1021/ja201575e] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Fu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Jian Liu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
20
|
Fu L, Ma G, Yan ECY. In situ misfolding of human islet amyloid polypeptide at interfaces probed by vibrational sum frequency generation. J Am Chem Soc 2010; 132:5405-12. [PMID: 20337445 DOI: 10.1021/ja909546b] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinetic analysis of conformational changes of proteins at interfaces is crucial for understanding many biological processes at membrane surfaces. In this study, we demonstrate that surface-selective sum frequency generation (SFG) spectroscopy can be used to investigate kinetics of conformational changes of proteins at interfaces. We focus on an intrinsically disordered protein, human islet amyloid polypeptide (hIAPP) that is known to misfold into the beta-sheet structure upon interaction with membranes. Using the ssp polarization setting (s-polarized SFG, s-polarized visible, and p-polarized infrared), we observe changes in the amide I spectra of hIAPP at the air/water interface after addition of dipalmitoylphosphoglycerol (DPPG) that correspond to the lipid-induced changes in secondary structures. We also used the chiral-sensitive psp polarization setting to obtain amide I spectra and observed a gradual buildup of the chiral structures that display the vibrational characteristics of parallel beta-sheets. We speculate that the second-order chiral-optical response at the antisymmetric stretch frequency of parallel beta-sheet at 1622 cm(-1) could be a highly characteristic optical property of the beta-sheet aggregates not only for hIAPP, but possibly also for other amyloid proteins. Analyzing the achiral and chiral amide I spectra, we conclude that DPPG induces the misfolding of hIAPP from alpha-helical and random-coil structures to the parallel beta-sheet structure at the air/water interface. We propose that SFG could complement existing techniques in obtaining kinetic and structural information for probing structures and functions of proteins at interfaces.
Collapse
Affiliation(s)
- Li Fu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
21
|
Li ZY, Lu TT, He TJ, Liu FC, Chen DM. Resonance Raman Study of AggregatedMeso-tetra(4-pyridinium)porphyrin Diacid. CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/04/346-352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|