1
|
Smyth S, Zhang Z, Bah A, Tsangaris TE, Dawson J, Forman-Kay JD, Gradinaru CC. Multisite phosphorylation and binding alter conformational dynamics of the 4E-BP2 protein. Biophys J 2022; 121:3049-3060. [PMID: 35841142 PMCID: PMC9463650 DOI: 10.1016/j.bpj.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) play critical roles in regulatory protein interactions, but detailed structural/dynamic characterization of their ensembles remain challenging, both in isolation and when they form dynamic "fuzzy" complexes. Such is the case for mRNA cap-dependent translation initiation, which is regulated by the interaction of the predominantly folded eukaryotic initiation factor 4E (eIF4E) with the intrinsically disordered eIF4E binding proteins (4E-BPs) in a phosphorylation-dependent manner. Single-molecule Förster resonance energy transfer showed that the conformational changes of 4E-BP2 induced by binding to eIF4E are non-uniform along the sequence; while a central region containing both motifs that bind to eIF4E expands and becomes stiffer, the C-terminal region is less affected. Fluorescence anisotropy decay revealed a non-uniform segmental flexibility around six different labeling sites along the chain. Dynamic quenching of these fluorescent probes by intrinsic aromatic residues measured via fluorescence correlation spectroscopy report on transient intra- and inter-molecular contacts on nanosecond-to-microsecond timescales. Upon hyperphosphorylation, which induces folding of ∼40 residues in 4E-BP2, the quenching rates decreased at most labeling sites. The chain dynamics around sites in the C-terminal region far away from the two binding motifs significantly increased upon binding to eIF4E, suggesting that this region is also involved in the highly dynamic 4E-BP2:eIF4E complex. Our time-resolved fluorescence data paint a sequence-level rigidity map of three states of 4E-BP2 differing in phosphorylation or binding status and distinguish regions that form contacts with eIF4E. This study adds complementary structural and dynamics information to recent studies of 4E-BP2, and it constitutes an important step toward a mechanistic understanding of this important IDP via integrative modeling.
Collapse
Affiliation(s)
- Spencer Smyth
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Zhenfu Zhang
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Alaji Bah
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas E Tsangaris
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Jennifer Dawson
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
2
|
Sakhapov D, Gregor I, Karedla N, Enderlein J. Measuring Photophysical Transition Rates with Fluorescence Correlation Spectroscopy and Antibunching. J Phys Chem Lett 2022; 13:4823-4830. [PMID: 35616286 DOI: 10.1021/acs.jpclett.2c00896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present a new method that combines fluorescence correlation spectroscopy (FCS) on the microsecond time scale with fluorescence antibunching measurements on the nanosecond time scale for measuring photophysical rate constants of fluorescent molecules. The antibunching measurements allow us to quantify the average excitation rate of fluorescent molecules within the confocal detection volume of the FCS measurement setup. Knowledge of this value allows us then to quantify, in an absolute manner, the intersystem crossing rate and triplet state lifetime from the microsecond temporal decay of the FCS curves. We present a theoretical analysis of the method and estimate the maximum bias caused by the averaging of all quantities (excitation rate and photophysical rates) over the confocal detection volume, and we show that this bias is smaller than 5% in most cases. We apply the method for measuring the photophysical rate constants of the widely used dyes Rhodamine 110 and ATTO 655.
Collapse
Affiliation(s)
- Damir Sakhapov
- III. Institute of Physics - Biophysics, Georg-August-University, 37077 Göttingen, Germany
| | - Ingo Gregor
- III. Institute of Physics - Biophysics, Georg-August-University, 37077 Göttingen, Germany
| | - Narain Karedla
- The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, U.K
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg-August-University, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Takakura H. [Research on Photoimmunotherapy Based on Photochemical Property of Molecules]. YAKUGAKU ZASSHI 2022; 142:1313-1319. [PMID: 36450507 DOI: 10.1248/yakushi.22-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Photoimmunotherapy (PIT) is a new cancer therapy that uses near-infrared (NIR) light and a conjugate of an antibody and a photosensitizer (IR700). Since both NIR light and the conjugate are not toxic for human, PIT has attracted attention as a promising cancer therapy with less side effects. However, there is no photosensitizer for PIT other than IR700. To improve the therapeutic effect, more light-sensitive dye is needed. To this end, we have studied the cytotoxic mechanism of PIT, showing that the hydrophilic axial ligand cleavage of IR700 by NIR light irradiation is important for the cytotoxicity. Herein, I focused on the triplet state (T1) of IR700 because the light-induced axial ligand cleavage reaction is thought to occur via the T1. First, the quantum yield of intersystem crossing, which is the transition efficiency from the excited singlet state (S1) to T1, was determined by analysis of the T1 kinetics using fluorescence correlation spectroscopy (FCS). Also, I examined whether the cytotoxicity of IR700 can be changed in the presence of a triplet quencher. The findings obtained here will be important information for the design of a new photosensitizer for PIT in the future.
Collapse
Affiliation(s)
- Hideo Takakura
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
4
|
Ogawa M, Takakura H. Photoimmunotherapy: A new cancer treatment using photochemical reactions. Bioorg Med Chem 2021; 43:116274. [PMID: 34139484 DOI: 10.1016/j.bmc.2021.116274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022]
Abstract
Photoimmunotherapy (PIT) is a new molecular-targeted phototherapy in which administration of an antibody conjugated to IR700 (Ab-IR700, a phthalocyanine derivative) is followed by irradiation with near-infrared light. PIT induces cell death due to cell membrane damage, and the formation of IR700 aggregates on the cell membrane triggered by photochemical reactions is an important mechanism of cell killing. Specifically, water-soluble axial ligands of IR700 are cleaved by the photochemical reaction, and the phthalocyanine stacks up due to the π-π interaction, resulting in the formation of aggregates. In addition, the formation of IR700 radical anions and their protonation are essential for the progress of this photochemical reaction. The elucidation of these mechanisms may lead to the development of more effective compounds in the future. In addition, the optical properties of phthalocyanine are expected to expand the medical application of phthalocyanine derivatives in the future.
Collapse
Affiliation(s)
- Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
5
|
Jiménez-Mancilla NP, Aranda-Lara L, Morales-Ávila E, Camacho-López MA, Ocampo-García BE, Torres-García E, Estrada-Guadarrama JA, Santos-Cuevas CL, Isaac-Olivé K. Electron transfer reactions in rhodamine: Potential use in photodynamic therapy. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Analysis of the triplet-state kinetics of a photosensitizer for photoimmunotherapy by fluorescence correlation spectroscopy. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Lee S, Kim H. Crosslinking of Streptavidin–Biotinylated Bovine Serum Albumin Studied with Fluorescence Correlation Spectroscopy. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sujin Lee
- Department of Chemistry, College of Science and Technology Duksung Women's University Seoul 01369 Republic of Korea
| | - Hahkjoon Kim
- Department of Chemistry, College of Science and Technology Duksung Women's University Seoul 01369 Republic of Korea
| |
Collapse
|
8
|
Chen Q, Thoms S, Stöttinger S, Schollmeyer D, Müllen K, Narita A, Basché T. Dibenzo[ hi, st]ovalene as Highly Luminescent Nanographene: Efficient Synthesis via Photochemical Cyclodehydroiodination, Optoelectronic Properties, and Single-Molecule Spectroscopy. J Am Chem Soc 2019; 141:16439-16449. [PMID: 31589425 DOI: 10.1021/jacs.9b08320] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dibenzo[hi,st]ovalene (DBOV), as a new nanographene, has demonstrated promising optical properties, such as red emission with a high fluorescence quantum yield of 79% and stimulated emission, as well as high thermal stability and photostability, which indicated its promise as a light-emitting and optical gain material. However, the previous synthetic routes required at least 12 steps. This obstructed access to different derivatives, e.g., to obtain crystals suitable for X-ray diffraction analysis and to tune the optoelectronic properties. Here, we report an efficient synthetic pathway to DBOV based on a sequential iodination-benzannulation of bi(naphthylphenyl)diyne, followed by photochemical cyclodehydroiodination (PCDHI). This protocol included a fused bischrysene as a key intermediate and furnished scalable amounts of meso-substituted DBOV derivatives with different substituents. DBOV with 2,6-dimethylphenyl groups could be used for single-crystal X-ray analysis, revealing the precise structure of the DBOV core. The optoelectronic properties of the DBOV derivatives were investigated by UV-vis absorption and fluorescence spectroscopy, cyclic voltammetry, and density functional theory calculations. Single-molecule spectroscopy at room and low temperatures provided novel insights into the photophysics of DBOV embedded in a polymer film. As a result of weak coupling of the optical transitions to the matrix, single-molecule emission spectra at 4.5 K showed narrow vibronic lines. The fluorescence autocorrelation function covering 9 orders of magnitude in time displayed high contrast photon antibunching and bunching, from which the fluorescence decay rate and the triplet population and depopulation rates could be retrieved. Remarkably, the intersystem crossing rate into the triplet state decreased by more than an order of magnitude at low temperature, demonstrating that temperature can be a crucial parameter to boost single photon emission of an aromatic hydrocarbon.
Collapse
Affiliation(s)
- Qiang Chen
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Stefan Thoms
- Institute of Physical Chemistry , Johannes Gutenberg-University , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Sven Stöttinger
- Institute of Physical Chemistry , Johannes Gutenberg-University , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Dieter Schollmeyer
- Institute of Organic Chemistry , Johannes Gutenberg-University , Duesbergweg 10-14 , 55099 Mainz , Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.,Institute of Physical Chemistry , Johannes Gutenberg-University , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.,Organic and Carbon Nanomaterials Unit , Okinawa Institute of Science and Technology Graduate University , Okinawa 904-0495 , Japan
| | - Thomas Basché
- Institute of Physical Chemistry , Johannes Gutenberg-University , Duesbergweg 10-14 , 55128 Mainz , Germany
| |
Collapse
|
9
|
Simulation of single-protein nanopore sensing shows feasibility for whole-proteome identification. PLoS Comput Biol 2019; 15:e1007067. [PMID: 31145734 PMCID: PMC6559672 DOI: 10.1371/journal.pcbi.1007067] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 05/02/2019] [Indexed: 11/25/2022] Open
Abstract
Single-molecule techniques for protein sequencing are making headway towards single-cell proteomics and are projected to propel our understanding of cellular biology and disease. Yet, single cell proteomics presents a substantial unmet challenge due to the unavailability of protein amplification techniques, and the vast dynamic-range of protein expression in cells. Here, we describe and computationally investigate the feasibility of a novel approach for single-protein identification using tri-color fluorescence and plasmonic-nanopore devices. Comprehensive computer simulations of denatured protein translocation processes through the nanopores show that the tri-color fluorescence time-traces retain sufficient information to permit pattern-recognition algorithms to correctly identify the vast majority of proteins in the human proteome. Importantly, even when taking into account realistic experimental conditions, which restrict the spatial and temporal resolutions as well as the labeling efficiency, and add substantial noise, a deep-learning protein classifier achieves 97% whole-proteome accuracies. Applying our approach for protein datasets of clinical relevancy, such as the plasma proteome or cytokine panels, we obtain ~98% correct protein identification. This study suggests the feasibility of a method for accurate and high-throughput protein identification, which is highly versatile and applicable. Macromolecules identification methods are central for most biological and biomedical studies, and while the field of genomics advanced to single-molecule resolution, the proteomic field still relies on bulk and costly techniques. We describe a solution for single protein identification, based on the analysis of optical traces obtained from fluorescently-labeled proteins threaded through a nanopore and processed by a pattern recognition algorithm. To evaluate the feasibility of our method we constructed computer simulations of the system, producing and analyzing nearly 108 individual protein translocations from the human Swiss-Prot database. Our results suggest protein identification of >95% for the whole human proteome, even under non-ideal conditions. These results constitute the basis for a novel whole proteome identification method, with single molecule resolution.
Collapse
|
10
|
Building, Characterization, and Applications of Cuvette-FCS in Denaturant-Induced Expansion of Globular and Disordered Proteins. Methods Enzymol 2018. [PMID: 30471694 DOI: 10.1016/bs.mie.2018.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Fluorescence correlation spectroscopy (FCS) is a single-molecule sensitive technique with widespread applications in biophysics. However, conventional microscope-based FCS setups have limitations in performing certain experiments such as those requiring agitations such as stirring or heating, and those involving measurements in solvents with the mismatch of refractive indices. We have recently developed an FCS setup that is suitable for performing measurements inside regular cuvettes. The cuvette-FCS is suitable for performing single-molecule measurements in experiments that are regularly performed in spectrofluorometers but are generally avoided in microscope-based FCS. Here we describe building and characterization of the performance of the cuvette-FCS setup in detail. Finally, we have used a natively folded protein and an intrinsically disordered protein to demonstrate and describe how cuvette-FCS can be applied conveniently to measure urea-dependent expansion of hydrodynamic size of proteins.
Collapse
|
11
|
Vandenberk N, Barth A, Borrenberghs D, Hofkens J, Hendrix J. Evaluation of Blue and Far-Red Dye Pairs in Single-Molecule Förster Resonance Energy Transfer Experiments. J Phys Chem B 2018. [DOI: 10.1021/acs.jpcb.8b00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Niels Vandenberk
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Anders Barth
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science, Nanosystems Initiative Munich and Centre for Nanoscience, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), Diepenbeek, B-3590, Belgium
| |
Collapse
|
12
|
Lee HB, Cong A, Leopold H, Currie M, Boersma AJ, Sheets ED, Heikal AA. Rotational and translational diffusion of size-dependent fluorescent probes in homogeneous and heterogeneous environments. Phys Chem Chem Phys 2018; 20:24045-24057. [DOI: 10.1039/c8cp03873b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macromolecular crowding effects on diffusion depend on the fluorophore structure, the concentration of crowding agents, and the technique employed.
Collapse
Affiliation(s)
- Hong Bok Lee
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Anh Cong
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Hannah Leopold
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Megan Currie
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | | | - Erin D. Sheets
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Ahmed A. Heikal
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| |
Collapse
|
13
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
14
|
Zhang X, Poniewierski A, Jelińska A, Zagożdżon A, Wisniewska A, Hou S, Hołyst R. Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis. SOFT MATTER 2016; 12:8186-8194. [PMID: 27714379 DOI: 10.1039/c6sm01791f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C12E8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
Collapse
Affiliation(s)
- Xuzhu Zhang
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Andrzej Poniewierski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Aldona Jelińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Anna Zagożdżon
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Agnieszka Wisniewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Sen Hou
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
15
|
Mücksch J, Spielmann T, Sisamakis E, Widengren J. Transient state imaging of live cells using single plane illumination and arbitrary duty cycle excitation pulse trains. JOURNAL OF BIOPHOTONICS 2015; 8:392-400. [PMID: 24706633 DOI: 10.1002/jbio.201400015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
We demonstrate the applicability of Single Plane Illumination Microscopy to Transient State Imaging (TRAST), offering sensitive microenvironmental information together with optical sectioning and reduced overall excitation light exposure of the specimen. The concept is verified by showing that transition rates can be determined accurately for free dye in solution and that fluorophore transition rates can be resolved pixel-wise in live cells. Furthermore, we derive a new theoretical framework for analyzing TRAST data acquired with arbitrary duty cycle pulse trains. By this analysis it is possible to reduce the overall measurement time and thereby enhance the frame rates in TRAST imaging.
Collapse
Affiliation(s)
- Jonas Mücksch
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91, Stockholm, Sweden
| | - Thiemo Spielmann
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91, Stockholm, Sweden
| | - Evangelos Sisamakis
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91, Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91, Stockholm, Sweden.
| |
Collapse
|
16
|
Fedoseeva M, Letrun R, Vauthey E. Excited-State Dynamics of Rhodamine 6G in Aqueous Solution and at the Dodecane/Water Interface. J Phys Chem B 2014; 118:5184-93. [DOI: 10.1021/jp502058e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Marina Fedoseeva
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, Switzerland
| | - Romain Letrun
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, Switzerland
| | - Eric Vauthey
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, Switzerland
| |
Collapse
|
17
|
Spielmann T, Xu L, Gad AKB, Johansson S, Widengren J. Transient state microscopy probes patterns of altered oxygen consumption in cancer cells. FEBS J 2014; 281:1317-1332. [PMID: 24418170 DOI: 10.1111/febs.12709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/06/2013] [Accepted: 01/01/2014] [Indexed: 11/30/2022]
Abstract
Altered cellular metabolism plays an important role in many diseases, not least in many forms of cancer, where cellular metabolic pathways requiring lower oxygen consumption are often favored (the so-called Warburg effect). In this work, we have applied fluorescence-based transient state imaging and have exploited the environment sensitivity of long-lived dark states of fluorophores, in particular triplet state decay rates, to image the oxygen consumption of living cells. Our measurements can resolve differences in oxygen concentrations between different regions of individual cells, between different cell types, and also based on what metabolic pathways the cells use. In MCF-7 breast cancer cells, higher oxygen consumption can be detected when they rely on glutamine instead of glucose as their main metabolite, predominantly undergoing oxidative phosphorylation rather than glycolysis. By use of the high triplet yield dye Eosin Y the irradiance requirements during the measurements can be kept low. This reduces the instrumentation requirements, and harmful biological effects from high excitation doses can be avoided. Taken together, our imaging approach is widely applicable and capable of detecting subtle changes in oxygen consumption in live cells, stemming from the Warburg effect or reflecting other differences in the cellular metabolism. This may lead to new diagnostic means as well as advance our understanding of the interplay between cellular metabolism and major disease categories, such as cancer.
Collapse
Affiliation(s)
- Thiemo Spielmann
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
18
|
Daniels CR, Kisley L, Kim H, Chen WH, Poongavanam MV, Reznik C, Kourentzi K, Willson RC, Landes CF. Fluorescence correlation spectroscopy study of protein transport and dynamic interactions with clustered-charge peptide adsorbents. J Mol Recognit 2012; 25:435-42. [PMID: 22811068 DOI: 10.1002/jmr.2206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ion-exchange chromatography relies on electrostatic interactions between the adsorbent and the adsorbate and is used extensively in protein purification. Conventional ion-exchange chromatography uses ligands that are singly charged and randomly dispersed over the adsorbent, creating a heterogeneous distribution of potential adsorption sites. Clustered-charge ion exchangers exhibit higher affinity, capacity, and selectivity than their dispersed-charge counterparts of the same total charge density. In the present work, we monitored the transport behavior of an anionic protein near clustered-charge adsorbent surfaces using fluorescence correlation spectroscopy. We can resolve protein-free diffusion, hindered diffusion, and association with bare glass, agarose-coated, and agarose-clustered peptide surfaces, demonstrating that this method can be used to understand and ultimately optimize clustered-charge adsorbent and other surface interactions at the molecular scale.
Collapse
|
19
|
Daniels CR, Reznik C, Kilmer R, Felipe MJ, Tria MCR, Kourentzi K, Chen WH, Advincula RC, Willson RC, Landes CF. Permeability of anti-fouling PEGylated surfaces probed by fluorescence correlation spectroscopy. Colloids Surf B Biointerfaces 2011; 88:31-8. [PMID: 21742471 PMCID: PMC5625349 DOI: 10.1016/j.colsurfb.2011.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
The present work reports on in situ observations of the interaction of organic dye probe molecules and dye-labeled protein with different poly(ethylene glycol) (PEG) architectures (linear, dendron, and bottle brush). Fluorescence correlation spectroscopy (FCS) and single molecule event analysis were used to examine the nature and extent of probe-PEG interactions. The data support a sieve-like model in which size-exclusion principles determine the extent of probe-PEG interactions. Small probes are trapped by more dense PEG architectures and large probes interact more with less dense PEG surfaces. These results, and the tunable pore structure of the PEG dendrons employed in this work, suggest the viability of electrochemically-active materials for tunable surfaces.
Collapse
Affiliation(s)
| | - Carmen Reznik
- Department of Chemistry, Rice University, Houston, TX 77251, United States
| | - Rachel Kilmer
- Department of Chemistry, Rice University, Houston, TX 77251, United States
| | - Mary Jane Felipe
- Department of Chemistry, University of Houston, Houston, TX 77004, United States
| | | | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, United States
| | - Wen-Hsiang Chen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, United States
| | - Rigoberto C. Advincula
- Department of Chemistry, University of Houston, Houston, TX 77004, United States
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, United States
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, United States
| | - Christy F. Landes
- Department of Chemistry, Rice University, Houston, TX 77251, United States
| |
Collapse
|
20
|
Hevekerl H, Spielmann T, Chmyrov A, Widengren J. Förster Resonance Energy Transfer beyond 10 nm: Exploiting the Triplet State Kinetics of Organic Fluorophores. J Phys Chem B 2011; 115:13360-70. [DOI: 10.1021/jp206770s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Heike Hevekerl
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Thiemo Spielmann
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Andriy Chmyrov
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
21
|
Thompson NL, Navaratnarajah P, Wang X. Measuring surface binding thermodynamics and kinetics by using total internal reflection with fluorescence correlation spectroscopy: practical considerations. J Phys Chem B 2010; 115:120-31. [PMID: 21166379 DOI: 10.1021/jp1069708] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The combination of total internal reflection illumination and fluorescence correlation spectroscopy (TIR-FCS) is an emerging method useful for, among a number of things, measuring the thermodynamic and kinetic parameters describing the reversible association of fluorescently labeled ligands in solution with immobilized, nonfluorescent surface binding sites. However, there are many parameters (both instrumental and intrinsic to the interaction of interest) that determine the nature of the acquired fluorescence fluctuation autocorrelation functions. In this work, we define criteria necessary for successful measurements and then systematically explore the parameter space to define conditions that meet the criteria. The work is intended to serve as a guide for experimental design, in other words, to provide a methodology to identify experimental conditions that will yield reliable values of the thermodynamic and kinetic parameters for a given interaction.
Collapse
Affiliation(s)
- Nancy L Thompson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
22
|
Park SM, Huh YS, Szeto K, Joe DJ, Kameoka J, Coates GW, Edel JB, Erickson D, Craighead HG. Rapid prototyping of nanofluidic systems using size-reduced electrospun nanofibers for biomolecular analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2420-6. [PMID: 20878634 DOI: 10.1002/smll.201000884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biomolecular transport in nanofluidic confinement offers various means to investigate the behavior of biomolecules in their native aqueous environments, and to develop tools for diverse single-molecule manipulations. Recently, a number of simple nanofluidic fabrication techniques has been demonstrated that utilize electrospun nanofibers as a backbone structure. These techniques are limited by the arbitrary dimension of the resulting nanochannels due to the random nature of electrospinning. Here, a new method for fabricating nanofluidic systems from size-reduced electrospun nanofibers is reported and demonstrated. As it is demonstrated, this method uses the scanned electrospinning technique for generation of oriented sacrificial nanofibers and exposes these nanofibers to harsh, but isotropic etching/heating environments to reduce their cross-sectional dimension. The creation of various nanofluidic systems as small as 20 nm is demonstrated, and practical examples of single biomolecular handling, such as DNA elongation in nanochannels and fluorescence correlation spectroscopic analysis of biomolecules passing through nanochannels, are provided.
Collapse
Affiliation(s)
- Seung-Min Park
- School of Applied and Engineering Physics, Cornell University, 205 Clark Hall, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Spielmann T, Blom H, Geissbuehler M, Lasser T, Widengren J. Transient State Monitoring by Total Internal Reflection Fluorescence Microscopy. J Phys Chem B 2010; 114:4035-46. [DOI: 10.1021/jp911034v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thiemo Spielmann
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91 Stockholm, Sweden, and Laboratoire d’Optique Biomédicalé, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hans Blom
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91 Stockholm, Sweden, and Laboratoire d’Optique Biomédicalé, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Matthias Geissbuehler
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91 Stockholm, Sweden, and Laboratoire d’Optique Biomédicalé, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Theo Lasser
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91 Stockholm, Sweden, and Laboratoire d’Optique Biomédicalé, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91 Stockholm, Sweden, and Laboratoire d’Optique Biomédicalé, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Electrostatic interactions of fluorescent molecules with dielectric interfaces studied by total internal reflection fluorescence correlation spectroscopy. Int J Mol Sci 2010; 11:386-406. [PMID: 20386645 PMCID: PMC2852845 DOI: 10.3390/ijms11020386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/17/2010] [Accepted: 01/21/2010] [Indexed: 01/24/2023] Open
Abstract
Electrostatic interactions between dielectric surfaces and different fluorophores used in ultrasensitive fluorescence microscopy are investigated using objective-based Total Internal Reflection Fluorescence Correlation Spectroscopy (TIR-FCS). The interfacial dynamics of cationic rhodamine 123 and rhodamine 6G, anionic/dianionic fluorescein, zwitterionic rhodamine 110 and neutral ATTO 488 are monitored at various ionic strengths at physiological pH. As analyzed by means of the amplitude and time-evolution of the autocorrelation function, the fluorescent molecules experience electrostatic attraction or repulsion at the glass surface depending on their charges. Influences of the electrostatic interactions are also monitored through the triplet-state population and triplet relaxation time, including the amount of detected fluorescence or the count-rate-per-molecule parameter. These TIR-FCS results provide an increased understanding of how fluorophores are influenced by the microenvironment of a glass surface, and show a promising approach for characterizing electrostatic interactions at interfaces.
Collapse
|