1
|
Gallo P, Bachler J, Bove LE, Böhmer R, Camisasca G, Coronas LE, Corti HR, de Almeida Ribeiro I, de Koning M, Franzese G, Fuentes-Landete V, Gainaru C, Loerting T, de Oca JMM, Poole PH, Rovere M, Sciortino F, Tonauer CM, Appignanesi GA. Advances in the study of supercooled water. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:143. [PMID: 34825973 DOI: 10.1140/epje/s10189-021-00139-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.
Collapse
Affiliation(s)
- Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy.
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Livia E Bove
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Luis E Coronas
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Horacio R Corti
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | | | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| |
Collapse
|
2
|
Nakagawa H, Joti Y, Kitao A, Yamamuro O, Kataoka M. Universality and Structural Implications of the Boson Peak in Proteins. Biophys J 2019; 117:229-238. [PMID: 31255295 DOI: 10.1016/j.bpj.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/19/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
The softness and rigidity of proteins are reflected in the structural dynamics, which are in turn affected by the environment. The characteristic low-frequency vibrational spectrum of a protein, known as boson peak, is an indication of the structural rigidity of the protein at a cryogenic temperature or dehydrated conditions. In this article, the effect of hydration, temperature, and pressure on the boson peak and volumetric properties of a globular protein are evaluated by using inelastic neutron scattering and molecular dynamics simulation. Hydration, pressurization, and cooling shift the boson peak position to higher energy and depress the peak intensity and decreases the protein and cavity volumes. We found the correlation between the boson peak and cavity volume in a protein. A decrease of cavity volume means the increase of rigidity, which is the origin of the boson peak shift. Boson peak is the universal property of a protein, which is rationalized by the correlation.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Hierarchical Structure Research Group, Materials Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan.
| | - Yasumasa Joti
- XFEL Utilization Division, Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Osamu Yamamuro
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Naka, Ibaraki, Japan.
| |
Collapse
|
3
|
Low temperature dependence of protein-water interactions on barstar surface: A nano-scale modelling. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Cerveny S, Mallamace F, Swenson J, Vogel M, Xu L. Confined Water as Model of Supercooled Water. Chem Rev 2016; 116:7608-25. [PMID: 26940794 DOI: 10.1021/acs.chemrev.5b00609] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water in confined geometries has obvious relevance in biology, geology, and other areas where the material properties are strongly dependent on the amount and behavior of water in these types of materials. Another reason to restrict the size of water domains by different types of geometrical confinements has been the possibility to study the structural and dynamical behavior of water in the deeply supercooled regime (e.g., 150-230 K at ambient pressure), where bulk water immediately crystallizes to ice. In this paper we give a short review of studies with this particular goal. However, from these studies it is also clear that the interpretations of the experimental data are far from evident. Therefore, we present three main interpretations to explain the experimental data, and we discuss their advantages and disadvantages. Unfortunately, none of the proposed scenarios is able to predict all the observations for supercooled and glassy bulk water, indicating that either the structural and dynamical alterations of confined water are too severe to make predictions for bulk water or the differences in how the studied water has been prepared (applied cooling rate, resulting density of the water, etc.) are too large for direct and quantitative comparisons.
Collapse
Affiliation(s)
- Silvina Cerveny
- Centro de Física de Materiales (CFM CSIC/EHU) - Material Physics Centre (MPC) , Paseo Manuel de Lardizabal 5, 20018 San Sebastian, Spain.,Donostia International Physics Center , Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Francesco Mallamace
- Dipartimento di Fisica, Università di Messina , Vill. S. Agata, CP 55, I-98166 Messina, Italy
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology , SE-412 96 Göteborg, Sweden
| | - Michael Vogel
- Institut für Festkörperphysik, Technische Universität Darmstadt , Hochschulstraße 6, 64289 Darmstadt, Germany
| | - Limei Xu
- International Centre for Quantum Materials and School of Physics, Peking University , , Beijing 100871, China.,Collaborative Innovation Center of Quantum Matter , Beijing 100871, China
| |
Collapse
|
5
|
Effects of pressure on the dynamics of an oligomeric protein from deep-sea hyperthermophile. Proc Natl Acad Sci U S A 2015; 112:13886-91. [PMID: 26504206 DOI: 10.1073/pnas.1514478112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inorganic pyrophosphatase (IPPase) from Thermococcus thioreducens is a large oligomeric protein derived from a hyperthermophilic microorganism that is found near hydrothermal vents deep under the sea, where the pressure is up to 100 MPa (1 kbar). It has attracted great interest in biophysical research because of its high activity under extreme conditions in the seabed. In this study, we use the quasielastic neutron scattering (QENS) technique to investigate the effects of pressure on the conformational flexibility and relaxation dynamics of IPPase over a wide temperature range. The β-relaxation dynamics of proteins was studied in the time ranges from 2 to 25 ps, and from 100 ps to 2 ns, using two spectrometers. Our results indicate that, under a pressure of 100 MPa, close to that of the native environment deep under the sea, IPPase displays much faster relaxation dynamics than a mesophilic model protein, hen egg white lysozyme (HEWL), at all measured temperatures, opposite to what we observed previously under ambient pressure. This contradictory observation provides evidence that the protein energy landscape is distorted by high pressure, which is significantly different for hyperthermophilic (IPPase) and mesophilic (HEWL) proteins. We further derive from our observations a schematic denaturation phase diagram together with energy landscapes for the two very different proteins, which can be used as a general picture to understand the dynamical properties of thermophilic proteins under pressure.
Collapse
|
6
|
Ferreira PMGL, Ishikawa MS, Kogikoski S, Alves WA, Martinho H. Relaxation dynamics of deeply supercooled confined water in l,l-diphenylalanine micro/nanotubes. Phys Chem Chem Phys 2015; 17:32126-31. [DOI: 10.1039/c5cp01055a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature dependence (10–290 K) of the low-frequency (20–150 cm−1) Raman-active phonon modes of deeply supercooled confined water in l,l-diphenylalanine micro/nanotubes was analyzed.
Collapse
Affiliation(s)
| | - M. S. Ishikawa
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Brazil
| | - S. Kogikoski
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Brazil
| | - W. A. Alves
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Brazil
| | - H. Martinho
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Brazil
| |
Collapse
|
7
|
Mallamace F, Baglioni P, Corsaro C, Chen SH, Mallamace D, Vasi C, Stanley HE. The influence of water on protein properties. J Chem Phys 2014; 141:165104. [DOI: 10.1063/1.4900500] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Francesco Mallamace
- Dipartimento di Fisica e Scienze della Terra, Universit à di Messina, I-98166, Messina, Italy
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
- Consiglio Nazionale delle Ricerche-IPCF, I-98166, Messina, Italy
| | - Piero Baglioni
- Dipartimento di Chimica and CSGI, Università di Firenze, 50019 Firenze, Italy
| | - Carmelo Corsaro
- Dipartimento di Fisica e Scienze della Terra, Universit à di Messina, I-98166, Messina, Italy
| | - Sow-Hsin Chen
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Domenico Mallamace
- Dipartimento di Scienze dell’Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Cirino Vasi
- Consiglio Nazionale delle Ricerche-IPCF, I-98166, Messina, Italy
| | - H. Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
8
|
Wang Z, Fratini E, Li M, Le P, Mamontov E, Baglioni P, Chen SH. Hydration-dependent dynamic crossover phenomenon in protein hydration water. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042705. [PMID: 25375521 DOI: 10.1103/physreve.90.042705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 06/04/2023]
Abstract
The characteristic relaxation time τ of protein hydration water exhibits a strong hydration level h dependence. The dynamic crossover is observed when h is higher than the monolayer hydration level hc=0.2-0.25 and becomes more visible as h increases. When h is lower than hc, τ only exhibits Arrhenius behavior in the measured temperature range. The activation energy of the Arrhenius behavior is insensitive to h, indicating a local-like motion. Moreover, the h dependence of the crossover temperature shows that the protein dynamic transition is not directly or solely induced by the dynamic crossover in the hydration water.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Emiliano Fratini
- Department of Chemistry and CSGI, University of Florence, Sesto Fiorentino, Florence I-50019, Italy
| | - Mingda Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Peisi Le
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Eugene Mamontov
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence, Sesto Fiorentino, Florence I-50019, Italy
| | - Sow-Hsin Chen
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
9
|
Dhindsa GK, Tyagi M, Chu XQ. Temperature-dependent dynamics of dry and hydrated β-casein studied by quasielastic neutron scattering. J Phys Chem B 2014; 118:10821-9. [PMID: 25144497 DOI: 10.1021/jp504548w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
β-Casein is a component of casein micelle with amphillic nature and is recognized as a "natively disordered" protein that lacks secondary structures. In this study, the temperature and hydration effects on the dynamics of β-casein are explored by quasielastic neutron scattering (QENS). An upturn in the mean square displacement (MSD) of hydrated β-casein indicates an increase of protein flexibility at a temperature of ~225 K. Another increase in MSD at ~100 K, observed in both dry and hydrated β-casein, is ascribed to the methyl group rotations, which are not sensitive to hydration. QENS analysis in the energy domain reveals that the fraction of hydrogen atoms participating in motion in a sphere of diffusion is highly hydration dependent and increases with temperature. In the time domain analysis, a logarithmic-like decay is observed in the range of picosecond to nanosecond (β-relaxation time) in the dynamics of hydrated β-casein. This dynamical behavior has been observed in hydrated globular and oligomeric proteins. Our temperature-dependent QENS experiments provide evidence that lack of a secondary structure in β-casein results in higher flexibility in its dynamics and easier reversible thermal unfolding compared to other rigid biomolecules.
Collapse
Affiliation(s)
- Gurpreet K Dhindsa
- Department of Physics and Astronomy, Wayne State University , Detroit, Michigan 48201, United States
| | | | | |
Collapse
|
10
|
|
11
|
McMillan PF, Greaves GN, Wilson M, Wilding MC, Daisenberger D. Polyamorphism and Liquid-Liquid Phase Transitions in Amorphous Silicon and Supercooled Al 2O 3-Y 2O 3Liquids. LIQUID POLYMORPHISM 2013. [DOI: 10.1002/9781118540350.ch12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Wang Z, Bertrand CE, Chiang WS, Fratini E, Baglioni P, Alatas A, Alp EE, Chen SH. Inelastic X-ray Scattering Studies of the Short-Time Collective Vibrational Motions in Hydrated Lysozyme Powders and Their Possible Relation to Enzymatic Function. J Phys Chem B 2013; 117:1186-95. [DOI: 10.1021/jp312842m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhe Wang
- Department of Nuclear Science and
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher E. Bertrand
- Department of Nuclear Science and
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wei-Shan Chiang
- Department of Nuclear Science and
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Emiliano Fratini
- Department of Chemistry and CSGI, University of Florence, Sesto Fiorentino, Florence,
I-50019, Italy
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence, Sesto Fiorentino, Florence,
I-50019, Italy
| | - Ahmet Alatas
- Advanced Photon
Source, Argonne National Lab, Argonne,
Illinois, 60439, United States
| | - E. Ercan Alp
- Advanced Photon
Source, Argonne National Lab, Argonne,
Illinois, 60439, United States
| | - Sow-Hsin Chen
- Department of Nuclear Science and
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Chu XQ, Gajapathy M, Weiss KL, Mamontov E, Ng JD, Coates L. Dynamic behavior of oligomeric inorganic pyrophosphatase explored by quasielastic neutron scattering. J Phys Chem B 2012; 116:9917-21. [PMID: 22804561 DOI: 10.1021/jp303127w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this investigation is to determine whether a large oligomeric protein, inorganic pyrophosphatase (IPPase) from Thermococcus thioreducens with quaternary structural complexity, would have distinguishable dynamic characteristics compared to those of the small simple monomeric model protein, lysozyme. In this study, the β-relaxational dynamics of the two proteins, IPPase and lysozyme, are compared in the 10 ps to 0.5 ns time interval using quasi-elastic neutron scattering (QENS). Both of the protein dynamics show a characteristic logarithmic-like decay in the intermediate scattering function (ISF) of the hydrogen atoms. Distinguishable dynamical behavior found between two proteins reveals local flexibility and conformational substates unique to oligomeric structures. Moreover, the temperature dependence of the mean square displacement (MSD) of the hydrogen atoms in protein molecules, which is a traditional way to determine the "softness" of the protein molecule, is measured and shows no difference for the two proteins.
Collapse
Affiliation(s)
- Xiang-qiang Chu
- Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | |
Collapse
|
14
|
Chu XQ, Mamontov E, O'Neill H, Zhang Q. Apparent Decoupling of the Dynamics of a Protein from the Dynamics of its Aqueous Solvent. J Phys Chem Lett 2012; 3:380-385. [PMID: 26285855 DOI: 10.1021/jz201435q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Studies of the low-temperature dynamics of proteins in aqueous solutions are limited by the crystallization of water. In this work, we use a solution of LiCl in D2O as a solvent for a protein to prevent crystallization and study the dynamics of both the protein and its aqueous solvent by quasielastic neutron scattering (QENS) in the temperature range of 210 to 290 K. Our results reveal that, while the dynamics of the aqueous solvent undergoes a crossover at about 220 K, the dynamics of the protein itself shows no transition at this temperature. The prevailing view is that the β-fluctuations of the protein are governed by the α-fluctuations of the solvent; therefore, observation of the apparent decoupling between the dynamics of the protein and its solvent below the crossover temperature is remarkable.
Collapse
Affiliation(s)
- Xiang-Qiang Chu
- †Neutron Scattering Science Division and ‡Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- †Neutron Scattering Science Division and ‡Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hugh O'Neill
- †Neutron Scattering Science Division and ‡Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Qiu Zhang
- †Neutron Scattering Science Division and ‡Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
Bianco V, Iskrov S, Franzese G. Understanding the role of hydrogen bonds in water dynamics and protein stability. J Biol Phys 2012; 38:27-48. [PMID: 23277668 PMCID: PMC3285729 DOI: 10.1007/s10867-011-9235-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/07/2011] [Indexed: 11/30/2022] Open
Abstract
The mechanisms of cold and pressure denaturation of proteins are a matter of debate, but it is commonly accepted that water plays a fundamental role in the process. It has been proposed that the denaturation process is related to an increase of hydrogen bonds among hydration water molecules. Other theories suggest that the causes of denaturation are the density fluctuations of surface water, or the destabilization of hydrophobic contacts as a consequence of water molecule inclusions inside the protein, especially at high pressures. We review some theories that have been proposed to give insight into this problem, and we describe a coarse-grained model of water that compares well with experiments for proteins' hydration water. We introduce its extension for a homopolymer in contact with the water monolayer and study it by Monte Carlo simulations in an attempt to understand how the interplay of water cooperativity and interfacial hydrogen bonds affects protein stability.
Collapse
Affiliation(s)
- Valentino Bianco
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | - Svilen Iskrov
- École Normale Supérieure de Cachan, 61, avenue du Président Wilson, 94235 Cachan cedex, France
| | - Giancarlo Franzese
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Abstract
Proteins are known to undergo a dynamical transition at around 200 K but the underlying mechanism, physical origin, and relationship to water are controversial. Here we report an observation of a protein dynamical transition as low as 110 K. This unexpected protein dynamical transition precisely correlated with the cryogenic phase transition of water from a high-density amorphous to a low-density amorphous state. The results suggest that the cryogenic protein dynamical transition might be directly related to the two liquid forms of water proposed at cryogenic temperatures.
Collapse
|
17
|
|
18
|
Matyushov DV. Nanosecond Stokes Shift Dynamics, Dynamical Transition, and Gigantic Reorganization Energy of Hydrated Heme Proteins. J Phys Chem B 2011; 115:10715-24. [DOI: 10.1021/jp200409z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dmitry V. Matyushov
- Center for Biological Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
19
|
Matyushov DV, Morozov AY. Electrostatics of the protein-water interface and the dynamical transition in proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011908. [PMID: 21867214 DOI: 10.1103/physreve.84.011908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Indexed: 05/31/2023]
Abstract
Atomic displacements of hydrated proteins are dominated by phonon vibrations at low temperatures and by dissipative large-amplitude motions at high temperatures. A crossover between the two regimes is known as a dynamical transition. Recent experiments indicate a connection between the dynamical transition and the dielectric response of the hydrated protein. We analyze two mechanisms of the coupling between the protein atomic motions and the protein-water interface. The first mechanism considers viscoelastic changes in the global shape of the protein plasticized by its coupling to the hydration shell. The second mechanism involves modulations of the local motions of partial charges inside the protein by electrostatic fluctuations. The model is used to analyze mean-square displacements of iron of metmyoglobin reported by Mössbauer spectroscopy. We show that high displacement of heme iron at physiological temperatures is dominated by electrostatic fluctuations. Two onsets, one arising from the viscoelastic response and the second from electrostatic fluctuations, are seen in the temperature dependence of the mean-square displacements when the corresponding relaxation times enter the instrumental resolution window.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- Center for Biological Physics, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604, USA.
| | | |
Collapse
|
20
|
Wang HJ, Kleinhammes A, Tang P, Xu Y, Wu Y. Temperature dependence of lysozyme hydration and the role of elastic energy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:031924. [PMID: 21517540 PMCID: PMC3388542 DOI: 10.1103/physreve.83.031924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 02/03/2011] [Indexed: 05/30/2023]
Abstract
Water plays a critical role in protein dynamics and functions. However, the most basic property of hydration--the water sorption isotherm--remains inadequately understood. Surface adsorption is the commonly adopted picture of hydration. Since it does not account for changes in the conformational entropy of proteins, it is difficult to explain why protein dynamics and activity change upon hydration. The solution picture of hydration provides an alternative approach to describe the thermodynamics of hydration. Here, the flexibility of proteins could influence the hydration level through the change of elastic energy upon hydration. Using nuclear magnetic resonance to measure the isotherms of lysozyme in situ between 18 and 2 °C, the present work provides evidence that the part of water uptake associated with the onset of protein function is significantly reduced below 8 °C. Quantitative analysis shows that such reduction is directly related to the reduction of protein flexibility and enhanced cost in elastic energy upon hydration at lower temperature. The elastic property derived from the water isotherm agrees with direct mechanical measurements, providing independent support for the solution model. This result also implies that water adsorption at charged and polar groups occurring at low vapor pressure, which is known for softening the protein, is crucial for the later stage of water uptake, leading to the activation of protein dynamics. The present work sheds light on the mutual influence of protein flexibility and hydration, providing the basis for understanding the role of hydration on protein dynamics.
Collapse
Affiliation(s)
- Hai-Jing Wang
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Chu XQ, Liu KH, Tyagi MS, Mou CY, Chen SH. Low-temperature dynamics of water confined in a hydrophobic mesoporous material. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:020501. [PMID: 20866765 DOI: 10.1103/physreve.82.020501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Indexed: 05/29/2023]
Abstract
Quasielastic neutron scattering was used to study the dynamics of three-dimensional confined water in a hydrophobic mesoporous material designated as CMK-1 in the temperature range from 250 to 170 K. We observe a crossover phenomenon at temperature T(L) . We find that T(L) of water confined in CMK-1 occurs in between previous observations of one-dimensional confined water in materials with different hydrophilicities. This provides the first evidence that besides the obvious surface effect brought about by the hydrophobic confinements, T(L) is also dependent on the dimensionality of the geometry of the confinement.
Collapse
Affiliation(s)
- Xiang-qiang Chu
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | |
Collapse
|
23
|
LeBard DN, Matyushov DV. Ferroelectric Hydration Shells around Proteins: Electrostatics of the Protein−Water Interface. J Phys Chem B 2010; 114:9246-58. [DOI: 10.1021/jp1006999] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- David N. LeBard
- Center for Biological Physics, Arizona State University, PO Box 871604, Tempe, Arizona 85287-1604
| | - Dmitry V. Matyushov
- Center for Biological Physics, Arizona State University, PO Box 871604, Tempe, Arizona 85287-1604
| |
Collapse
|
24
|
Doster W, Busch S, Gaspar AM, Appavou MS, Wuttke J, Scheer H. Dynamical transition of protein-hydration water. PHYSICAL REVIEW LETTERS 2010; 104:098101. [PMID: 20367013 DOI: 10.1103/physrevlett.104.098101] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Indexed: 05/10/2023]
Abstract
Thin layers of water on biomolecular and other nanostructured surfaces can be supercooled to temperatures not accessible with bulk water. Chen et al. [Proc. Natl. Acad. Sci. U.S.A. 103, 9012 (2006)]10.1073/pnas.0602474103 suggested that anomalies near 220 K observed by quasielastic neutron scattering can be explained by a hidden critical point of bulk water. Based on more sensitive measurements of water on perdeuterated phycocyanin, using the new neutron backscattering spectrometer SPHERES, and an improved data analysis, we present results that show no sign of such a fragile-to-strong transition. The inflection of the elastic intensity at 220 K has a dynamic origin that is compatible with a calorimetric glass transition at 170 K. The temperature dependence of the relaxation times is highly sensitive to data evaluation; it can be brought into perfect agreement with the results of other techniques, without any anomaly.
Collapse
Affiliation(s)
- W Doster
- Physik Department E 13 and ZWE FRM II, Technische Universität München, 85747 Garching, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Stanley HE, Kumar P, Han S, Mazza MG, Stokely K, Buldyrev SV, Franzese G, Mallamace F, Xu L. Heterogeneities in confined water and protein hydration water. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:504105. [PMID: 21836216 DOI: 10.1088/0953-8984/21/50/504105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report recent efforts to understand a broad range of experiments on confined water and protein hydration water, many initiated by a collaboration between workers at the University of Messina and MIT-the editors of this special issue. Preliminary calculations are not inconsistent with one tentative interpretation of these experiments as resulting from the system passing from the high-temperature high-pressure 'HDL' side of the Widom line (where the liquid might display non-Arrhenius behavior) to the low-temperature low-pressure 'LDL' side of the Widom line (where the liquid might display Arrhenius behavior). The Widom line-defined to be the line in the pressure-temperature plane where the correlation length has its maximum-arises if there is a critical point. Hence, interpreting the Messina-MIT experiments in terms of a Widom line is of potential relevance to testing, experimentally, the hypothesis that water displays a liquid-liquid critical point.
Collapse
Affiliation(s)
- H E Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|