1
|
Fleming PJ, Fleming KG. HullRad: Fast Calculations of Folded and Disordered Protein and Nucleic Acid Hydrodynamic Properties. Biophys J 2018; 114:856-869. [PMID: 29490246 PMCID: PMC5984988 DOI: 10.1016/j.bpj.2018.01.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022] Open
Abstract
Hydrodynamic properties are useful parameters for estimating the size and shape of proteins and nucleic acids in solution. The calculation of such properties from structural models informs on the solution properties of these molecules and complements corresponding structural studies. Here we report, to our knowledge, a new method to accurately predict the hydrodynamic properties of molecular structures. This method uses a convex hull model to estimate the hydrodynamic volume of the molecule and is orders of magnitude faster than common methods. It works well for both folded proteins and ensembles of conformationally heterogeneous proteins and for nucleic acids. Because of its simplicity and speed, the method should be useful for the modification of computer-generated, intrinsically disordered protein ensembles and ensembles of flexible, but folded, molecules in which rapid calculation of experimental parameters is needed. The convex hull method is implemented in a Python script called HullRad. The use of the method is facilitated by a web server and the code is freely available for batch applications.
Collapse
Affiliation(s)
- Patrick J Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
2
|
Thieulin-Pardo G, Schramm A, Lignon S, Lebrun R, Kojadinovic M, Gontero B. The intriguing CP12-like tail of adenylate kinase 3 fromChlamydomonas reinhardtii. FEBS J 2016; 283:3389-407. [DOI: 10.1111/febs.13814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Affiliation(s)
| | - Antoine Schramm
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| | - Sabrina Lignon
- Plate-forme Protéomique; Marseille Protéomique (MaP); Institut de Microbiologie de la Méditerranée; CNRS, FR 3479 Marseille Cedex 20 France
| | - Régine Lebrun
- Plate-forme Protéomique; Marseille Protéomique (MaP); Institut de Microbiologie de la Méditerranée; CNRS, FR 3479 Marseille Cedex 20 France
| | - Mila Kojadinovic
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| | - Brigitte Gontero
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| |
Collapse
|
3
|
Salvalaglio M, Paloni M, Guelat B, Morbidelli M, Cavallotti C. A two level hierarchical model of protein retention in ion exchange chromatography. J Chromatogr A 2015; 1411:50-62. [DOI: 10.1016/j.chroma.2015.07.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
|
4
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
5
|
Abstract
Allosteric propagation results in communication between distinct sites in the protein structure; it also encodes specific effects on cellular pathways, and in this way it shapes cellular response. One example of long-range effects is binding of morphogens to cell surface receptors, which initiates a cascade of protein interactions that leads to genome activation and specific cellular action. Allosteric propagation results from combinations of multiple factors, takes place through dynamic shifts of conformational ensembles, and affects the equilibria of macromolecular interactions. Here, we (a) emphasize the well-known yet still underappreciated role of allostery in conveying explicit signals across large multimolecular assemblies and distances to specify cellular action; (b) stress the need for quantitation of the allosteric effects; and finally, (c) propose that each specific combination of allosteric effectors along the pathway spells a distinct function. The challenges are colossal; the inspiring reward will be predicting function, misfunction, and outcomes of drug regimes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
6
|
Meirovitch E. SRLS analysis of 15N relaxation from bacteriophage T4 lysozyme: a tensorial perspective that features domain motion. J Phys Chem B 2012; 116:6118-27. [PMID: 22568692 DOI: 10.1021/jp301999n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophage T4L lysozyme (T4L) comprises two domains connected by a helical linker. Several methods detected ns domain motion associated with the binding of the peptidoglycan substrate. An ESR study of nitroxide-labeled T4L, based on the slowly relaxing local structure (SRLS) approach, detected ns local motion involving the nitroxide and the helix housing it. (15)N−H spin relaxation data from T4L acquired at magnetic fields of 11.7 and 18.8 T, and 298 K, were analyzed previously with the model-free (MF) method. The results did not detect domain motion. SRLS is the generalization of MF. Here, we apply it to the same data analyzed previously with MF. The restricted local N−H motion is described in terms of tilted axial local ordering (S) and local diffusion (D(2)) tensors; dynamical coupling to the global tumbling is accounted for. We find that D(2,⊥) is 1.62 × 10(7) (1.56 × 10(7)) s(−1) for the N-terminal (C-terminal) domain. This dynamic mode represents domain motion. For the linker D(2,⊥) is the same as the rate of global tumbling, given by (1.46 ± 0.04) × 10(7) s(−1). D(2,∥) is 1.3 × 10(9), 1.8 × 10(9) and 5.3 × 10(9) s(−1) for the N-terminal domain, the C-terminal domain, and the linker, respectively. This dynamic mode represents N−H bond vector fluctuations. The principal axis of D(2) is virtually parallel to the N−H bond. The order parameter, S(0)(2), is 0.910 ± 0.046 for most N−H bonds. The principal axis of S is tilted from the C(i−1)(α) −C(i)(α) axis by −2° to 6° for the N-, and C-terminal domains, and by 2.5° for the linker. The tensorial-perspective-based and mode-coupling-based SRLS picture provides new insights into the structural dynamics of bacteriophage T4 lysozyme.
Collapse
Affiliation(s)
- Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
7
|
Shapiro YE, Meirovitch E. Slowly Relaxing Local Structure (SRLS) Analysis of 15N–H Relaxation from the Prototypical Small Proteins GB1 and GB3. J Phys Chem B 2012; 116:4056-68. [DOI: 10.1021/jp300245k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yury E. Shapiro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 Israel
| |
Collapse
|
8
|
A direct coupling between global and internal motions in a single domain protein? MD investigation of extreme scenarios. Biophys J 2011; 101:196-204. [PMID: 21723830 DOI: 10.1016/j.bpj.2011.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/25/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022] Open
Abstract
Proteins are not rigid molecules, but exhibit internal motions on timescales ranging from femto- to milliseconds and beyond. In solution, proteins also experience global translational and rotational motions, sometimes on timescales comparable to those of the internal fluctuations. The possibility that internal and global motions may be directly coupled has intriguing implications, given that enzymes and cell signaling proteins typically associate with binding partners and cellular scaffolds. Such processes alter their global motion and may affect protein function. Here, we present molecular dynamics simulations of extreme case scenarios to examine whether a possible relationship exists. In our model protein, a ubiquitin-like RhoGTPase binding domain of plexin-B1, we removed either internal or global motions. Comparisons with unrestrained simulations show that internal and global motions are not appreciably coupled in this single-domain protein. This lack of coupling is consistent with the observation that the dynamics of water around the protein, which is thought to permit, if not stimulate, internal dynamics, is also largely independent of global motion. We discuss implications of these results for the structure and function of proteins.
Collapse
|
9
|
Shapira B, Prestegard JH. Electron-nuclear interactions as probes of domain motion in proteins. J Chem Phys 2010; 132:115102. [PMID: 20331317 DOI: 10.1063/1.3328644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Long range interactions between nuclear spins and paramagnetic ions can serve as a sensitive monitor of internal motion of various parts of proteins, including functional loops and separate domains. In the case of interdomain motion, the interactions between the ion and NMR-observable nuclei are modulated in direction and magnitude mainly by a combination of overall and interdomain motions. The effects on observable parameters such as paramagnetic relaxation enhancement (PRE) and pseudocontact shift (PCS) can, in principle, be used to characterize motion. These parameters are frequently used for the purpose of structural refinements. However, their use to probe actual domain motions is less common and is lacking a proper theoretical treatment from a motional perspective. In this work, a suitable spin Hamiltonian is incorporated in a two body diffusion model to produce the time correlation function for the nuclear spin-paramagnetic ion interactions. Simulated observables for nuclei in different positions with respect to the paramagnetic ion are produced. Based on these simulations, it demonstrated that both the PRE and the PCS can be very sensitive probes of domain motion. Results for different nuclei within the protein sense different aspects of the motions. Some are more sensitive to the amplitude of the internal motion, others are more sensitive to overall diffusion rates, allowing separation of these contributions. Experimentally, the interaction strength can also be tuned by substitution of different paramagnetic ions or by varying magnetic field strength (in the case of lanthanides) to allow the use of more detailed diffusion models without reducing the reliability of data fitting.
Collapse
Affiliation(s)
- Boaz Shapira
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
10
|
Meirovitch E, Shapiro YE, Polimeno A, Freed JH. Structural dynamics of bio-macromolecules by NMR: the slowly relaxing local structure approach. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2010; 56:360-405. [PMID: 20625480 PMCID: PMC2899824 DOI: 10.1016/j.pnmrs.2010.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar–Ilan University, Ramat-Gan 52900 Israel
| | - Yury E. Shapiro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar–Ilan University, Ramat-Gan 52900 Israel
| | - Antonino Polimeno
- Department of Physical Chemistry, University of Padua, 35131 Padua, Italy
| | - Jack H. Freed
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, U.S.A
| |
Collapse
|
11
|
Halle B. The physical basis of model-free analysis of NMR relaxation data from proteins and complex fluids. J Chem Phys 2010; 131:224507. [PMID: 20001057 DOI: 10.1063/1.3269991] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NMR relaxation experiments have provided a wealth of information about molecular motions in macromolecules and ordered fluids. Even though a rigorous theory of spin relaxation is available, the complexity of the investigated systems often makes the interpretation of limited datasets challenging and ambiguous. To allow physically meaningful information to be extracted from the data without commitment to detailed dynamical models, several versions of a model-free (MF) approach to data analysis have been developed. During the past 2 decades, the MF approach has been used in the vast majority of all NMR relaxation studies of internal motions in proteins and other macromolecules, and it has also played an important role in studies of colloidal systems. Although the MF approach has been almost universally adopted, substantial disagreement remains about its physical foundations and range of validity. It is our aim here to clarify these issues. To this end, we first present rigorous derivations of the three well-known MF formulas for the time correlation function relevant for isotropic solutions. These derivations are more general than the original ones, thereby substantially extending the range of validity of the MF approach. We point out several common misconceptions and explain the physical significance of the approximations involved. In particular, we discuss symmetry requirements and the dynamical decoupling approximation that plays a key role in the MF approach. We also derive a new MF formula, applicable to anisotropic fluids and solids, including microcrystalline protein samples. The so-called slowly relaxing local structure (SRLS) model has been advanced as an alternative to the MF approach that does not require dynamical decoupling of internal and global motions. To resolve the existing controversy about the relative merits of the SRLS model and the MF approach, we formulate and solve a planar version of the SRLS model. The analytical solution of this model reveals the unphysical consequences of the symmetrical two-body Smoluchowski equation as applied to protein dynamics, thus refuting the widely held belief that the SRLS model is more accurate than the MF approach. The different results obtained by analyzing data with these two approaches therefore do not indicate the importance of dynamical coupling between internal and global motions. Finally, we explore the two principal mechanisms of dynamical coupling in proteins: torque-mediated and friction-mediated coupling. We argue by way of specific analytically solvable models that torque-mediated coupling (which the SRLS model attempts to capture) is unimportant because the relatively slow internal motions that might couple to the global motion tend to be intermittent (jumplike) in character, whereas friction-mediated coupling (which neither the SRLS model nor the MF approach incorporates) may be important for proteins with unstructured parts or flexibly connected domains.
Collapse
Affiliation(s)
- Bertil Halle
- Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden.
| |
Collapse
|