1
|
Eraković M, Cvitaš MT. Tunneling splittings using modified WKB method in Cartesian coordinates: The test case of vinyl radical. J Chem Phys 2024; 160:154112. [PMID: 38639313 DOI: 10.1063/5.0204986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Modified WKB theory for calculating tunneling splittings in symmetric multi-well systems in full dimensionality is re-derived using Cartesian coordinates. It is explicitly shown that the theory rests on the wavefunction that is exact for harmonic potentials. The theory was applied to calculate tunneling splittings in vinyl radical and some of its deuterated isotopologues in their vibrational ground states and the low-lying vibrationally excited states and compared to exact variational results. The exact results are reproduced within a factor of 2 in most states. Remarkably, all large enhancements of tunneling splittings relative to the ground state, up to three orders in magnitude in some excited mode combinations, are well reproduced. It is also shown that in the asymmetrically deuterated vinyl radical, the theory correctly predicts the states that are localized in a single well and the delocalized tunneling states. Modified WKB theory on the minimum action path is computationally inexpensive and can also be applied without modification to much larger systems in full dimensionality; the results of this test case serve to give insight into the expected accuracy of the method.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Marko T Cvitaš
- Department of Physics, University of Zagreb Faculty of Science, Bijenička Cesta 32, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Bhattacharyya D, Ramesh SG. Multidimensional H-atom tunneling in the catecholate monoanion. Phys Chem Chem Phys 2022; 24:10887-10905. [PMID: 35451429 DOI: 10.1039/d1cp04590c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the catecholate monoanion as a new model system for the study of multidimensional tunneling. It has a symmetrical O-H double-well structure, and the H atom motion between the two wells is coupled to both low and high frequency modes with different strengths. With a view to studying mode-specific tunneling in the catecholate monoanion, we have developed a full (33) dimensional potential energy surface in transition state (TS) normal modes using a Distributed Gaussian Empirical Valence Bond (DGEVB) based approach. We have computed eigenstates in different subspaces using both unrelaxed and relaxed potentials based on the DGEVB model. With unrelaxed potentials, we present results up to 7D subspaces that include the imaginary frequency mode and six modes coupled to it. With relaxed potentials, we focus on the two most important coupling modes. The structures of the ground and vibrationally excited eigenstates are discussed for both approaches and mode-specific tunneling splitting and their trends are presented.
Collapse
Affiliation(s)
- Debabrata Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Sai G Ramesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Eraković M, Cvitaš MT. Tunneling splittings of vibrationally excited states using general instanton paths. J Chem Phys 2020; 153:134106. [PMID: 33032414 DOI: 10.1063/5.0024210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A multidimensional semiclassical method for calculating tunneling splittings in vibrationally excited states of molecules using Cartesian coordinates is developed. It is an extension of the theory by Mil'nikov and Nakamura [J. Chem. Phys. 122, 124311 (2005)] to asymmetric paths that are necessary for calculating tunneling splitting patterns in multi-well systems, such as water clusters. Additionally, new terms are introduced in the description of the semiclassical wavefunction that drastically improves the splitting estimates for certain systems. The method is based on the instanton theory and builds the semiclassical wavefunction of the vibrationally excited states from the ground-state instanton wavefunction along the minimum action path and its harmonic neighborhood. The splittings of excited states are thus obtained at a negligible added numerical effort. The cost is concentrated, as for the ground-state splittings, in the instanton path optimization and the hessian evaluation along the path. The method can thus be applied without modification to many mid-sized molecules in full dimensionality and in combination with on-the-fly evaluation of electronic potentials. The tests were performed on several model potentials and on the water dimer.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Ruder Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Marko T Cvitaš
- Department of Physical Chemistry, Ruder Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Eraković M, Vaillant CL, Cvitaš MT. Instanton theory of ground-state tunneling splittings with general paths. J Chem Phys 2020; 152:084111. [PMID: 32113369 DOI: 10.1063/1.5145278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a multidimensional instanton theory for calculating ground-state tunneling splittings in Cartesian coordinates for general paths. It is an extension of the method by Mil'nikov and Nakamura [J. Chem. Phys. 115, 6881 (2001)] to include asymmetric paths that are necessary for calculating tunneling splitting patterns in multi-well systems, such as water clusters. The approach avoids multiple expensive matrix diagonalizations to converge the fluctuation prefactor in the ring-polymer instanton (RPI) method, and instead replaces them by an integration of a Riccati differential equation. When combined with the string method for locating instantons, we avoid the need to converge the calculation with respect to the imaginary time period of the semiclassical orbit, thereby reducing the number of convergence parameters of the optimized object to just one: the number of equally spaced system replicas used to represent the instanton path. The entirety of the numerical effort is thus concentrated in optimizing the shape of the path and evaluating hessians along the path, which is a dramatic improvement over RPI. In addition to the standard instanton approximations, we neglect the coupling of vibrational modes to external rotations. The method is tested on the model potential of malonaldehyde and on the water dimer and trimer, giving close agreement with RPI at a much-reduced cost.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Rudđđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Christophe L Vaillant
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marko T Cvitaš
- Department of Physical Chemistry, Rudđđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Liu H, Cao J, Bian W. Double Proton Transfer in the Dimer of Formic Acid: An Efficient Quantum Mechanical Scheme. Front Chem 2019; 7:676. [PMID: 31750286 PMCID: PMC6842929 DOI: 10.3389/fchem.2019.00676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
Double proton transfer plays an important role in biology and chemistry, such as with DNA base pairs, proteins and molecular clusters, and direct information about these processes can be obtained from tunneling splittings. Carboxylic acid dimers are prototypes for multiple proton transfer, of which the formic acid dimer is the simplest one. Here, we present efficient quantum dynamics calculations of ground-state and fundamental excitation tunneling splittings in the formic acid dimer and its deuterium isotopologues. These are achieved with a multidimensional scheme developed by us, in which the saddle-point normal coordinates are chosen, the basis functions are customized for the proton transfer process, and the preconditioned inexact spectral transform method is used to solve the resultant eigenvalue problem. Our computational results are in excellent agreement with the most recent experiments (Zhang et al., 2017; Li et al., 2019).
Collapse
Affiliation(s)
- Hao Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianwei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Qu C, Bowman JM. Quantum approaches to vibrational dynamics and spectroscopy: is ease of interpretation sacrificed as rigor increases? Phys Chem Chem Phys 2019; 21:3397-3413. [DOI: 10.1039/c8cp04990d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The subject of this Perspective is quantum approaches, beyond the harmonic approximation, to vibrational dynamics and IR spectroscopy.
Collapse
Affiliation(s)
- Chen Qu
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University
- Atlanta
- USA
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University
- Atlanta
- USA
| |
Collapse
|
7
|
Šmydke J, Fábri C, Sarka J, Császár AG. Rovibrational quantum dynamics of the vinyl radical and its deuterated isotopologues. Phys Chem Chem Phys 2019; 21:3453-3472. [DOI: 10.1039/c8cp04672g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rotational–vibrational states up to 3200 cm−1, beyond the highest-lying stretching fundamental, are computed variationally for the vinyl radical (VR), H2CβCαH, and the following deuterated isotopologues of VR: CH2CD, CHDCH, and CD2CD.
Collapse
Affiliation(s)
- Jan Šmydke
- MTA-ELTE Complex Chemical Systems Research Group and Laboratory of Molecular Structure and Dynamics
- Institute of Chemistry
- ELTE Eötvös Loránd University
- H-1117 Budapest
- Hungary
| | - Csaba Fábri
- MTA-ELTE Complex Chemical Systems Research Group and Laboratory of Molecular Structure and Dynamics
- Institute of Chemistry
- ELTE Eötvös Loránd University
- H-1117 Budapest
- Hungary
| | - János Sarka
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Attila G. Császár
- MTA-ELTE Complex Chemical Systems Research Group and Laboratory of Molecular Structure and Dynamics
- Institute of Chemistry
- ELTE Eötvös Loránd University
- H-1117 Budapest
- Hungary
| |
Collapse
|
8
|
Cvitaš MT. Quadratic String Method for Locating Instantons in Tunneling Splitting Calculations. J Chem Theory Comput 2018; 14:1487-1500. [DOI: 10.1021/acs.jctc.7b00881] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marko T. Cvitaš
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Wu F, Ren Y. Primary and secondary isotope effect on tunnelling in malonaldehyde using a quantum mechanical scheme. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1317371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Feng Wu
- Department of Physics, Yancheng Institute of Technology, Yancheng, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yinghui Ren
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Richardson JO. Full- and reduced-dimensionality instanton calculations of the tunnelling splitting in the formic acid dimer. Phys Chem Chem Phys 2017; 19:966-970. [DOI: 10.1039/c6cp07808g] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nearly all degrees of freedom need to be included for accurate theoretical predictions of quantum dynamics.
Collapse
|
11
|
Wu F. Quantum Mechanical Investigation of Mode-Specific Tunneling upon Fundamental Excitation in Malonaldehyde. J Phys Chem A 2016; 120:3849-54. [PMID: 27192182 DOI: 10.1021/acs.jpca.6b00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a quantum mechanical study of mode-specific tunneling upon fundamental excitation in malonaldehyde with a multidimensional theory that utilizes the saddle-point normal coordinates. We find that a ring-deformation normal mode is as essential as the well-known imaginary-frequency normal mode in the multidimensional investigation. The changes in tunneling splittings upon fundamental excitation are calculated. The results are competitive with those from a recently developed mixed classical-quantum method. Moreover, the results are qualitatively consistent with experiment for about half of all the modes.
Collapse
Affiliation(s)
- Feng Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
12
|
Qu C, Bowman JM. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1–4-mode subspaces. Phys Chem Chem Phys 2016; 18:24835-24840. [DOI: 10.1039/c6cp03073d] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer.
Collapse
Affiliation(s)
- Chen Qu
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation
- Emory University
- Atlanta
- USA
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation
- Emory University
- Atlanta
- USA
| |
Collapse
|
13
|
Mackenzie RB, Dewberry CT, Leopold KR. The Formic Acid–Nitric Acid Complex: Microwave Spectrum, Structure, and Proton Transfer. J Phys Chem A 2014; 118:7975-85. [DOI: 10.1021/jp507060w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rebecca B. Mackenzie
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street, SE, Minneapolis, Minnesota 55455, United States
| | - Christopher T. Dewberry
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street, SE, Minneapolis, Minnesota 55455, United States
| | - Kenneth R. Leopold
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street, SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Homayoon Z, Bowman JM, Evangelista FA. Calculations of Mode-Specific Tunneling of Double-Hydrogen Transfer in Porphycene Agree with and Illuminate Experiment. J Phys Chem Lett 2014; 5:2723-2727. [PMID: 26277970 DOI: 10.1021/jz501482v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a theoretical study of mode-specific tunneling splittings in double-hydrogen transfer in trans-porphycene. We use a novel, mode-specific "Qim path method", in which the reaction coordinate is the imaginary-frequency normal mode of the saddle point separating the equivalent minima. The model considers all 108 normal modes and uses no adjustable parameters. The method gives the ground vibrational-state tunneling splitting, as well the increase in the splitting upon excitation of certain modes, in good agreement with experiment. Interpretation of these results is also transparent with this method. In addition, predictions are made for mode excitations not investigated experimentally. Results for d1 and d2 isotopolgues are also in agreement with experiment.
Collapse
Affiliation(s)
- Zahra Homayoon
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M Bowman
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Fábri C, Mátyus E, Császár AG. Numerically constructed internal-coordinate Hamiltonian with Eckart embedding and its application for the inversion tunneling of ammonia. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 119:84-89. [PMID: 23702049 DOI: 10.1016/j.saa.2013.03.090] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
It is shown that the use of an Eckart-frame embedding with a kinetic energy operator expressed in curvilinear internal coordinates becomes feasible and straightforward to implement for arbitrary molecular compositions and internal coordinates if the operator is defined numerically over a (discrete variable representation) grid. The algorithm proposed utilizes the transformation method of Dymarsky and Kudin to maintain the rotational Eckart condition. In order to demonstrate the applicability and flexibility of our approach the non-rigid ammonia molecule is considered and the corresponding rotational-vibrational energy levels and wave functions are computed using kinetic energy operators with three different embeddings. Two of them fulfill the Eckart conditions corresponding to a trigonal pyramidal (C3v) and a trigonal planar (D3h) reference structure and the third one is a non-Eckart frame. The computed energy levels are, of course, identical, and the structure of the three different wave-function representations are analyzed in terms of the rigid rotor functions for a symmetric top. The possible advantages of one frame representation over another are discussed concerning the interpretation of the rovibrational states in terms of the traditional rigid rotor labels.
Collapse
Affiliation(s)
- Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112, Hungary
| | | | | |
Collapse
|
16
|
Wang X, Bowman JM. Mode-Specific Tunneling in the Unimolecular Dissociation of cis-HOCO to H + CO2. J Phys Chem A 2014; 118:684-9. [DOI: 10.1021/jp5000655] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaohong Wang
- Department
of Chemistry, Emory University, Atlanta Georgia 30322, United States
| | - Joel M. Bowman
- Department
of Chemistry, Emory University, Atlanta Georgia 30322, United States
| |
Collapse
|
17
|
Wang Y, Bowman JM. Mode-specific tunneling using the Qim path: Theory and an application to full-dimensional malonaldehyde. J Chem Phys 2013; 139:154303. [DOI: 10.1063/1.4824713] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Ivanov MV, Babikov D. Mixed quantum-classical theory for the collisional energy transfer and the rovibrational energy flow: application to ozone stabilization. J Chem Phys 2011; 134:144107. [PMID: 21495742 DOI: 10.1063/1.3576103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A mixed quantum-classical approach to the description of collisional energy transfer is proposed in which the vibrational motion of an energized molecule is treated quantum mechanically using wave packets, while the collisional motion of the molecule and quencher and the rotational motion of the molecule are treated using classical trajectories. This accounts rigorously for quantization of vibrational states, zero-point energy, scattering resonances, and permutation symmetry of identical atoms, while advantage is taken of the classical scattering regime. Energy is exchanged between vibrational, rotational, and translational degrees of freedom while the total energy is conserved. Application of this method to stabilization of the van der Waals states in ozone is presented. Examples of mixed quantum-classical trajectories are discussed, including an interesting example of supercollision. When combined with an efficient grid mapping procedure and the reduced dimensionality approximation, the method becomes very affordable computationally.
Collapse
Affiliation(s)
- Mikhail V Ivanov
- Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | |
Collapse
|
19
|
Towards automated multi-dimensional quantum dynamical investigations of double-minimum potentials: Principles and example applications. Chem Phys 2011. [DOI: 10.1016/j.chemphys.2010.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Espinosa-Garcia J, Corchado JC. Analytical Potential Energy Surface and Kinetics of the NH3 + H → NH2 + H2 Hydrogen Abstraction and the Ammonia Inversion Reactions. J Phys Chem A 2010; 114:4455-63. [DOI: 10.1021/jp1001513] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - J. C. Corchado
- Departamento de Química Física, Universidad de Extremadura, Spain
| |
Collapse
|