1
|
Affiliation(s)
- Damiano Tanini
- University of Florence Department of Chemistry ‘‘Ugo Schiff'' Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| | - Antonella Capperucci
- University of Florence Department of Chemistry ‘‘Ugo Schiff'' Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| |
Collapse
|
2
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
3
|
|
4
|
Zhu D, Zheng W, Chang H, Xie H. A theoretical study on the p Ka values of selenium compounds in aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj01124j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pKa values of different kinds of selenium compounds (R-SeH) were investigated by using the ωB97XD method with a SMD model.
Collapse
Affiliation(s)
- Danfeng Zhu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Huifang Chang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Hongyun Xie
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| |
Collapse
|
5
|
Møllendal H, Samdal S, Guillemin JC. Microwave and Quantum Chemical Study of Intramolecular Hydrogen Bonding in 2-Propenylhydrazine (H2C═CHCH2NHNH2). J Phys Chem A 2016; 120:407-16. [PMID: 26696467 DOI: 10.1021/acs.jpca.5b11141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The microwave spectrum of 2-propenylhydrazine (H2C═CHCH2NHNH2) was studied in the 12-61 and 72-123 GHz spectral regions. A variety of intramolecular hydrogen bonds between one or more of the hydrogen atoms of the hydrazino group and the π-electrons are possible for this compound. Assignments of the spectra of four conformers, all of which are stabilized with intramolecular hydrogen bonds are reported. One hydrogen bond exists in two of these conformers, whereas the π-electrons are shared by two hydrogen atoms in the two other rotamers. Vibrationally excited-state spectra were assigned for three of the four conformers. The internal hydrogen bonds are weak, probably in the 3-6 kJ/mol range. A total of about 4400 transitions were assigned for these four forms. The microwave work was guided by quantum chemical calculations at the B3LYP/cc-pVTZ and CCSD/cc-pVTZ levels of theory. These calculations indicated that as many as 18 conformers may exist for 2-propenylhydrazine and 11 of these have either one or two intramolecular hydrogen bonds. The four conformers detected in this work are among the rotamers with the lowest CCSD electronic energies. The CCSD method predicts rotational constants that are very close to the experimental rotational constants. The B3LYP calculations yielded quartic centrifugal distortion constants that deviated considerably from their experimental counterparts in most cases. The calculation of vibration-rotation constants and sextic centrifugal distortion constants by the B3LYP method were generally found to be in poor agreement with the corresponding experimental constants.
Collapse
Affiliation(s)
- Harald Møllendal
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo , P.O. Box 1033 Blindern, NO-0315 Oslo, Norway
| | - Svein Samdal
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo , P.O. Box 1033 Blindern, NO-0315 Oslo, Norway
| | - Jean-Claude Guillemin
- Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS , UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| |
Collapse
|
6
|
Møllendal H, Samdal S, Guillemin JC. Microwave and Quantum Chemical Study of the Hydrazino Group as Proton Donor in Intramolecular Hydrogen Bonding of (2-Fluoroethyl)hydrazine (FCH2CH2NHNH2). J Phys Chem A 2015; 119:9252-61. [PMID: 26258892 DOI: 10.1021/acs.jpca.5b06095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The microwave spectrum of (2-fluoroethyl)hydrazine (FCH2CH2NHNH2) was studied in the 11-123 GHz spectral region to investigate the ability of the hydrazino group to form intramolecular hydrogen bonds acting as a proton donor. This group can participate both in five-member and in six-member internal hydrogen bonds with the fluorine atom. The spectra of four conformers were assigned, and the rotational and centrifugal distortion constants of these rotameric forms were determined. Two of these conformers have five-member intramolecular hydrogen bonds, while the two other forms are without this interaction. The internal hydrogen bonds in the two hydrogen-bonded forms are assumed to be mainly electrostatic in origin because the N-H and C-F bonds are nearly parallel and the associated bond moments are antiparallel. This is the first example of a gas-phase study of a hydrazine where the hydrazino functional group acts as a proton donor in weak intramolecular hydrogen bonds. Extensive quantum chemical calculations at the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CCSD/cc-pVQZ levels of theory accompanied and guided the experimental work. These calculations predict the existence of no less than 18 conformers, spanning a CCSD internal energy range of 15.4 kJ/mol. Intramolecular hydrogen bonds are predicted to be present in seven of these conformers. Three of these forms have six-member hydrogen bonds, while four have five-member hydrogen bonds. The three lowest-energy conformers have five-member internal hydrogen bonds. The spectrum of the conformer with the lowest energy was not assigned because it has a very small dipole moment. The CCSD relative energies of the two hydrogen-bonded rotamers whose spectra were assigned are 1.04 and 1.62 kJ/mol, respectively, whereas the relative energies of the two conformers with assigned spectra and no hydrogen bonds have relative energies of 6.46 and 4.89 kJ/mol.
Collapse
Affiliation(s)
- Harald Møllendal
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Blindern , P.O. Box 1033, NO-0315 Oslo, Norway
| | - Svein Samdal
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Blindern , P.O. Box 1033, NO-0315 Oslo, Norway
| | - Jean-Claude Guillemin
- Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226 , 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| |
Collapse
|
7
|
Møllendal H, Samdal S, Guillemin JC. Microwave and quantum-chemical study of conformational properties and intramolecular hydrogen bonding of 2-hydroxy-3-butynenitrile (HC≡CCH(OH)C≡N). J Phys Chem A 2015; 119:634-40. [PMID: 25560047 DOI: 10.1021/jp5112923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The microwave spectra of 2-hydroxy-3-butynenitrile, HC≡CCH(OH)C≡N, and a deuterated species, HC≡CCH(OD)C≡N, have been investigated in the 38-120 GHz spectral region. Three rotameric forms, each stabilized by intramolecular hydrogen bonds, are possible for this compound. The hydrogen atom of the hydroxyl group is hydrogen-bonded to the π electrons of the alkynyl group in one of these conformers, to the π electrons of the cyano group in the second rotamer, and to both of these groups simultaneously in the third conformer. The microwave spectra of the parent and deuterated species of last-mentioned form have been assigned, and accurate values of the rotational and quartic centrifugal distortion constants of these species have been determined. The spectra of two vibrational excited states of this conformer have also been assigned, and their frequencies have been determined by relative intensity measurements. Quantum-chemical calculations at the MP2/cc-pVTZ and CCSD/cc-pVQZ levels were performed to assist the microwave work. The theoretical predictions were generally found to be in good agreement with observations.
Collapse
Affiliation(s)
- Harald Møllendal
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo , P.O. Box 1033 Blindern, NO-0315 Oslo, Norway
| | | | | |
Collapse
|
8
|
Takahashi O, Kohno Y, Nishio M. Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates: evidence from recent experimental data and high-level ab initio MO calculations. Chem Rev 2011; 110:6049-76. [PMID: 20550180 DOI: 10.1021/cr100072x] [Citation(s) in RCA: 447] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osamu Takahashi
- Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
| | | | | |
Collapse
|
9
|
Møllendal H, Konovalov A, Guillemin JC. Microwave Spectrum and Intramolecular Hydrogen Bonding of Propargyl Selenol (HC≡CCH2SeH). J Phys Chem A 2010; 114:5537-43. [DOI: 10.1021/jp101245f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Harald Møllendal
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France, and Université européenne de Bretagne, 5 Boulevard Laënnec, 35000 Rennes, France
| | - Alexey Konovalov
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France, and Université européenne de Bretagne, 5 Boulevard Laënnec, 35000 Rennes, France
| | - Jean-Claude Guillemin
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France, and Université européenne de Bretagne, 5 Boulevard Laënnec, 35000 Rennes, France
| |
Collapse
|