1
|
Roos G, Harvey JN. Histidine versus Cysteine-Bearing Heme-Dependent Halogen Peroxidases: Parallels and Differences for Cl - Oxidation. J Phys Chem B 2021; 125:74-85. [PMID: 33350832 DOI: 10.1021/acs.jpcb.0c09409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The homodimeric myeloperoxidase (MPO) features a histidine as a proximal ligand and a sulfonium linkage covalently attaching the heme porphyrin ring to the protein. MPO is able to catalyze Cl- oxidation with about the same efficiency as chloroperoxidase at pH 7.0. In this study, we seek to explore the parallels and differences between the histidine and cysteine heme-dependent halogen peroxidases. Transition states, reaction barriers, and relevant thermodynamic properties are calculated on protein models. Together with electronic structure calculations, it gives an overview of the reaction mechanisms and of the factors that determine the selectivity between one- and two-electron paths. Conclusions point to the innate oxidizing nature of MPO with the ester and sulfonium linkages hiking up the reactivity to enable chloride oxidation. The installation of a deprotonated imidazolate as a proximal ligand does not shift the equilibrium from one- to two-electron events without influencing the chemistry of the oxidation reaction.
Collapse
Affiliation(s)
- Goedele Roos
- UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS, UMR 8576, F-59000 Lille, France
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
2
|
Mubarak MQE, Visser SP. Computational Study on the Catalytic Reaction Mechanism of Heme Haloperoxidase Enzymes. Isr J Chem 2019. [DOI: 10.1002/ijch.201900099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M. Qadri E. Mubarak
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| | - Sam P. Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
3
|
Lu J, Bi B, Lai W, Chen H. Origin of Nitric Oxide Reduction Activity in Flavo–Diiron NO Reductase: Key Roles of the Second Coordination Sphere. Angew Chem Int Ed Engl 2019; 58:3795-3799. [DOI: 10.1002/anie.201812343] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/27/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jiarui Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Bo Bi
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenzhen Lai
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
4
|
Lu J, Bi B, Lai W, Chen H. Origin of Nitric Oxide Reduction Activity in Flavo–Diiron NO Reductase: Key Roles of the Second Coordination Sphere. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiarui Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Bo Bi
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenzhen Lai
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
5
|
Spectroscopic and QM/MM investigations of Chloroperoxidase catalyzed degradation of orange G. Arch Biochem Biophys 2016; 596:1-9. [DOI: 10.1016/j.abb.2016.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/05/2016] [Accepted: 02/24/2016] [Indexed: 11/30/2022]
|
6
|
Senn HM. Insights into enzymatic halogenation from computational studies. Front Chem 2014; 2:98. [PMID: 25426489 PMCID: PMC4227530 DOI: 10.3389/fchem.2014.00098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022] Open
Abstract
The halogenases are a group of enzymes that have only come to the fore over the last 10 years thanks to the discovery and characterization of several novel representatives. They have revealed the fascinating variety of distinct chemical mechanisms that nature utilizes to activate halogens and introduce them into organic substrates. Computational studies using a range of approaches have already elucidated many details of the mechanisms of these enzymes, often in synergistic combination with experiment. This Review summarizes the main insights gained from these studies. It also seeks to identify open questions that are amenable to computational investigations. The studies discussed herein serve to illustrate some of the limitations of the current computational approaches and the challenges encountered in computational mechanistic enzymology.
Collapse
Affiliation(s)
- Hans M. Senn
- WestCHEM School of Chemistry, University of GlasgowGlasgow, UK
| |
Collapse
|
7
|
Usharani D, Lacy DC, Borovik AS, Shaik S. Dichotomous hydrogen atom transfer vs proton-coupled electron transfer during activation of X-H bonds (X = C, N, O) by nonheme iron-oxo complexes of variable basicity. J Am Chem Soc 2013; 135:17090-104. [PMID: 24124906 PMCID: PMC3876471 DOI: 10.1021/ja408073m] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We describe herein the hydrogen-atom transfer (HAT)/proton-coupled electron-transfer (PCET) reactivity for Fe(IV)-oxo and Fe(III)-oxo complexes (1-4) that activate C-H, N-H, and O-H bonds in 9,10-dihydroanthracene (S1), dimethylformamide (S2), 1,2-diphenylhydrazine (S3), p-methoxyphenol (S4), and 1,4-cyclohexadiene (S5). In 1-3, the iron is pentacoordinated by tris[N'-tert-butylureaylato)-N-ethylene]aminato ([H3buea](3-)) or its derivatives. These complexes are basic, in the order 3 ≫ 1 > 2. Oxidant 4, [Fe(IV)N4Py(O)](2+) (N4Py: N,N-bis(2-pyridylmethyl)bis(2-pyridyl)methylamine), is the least basic oxidant. The DFT results match experimental trends and exhibit a mechanistic spectrum ranging from concerted HAT and PCET reactions to concerted-asynchronous proton transfer (PT)/electron transfer (ET) mechanisms, all the way to PT. The singly occupied orbital along the O···H···X (X = C, N, O) moiety in the TS shows clearly that in the PCET cases, the electron is transferred separately from the proton. The Bell-Evans-Polanyi principle does not account for the observed reactivity pattern, as evidenced by the scatter in the plot of calculated barrier vs reactions driving forces. However, a plot of the deformation energy in the TS vs the respective barrier provides a clear signature of the HAT/PCET dichotomy. Thus, in all C-H bond activations, the barrier derives from the deformation energy required to create the TS, whereas in N-H/O-H bond activations, the deformation energy is much larger than the corresponding barrier, indicating the presence of a stabilizing interaction between the TS fragments. A valence bond model is used to link the observed results with the basicity/acidity of the reactants.
Collapse
Affiliation(s)
- Dandamudi Usharani
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - David C. Lacy
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A. S. Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Sason Shaik
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
8
|
Collins DP, Isaac IS, Coulter ED, Hager PW, Ballou DP, Dawson JH. Reaction of ferric Caldariomyces fumago chloroperoxidase with meta-chloroperoxybenzoic acid: sequential formation of compound I, compound II and regeneration of the ferric state using one reactant. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424612501234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of the reaction between ferric Caldariomyces fumago chloroperoxidase (CCPO) and meta-chloroperoxybenzoic acid (mCPBA) has been examined. It has previously been established that an Fe(IV) -oxo porphyrin radical species known as Compound I (Cpd I) is formed by two-electron oxidation of the native ferric enzyme by a variety of oxidants including organic peracids and hydroperoxides. Cpd I can return to the ferric state either by direct oxygen insertion into an organic substrate (e.g. a P450 oxygenase-like reaction), or by two consecutive one-electron additions, the first resulting in an intermediate Fe(IV) -oxo species known as Compound II (Cpd II). There has been much debate over the role of Cpd II and the details of its structure. In the present study, both CCPO Fe(IV) -oxo intermediates are formed, but unlike most CCPO reactions, Cpd I and Cpd II are formed using the same reactant, mCPBA. Thus, the peracid is used as an oxo donor to produce Cpd I and then as a reductant to reduce Cpd I to Cpd II, and finally, Cpd II to the ferric state. The observation of saturation kinetics with respect to mCPBA concentration for each step is consistent with the formation of CCPO-mCPBA complexes in each phase of the reaction. The original reaction mechanism for ferric CCPO with mCPBA was hypothesized to involve a scrambling mechanism with a unique Fe -OOO-C(O)R intermediate formed with no observed Cpd II intermediate. The data reported herein clearly demonstrate the formation of Cpd II in returning the oxidized enzyme back to its native ferric state.
Collapse
Affiliation(s)
- Daniel P. Collins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Issa S. Isaac
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Eric D. Coulter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Paul W. Hager
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - David P. Ballou
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
9
|
Yang L, Ling Y, Zhang Y. HNO binding in a heme protein: structures, spectroscopic properties, and stabilities. J Am Chem Soc 2011; 133:13814-7. [PMID: 21834502 PMCID: PMC3164212 DOI: 10.1021/ja204072j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
HNO can interact with numerous heme proteins, but atomic level structures are largely unknown. In this work, various structural models for the first stable HNO heme protein complex, MbHNO (Mb, myoglobin), were examined by quantum chemical calculations. This investigation led to the discovery of two novel structural models that can excellently reproduce numerous experimental spectroscopic properties. They are also the first atomic level structures that can account for the experimentally observed high stabilities. These two models involve two distal His conformations as reported previously for MbCNR and MbNO. However, a unique dual hydrogen bonding feature of the HNO binding was not reported before in heme protein complexes with other small molecules such as CO, NO, and O2. These results shall facilitate investigations of HNO bindings in other heme proteins.
Collapse
Affiliation(s)
- Liu Yang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | | | | |
Collapse
|
10
|
Chen H, Lai W, Shaik S. Multireference and multiconfiguration ab initio methods in heme-related systems: what have we learned so far? J Phys Chem B 2011; 115:1727-42. [PMID: 21344948 DOI: 10.1021/jp110016u] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This work reviews the recent applications of ab initio multireference/multiconfiguration (MR/MC) electronic structure methods to heme-related systems, involving tetra-, penta-, and hexa-coordinate species, as well as the high-valent iron-oxo species. The current accuracy of these methods in the various systems is discussed, with special attention to potential sources of systematic errors. Thus, the review summarizes and tries to rationalize the key elements of MR/MC calculations, namely, the choice of the employed active space, especially the so-called double-shell effect that has already been recognized to be important in transition-metal-containing systems, and the impact of these elements on the spin-state energetics of heme species, as well as on the bonding mechanism of small molecules to the heme. It is shown that expansion of the MC wave function into one based on localized orbitals provides a compact and insightful view on some otherwise complex electronic structures. The effects of protein environment on the MR/MC results are summarized for the few available quantum mechanical/molecular mechanical (QM/MM) studies. Comparisons with corresponding DFT results are also made wherever available. Potential future directions are proposed.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel.
| | | | | |
Collapse
|
11
|
Morozov AN, D'Cunha C, Alvarez CA, Chatfield DC. Enantiospecificity of chloroperoxidase-catalyzed epoxidation: biased molecular dynamics study of a cis-β-methylstyrene/chloroperoxidase-compound I complex. Biophys J 2011; 100:1066-75. [PMID: 21320452 DOI: 10.1016/j.bpj.2010.12.3729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/22/2010] [Accepted: 12/20/2010] [Indexed: 11/17/2022] Open
Abstract
Molecular dynamics simulations of an explicitly solvated cis-β-methylstyrene/chloroperoxidase-Compound I complex are performed to determine the cause of the high enantiospecificity of epoxidation. From the simulations, a two-dimensional free energy potential is calculated to distinguish binding potential wells from which reaction to 1S2R and 1R2S epoxide products may occur. Convergence of the free energy potential is accelerated with an adaptive biasing potential. Analysis of binding is followed by analysis of 1S2R and 1R2S reaction precursor structures in which the substrate, having left the binding wells, places its reactive double bond in steric proximity to the oxyferryl heme center. Structural analysis of binding and reaction precursor conformations is presented. We find that 1), a distortion of Glu(183) is important for CPO-catalyzed epoxidation as was postulated previously based on experimental results; 2), the free energy of binding does not provide significant differentiation between structures leading to the respective epoxide enantiomers; and 3), CPO's enantiospecificity toward cis-β-methylstyrene is likely to be caused by a specific group of residues which form a hydrophobic core surrounding the oxyferryl heme center.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA.
| | | | | | | |
Collapse
|
12
|
Alfonso-Prieto M, Oberhofer H, Klein ML, Rovira C, Blumberger J. Proton Transfer Drives Protein Radical Formation in Helicobacter pylori Catalase but Not in Penicillium vitale Catalase. J Am Chem Soc 2011; 133:4285-98. [DOI: 10.1021/ja1110706] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Alfonso-Prieto
- Computer Simulation & Modeling Laboratory, Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institute for Computational Molecular Science, Temple University, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - H. Oberhofer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - M. L. Klein
- Institute for Computational Molecular Science, Temple University, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - C. Rovira
- Computer Simulation & Modeling Laboratory, Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - J. Blumberger
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Cho KB, Lai W, Hamberg M, Raman C, Shaik S. The reaction mechanism of allene oxide synthase: Interplay of theoretical QM/MM calculations and experimental investigations. Arch Biochem Biophys 2011; 507:14-25. [DOI: 10.1016/j.abb.2010.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/28/2010] [Accepted: 07/16/2010] [Indexed: 11/28/2022]
|
14
|
Gonzalez E, Brothers PJ, Ghosh A. Density functional theory calculations on ruthenium(IV) bis(amido) porphyrins: search for a broader perspective of heme protein compound II intermediates. J Phys Chem B 2010; 114:15380-8. [PMID: 20979402 DOI: 10.1021/jp107692m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Presented herein is a first density functional theory (DFT) (ZORA, STO-TZP) survey of ruthenium(IV) porphyrins with monoanionic nitrogen ligands, modeled after experimentally observed ruthenium porphyrin bis(amido), bis(methyleneamido), and bis(pyrazolato) complexes. Three exchange correlation functionals--PW91, OLYP, and B3LYP, which often behave somewhat differently--provide good, consistent descriptions of the lowest singlet and triplet states. For ruthenium porphyrin bis(amido) and bis(methyleneamido) complexes, the calculations reproduce the experimentally observed S = 0 ground states, with the triplet states only a few tenths of an electron-volt higher in energy. The singlet-triplet energy gaps decrease somewhat along the series PW91 > OLYP > B3LYP. Molecular orbital (MO) analyses also provide a qualitative explanation for the singlet ground states of these complexes, which may be contrasted with the triplet states of heme protein compound II intermediates and their synthetic iron(IV) models. Amido and methyleneamido ligands have a single π-lone pair, unlike hydroxide, alkoxide, and thiolate ligands, which have two. The former therefore engage in a single π-bonding interaction with one of the Ru d(π) orbitals, resulting in an S = 0 d(4) electronic configuration. In contrast, the O or S ligands present in compound II engage in π-bonding with both d(π) orbitals, resulting in an S = 1 ground state. For the ruthenium(IV) bis(methyleneamido) complexes, our MO analysis indicates a somewhat different bonding description, relative to that proposed by the experimental researchers, who invoked Ru(d(π)) → N(methyleneamido)(π*) backbonding to explain Ru-N(methyleneamido) multiple bond character. Instead, we found that the metal-methyleneamido π-bonding almost exclusively involves N-to-Ru π-donation and thus is qualitatively very similar to metal-amido π-bonding. Ruthenium(IV) bis(pyrazolato) complexes provide rare examples of ruthenium(IV) centers with all-nitrogen ligation that are paramagnetic. OLYP successfully captures this "inverse" spin state energetics; PW91 and B3LYP do so less well.
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Department of Chemistry and Center for Theoretical and Computational Chemistry, University of Tromsø, 9037 Tromsø, Norway
| | | | | |
Collapse
|
15
|
Chung LW, Li X, Sugimoto H, Shiro Y, Morokuma K. ONIOM Study on a Missing Piece in Our Understanding of Heme Chemistry: Bacterial Tryptophan 2,3-Dioxygenase with Dual Oxidants. J Am Chem Soc 2010; 132:11993-2005. [DOI: 10.1021/ja103530v] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lung Wa Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Xin Li
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Hiroshi Sugimoto
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Yoshitsugu Shiro
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| |
Collapse
|
16
|
Crestoni ME, Fornarini S, Lanucara F, Warren JJ, Mayer JM. Probing 'spin-forbidden' oxygen-atom transfer: gas-phase reactions of chromium-porphyrin complexes. J Am Chem Soc 2010; 132:4336-43. [PMID: 20218631 DOI: 10.1021/ja9103638] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxygen-atom transfer reactions of metalloporphyrin species play an important role in biochemical and synthetic oxidation reactions. An emerging theme in this chemistry is that spin-state changes can play important roles, and a 'two-state' reactivity model has been extensively applied especially in iron porphyrin systems. Herein we explore the gas-phase oxygen-atom transfer chemistry of meso-tetrakis(pentafluorophenyl)porphyrin (TPFPP) chromium complexes, as well as some other tetradentate macrocyclic ligands. Electrospray ionization in concert with Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry has been used to characterize and observe reactivity of the ionic species [(TPFPP)Cr(III)](+) (1) and [(TPFPP)Cr(V)O](+) (2). These are attractive systems to examine the effects of spin-state change on oxygen-atom transfer because the d(1) Cr(V) species are doublets, while the Cr(III) complexes have quartet ground states with high-lying doublet excited states. In the gas phase, [(TPFPP)Cr(III)](+) forms adducts with a variety of neutral donors, but O-atom transfer is only observed for NO(2). Pyridine N-oxide adducts of 1 do yield 2 upon collision-induced dissociation (CID), but the ethylene oxide, DMSO, and TEMPO analogues do not. [(TPFPP)Cr(V)O](+) is shown by its reactivity and by CID experiments to be a terminal metal-oxo with a single, vacant coordination site. It also displays limited reaction chemistry, being deoxygenated only by the very potent reductant P(OMe)(3). In general, [(TPFPP)Cr(V)O](+) species are much less reactive than the Fe and Mn analogues. Thermochemical analysis of the reactions points toward the involvement of spin issues in the lower observed reactivity of the chromium complexes.
Collapse
Affiliation(s)
- Maria Elisa Crestoni
- Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università di Roma La Sapienza, P.le A. Moro 5, I-00185 Roma, Italy.
| | | | | | | | | |
Collapse
|
17
|
Vidossich P, Fiorin G, Alfonso-Prieto M, Derat E, Shaik S, Rovira C. On the role of water in peroxidase catalysis: a theoretical investigation of HRP compound I formation. J Phys Chem B 2010; 114:5161-9. [PMID: 20345187 DOI: 10.1021/jp911170b] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the dynamics of water molecules in the distal pocket of horseradish peroxidase to elucidate the role that they may play in the formation of the principal active species of the enzymatic cycle (compound I, Por(o+)-Fe(IV)=O) upon reaction of the resting Fe(III) state with hydrogen peroxide. The equilibrium molecular dynamics simulations show that, in accord with experimental evidence, the active site access channel is hydrated with an average of two to three water molecules within 5 A from the bound hydrogen peroxide. Although the channel is always hydrated, the specific conformations in which a water molecule bridges H(2)O(2) and the distal histidine, which were found (Derat; et al. J. Am. Chem. Soc. 2007, 129, 6346.) to display a low-energy barrier for the initial acid-base step of the reaction, occur with low probability but are relevant within the time scale of catalysis. Metadynamics simulations, which were used to reconstruct the free-energy landscape of water motion in the access channel, revealed that preferred interaction sites within the channel are separated by small energy barriers (<1.5 kcal/mol). Most importantly, water-bridged conformations lie on a shoulder just 1 kcal/mol above one local minimum and thus are easily accessible. Such an energy landscape appears as a requisite for the effectiveness of compound I formation, whereby the H-bonding pattern involving reactants and catalytic residues (including the intervening water molecule) has to rearrange to deliver the proton to the distal OH moiety of the hydrogen peroxide and thereby lead to heterolytic O-O cleavage. Our study provides an example of a system for which the "reactive configurations" (i.e., structures characterized by a low barrier for the chemical transformation) correspond to a minor population of the system and show how equilibrium molecular dynamics and free-energy calculations may conveniently be used to ascertain that such reactive conformations are indeed accessible to the system. Once again, the MD and QM/MM combination shows that a single water molecule acts as a biocatalyst in the cycle of HRP.
Collapse
Affiliation(s)
- Pietro Vidossich
- Laboratori de Simulació Computacional i Modelització, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Chen H, Song J, Lai W, Wu W, Shaik S. Multiple Low-Lying States for Compound I of P450cam and Chloroperoxidase Revealed from Multireference Ab Initio QM/MM Calculations. J Chem Theory Comput 2010; 6:940-53. [DOI: 10.1021/ct9006234] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Chen
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Jinshuai Song
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Wenzhen Lai
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Wei Wu
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| |
Collapse
|
19
|
Ranaghan KE, Mulholland AJ. Investigations of enzyme-catalysed reactions with combined quantum mechanics/molecular mechanics (QM/MM) methods. INT REV PHYS CHEM 2010. [DOI: 10.1080/01442350903495417] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|