1
|
Bowling PE, Broderick DR, Herbert JM. Quick-and-Easy Validation of Protein-Ligand Binding Models Using Fragment-Based Semiempirical Quantum Chemistry. J Chem Inf Model 2025; 65:937-949. [PMID: 39749961 DOI: 10.1021/acs.jcim.4c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Electronic structure calculations in enzymes converge very slowly with respect to the size of the model region that is described using quantum mechanics (QM), requiring hundreds of atoms to obtain converged results and exhibiting substantial sensitivity (at least in smaller models) to which amino acids are included in the QM region. As such, there is considerable interest in developing automated procedures to construct a QM model region based on well-defined criteria. However, testing such procedures is burdensome due to the cost of large-scale electronic structure calculations. Here, we show that semiempirical methods can be used as alternatives to density functional theory (DFT) to assess convergence in sequences of models generated by various automated protocols. The cost of these convergence tests is reduced even further by means of a many-body expansion. We use this approach to examine convergence (with respect to model size) of protein-ligand binding energies. Fragment-based semiempirical calculations afford well-converged interaction energies in a tiny fraction of the cost required for DFT calculations. Two-body interactions between the ligand and single-residue amino acid fragments afford a low-cost way to construct a "QM-informed" enzyme model of reduced size, furnishing an automatable active-site model-building procedure. This provides a streamlined, user-friendly approach for constructing ligand binding-site models that requires neither a priori information nor manual adjustments. Extension to model-building for thermochemical calculations should be straightforward.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dustin R Broderick
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Bowling PE, Dasgupta S, Herbert JM. Eliminating Imaginary Vibrational Frequencies in Quantum-Chemical Cluster Models of Enzymatic Active Sites. J Chem Inf Model 2024; 64:3912-3922. [PMID: 38648614 DOI: 10.1021/acs.jcim.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Agbaglo DA, Summers TJ, Cheng Q, DeYonker NJ. The influence of model building schemes and molecular dynamics sampling on QM-cluster models: the chorismate mutase case study. Phys Chem Chem Phys 2024; 26:12467-12482. [PMID: 38618904 PMCID: PMC11090134 DOI: 10.1039/d3cp06100k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Most QM-cluster models of enzymes are constructed based on X-ray crystal structures, which limits comparison to in vivo structure and mechanism. The active site of chorismate mutase from Bacillus subtilis and the enzymatic transformation of chorismate to prephenate is used as a case study to guide construction of QM-cluster models built first from the X-ray crystal structure, then from molecular dynamics (MD) simulation snapshots. The Residue Interaction Network ResidUe Selector (RINRUS) software toolkit, developed by our group to simplify and automate the construction of QM-cluster models, is expanded to handle MD to QM-cluster model workflows. Several options, some employing novel topological clustering from residue interaction network (RIN) information, are evaluated for generating conformational clustering from MD simulation. RINRUS then generates a statistical thermodynamic framework for QM-cluster modeling of the chorismate mutase mechanism via refining 250 MD frames with density functional theory (DFT). The 250 QM-cluster models sampled provide a mean ΔG‡ of 10.3 ± 2.6 kcal mol-1 compared to the experimental value of 15.4 kcal mol-1 at 25 °C. While the difference between theory and experiment is consequential, the level of theory used is modest and therefore "chemical" accuracy is unexpected. More important are the comparisons made between QM-cluster models designed from the X-ray crystal structure versus those from MD frames. The large variations in kinetic and thermodynamic properties arise from geometric changes in the ensemble of QM-cluster models, rather from the composition of the QM-cluster models or from the active site-solvent interface. The findings open the way for further quantitative and reproducible calibration in the field of computational enzymology using the model construction framework afforded with the RINRUS software toolkit.
Collapse
Affiliation(s)
- Donatus A Agbaglo
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.
| | - Thomas J Summers
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.
| | - Qianyi Cheng
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.
| | - Nathan J DeYonker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
4
|
Wang J, Ren T, Sun G, Zhang N, Zhao L, Zhong R. Mechanism of AGT-Mediated Repair of dG-dC Cross-Links in the Drug Resistance to Chloroethylnitrosoureas: Molecular Docking, MD Simulation, and ONIOM (QM/MM) Investigation. J Chem Inf Model 2024; 64:3411-3429. [PMID: 38511939 DOI: 10.1021/acs.jcim.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Chloroethylnitrosoureas (CENUs) are important chemotherapies applied in the treatment of cancer. They exert anticancer activity by inducing DNA interstrand cross-links (ICLs) via the formation of two O6-alkylguanine intermediates, O6-chloroethylguanine (O6-ClEtG) and N1,O6-ethanoguanine (N1,O6-EtG). However, O6-alkylguanine-DNA alkyltransferase (AGT), a DNA-repair enzyme, can restore the O6-alkylguanine damages and thereby obstruct the formation of ICLs (dG-dC cross-link). In this study, the inhibitory mechanism of ICL formation was investigated to elucidate the drug resistance of CENUs mediated by AGT in detail. Based on the structures of the substrate-enzyme complexes obtained from docking and MD simulations, two ONIOM (QM/MM) models with different sizes of the QM region were constructed. The model with a larger QM region, which included the substrate (O6-ClEtG or N1,O6-EtG), a water molecule, and five residues (Tyr114, Cys145, His146, Lys165, and Glu172) in the active pocket of AGT, accurately described the repairing reaction and generated the results coinciding with the experimental outcomes. The repair process consists of two sequential steps: hydrogen transfer to form a thiolate anion on Cys145 and alkyl transfer from the O6 site of guanine (the rate-limiting step). The repair of N1,O6-EtG was more favorable than that of O6-ClEtG from both kinetics and thermodynamics aspects. Moreover, the comparison of the repairing process with the formation of dG-dC cross-link and the inhibition of AGT by O6-benzylguanine (O6-BG) showed that the presence of AGT could effectively interrupt the formation of ICLs leading to drug resistance, and the inhibition of AGT by O6-BG that was energetically more favorable than the repair of O6-ClEtG could not prevent the repair of N1,O6-EtG. Therefore, it is necessary to completely eliminate AGT activity before CENUs medication to enhance the chemotherapeutic effectiveness. This work provides reasonable explanations for the supposed mechanism of AGT-mediated drug resistance of CENUs and will assist in the development of novel CENU chemotherapies and their medication strategies.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Uranga J, Rabe von Pappenheim F, Tittmann K, Mata RA. Dynamic Protonation States Underlie Carbene Formation in ThDP-Dependent Enzymes: A Theoretical Study. J Phys Chem B 2023; 127. [PMID: 37748048 PMCID: PMC10688766 DOI: 10.1021/acs.jpcb.3c03137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/09/2023] [Indexed: 09/27/2023]
Abstract
The activation mechanism of thiamine diphosphate (ThDP) in enzymes has long been the subject of intense research and controversial discussion. Particularly contentious is the formation of a carbene intermediate, the first one observed in an enzyme. For the formation of the carbene to take place, both intramolecular and intermolecular proton transfer pathways have been proposed. However, the physiologically relevant pH of ThDP-dependent enzymes around neutrality does not seem to be suitable for the formation of such reactive chemical species. Herein, we investigate the general mechanism of activation of the ThDP cofactor in human transketolase (TKT), by means of electronic structure methods. We show that in the case of the human TKT, the carbene species is accessible through a pKa shift induced by the electrostatics of a neighboring histidine residue (H110), whose protonation state change modulates the pKa of ThDP and suppresses the latter by more than 6 pH units. Our findings highlight that ThDP enzymes activate the cofactor beyond simple geometric constraints and the canonical glutamate. Such observations in nature can pave the way for the design of biomimetic carbene catalysts and the engineering of tailored enzymatic carbenes.
Collapse
Affiliation(s)
- Jon Uranga
- Institute
of Physical Chemistry, Georg-August Universität
Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Fabian Rabe von Pappenheim
- Department
of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August Universität Göttingen, Julia-Lermonotowa-Weg 3, D-37077 Göttingen, Germany
| | - Kai Tittmann
- Department
of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August Universität Göttingen, Julia-Lermonotowa-Weg 3, D-37077 Göttingen, Germany
- Department
of Physical Biochemistry, Max-Planck-Institute
for Multidisciplinary Natural Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institute
of Physical Chemistry, Georg-August Universität
Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Guo F, Tian Y, Ji S, Min H, Ding W, Yu H, Li Y, Ji L. Environmental biotransformation mechanisms by flavin-dependent monooxygenase: A computational study. CHEMOSPHERE 2023; 325:138403. [PMID: 36921778 DOI: 10.1016/j.chemosphere.2023.138403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The enzyme-catalyzed metabolic biotransformation of xenobiotics plays a significant role in toxicology evolution and subsequently environmental health risk assessment. Recent studies noted that the phase I human flavin-dependent monooxygenase (e.g., FMO3) can catalyze xenobiotics into more toxic metabolites. However, details of the metabolic mechanisms are insufficient. To fill the mechanism in the gaps, the systemic density functional theory calculations were performed to elucidate diverse FMO-catalyzed oxidation reactions toward environmental pollutants, including denitrification (e.g., nitrophenol), N-oxidation (e.g., nicotine), desulfurization (e.g., fonofos), and dehalogenation (e.g., pentachlorophenol). Similar to the active center compound 0 of cytochrome P450, FMO mainly catalyzed reactions with the structure of the tricyclic isoalloxazine C-4a-hydroperoxide (FADHOOH). As will be shown, FMO-catalyzed pathways are more favorable with a concerted than stepwise mechanism; Deprotonation is necessary to initiate the oxidation reactions for phenolic substrates; The regioselectivity of nicotine by FMO prefers the N-oxidation other than N-demethylation pathway; Formation of the P-S-O triangle ring is the key step for desulfurization of fonofos by FMO. We envision that these fundamental mechanisms catalyzed by FMO with a computational method can be extended to other xenobiotics of similar structures, which may aid the high-throughput screening and provide theoretical predictions in the future.
Collapse
Affiliation(s)
- Fangjie Guo
- Quality and Safety Engineering Institute of Food and Drug, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yilin Tian
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hao Min
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yingqi Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining 314400, China
| | - Li Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.
| |
Collapse
|
7
|
Shirazi J, Jafari S, Ryde U, Irani M. Catalytic Reaction Mechanism of Glyoxalase II: A Quantum Mechanics/Molecular Mechanics Study. J Phys Chem B 2023; 127:4480-4495. [PMID: 37191640 DOI: 10.1021/acs.jpcb.3c01495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Methylglyoxal (MG) is a reactive and toxic compound produced in carbohydrate, lipid, and amino acid metabolism. The glyoxalase system is the main detoxifying route for MG and consists of two enzymes, glyoxalase I (GlxI) and glyoxalase II (GlxII). GlxI catalyzes the formation of S-d-lactoylglutathione from hemithioacetal, and GlxII converts this intermediate to d-lactate. A relationship between the glyoxalase system and some diseases like diabetes has been shown, and inhibiting enzymes of this system may be an effective means of controlling certain diseases. A detailed understanding of the reaction mechanism of an enzyme is essential to the rational design of competitive inhibitors. In this work, we use quantum mechanics/molecular mechanics (QM/MM) calculations and energy refinement utilizing the big-QM and QM/MM thermodynamic cycle perturbation methods to propose a mechanism for the GlxII reaction that starts with a nucleophilic attack of the bridging OH- group on the substrate. The coordination of the substrate to the Zn ions places its electrophilic center close to the hydroxide group, enabling the reaction to proceed. Our estimated reaction energies are in excellent agreement with experimental data, thus demonstrating the reliability of our approach and the proposed mechanism. Additionally, we examined alternative protonation states of Asp-29, Asp-58, Asp-134, and the bridging hydroxide ion in the catalytic process. However, these give less favorable reactions, a poorer reproduction of the crystal structure geometry of the active site, and higher root-mean-squared deviations of the active site residues in molecular dynamics simulations.
Collapse
Affiliation(s)
- Javad Shirazi
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, 66177-15177 Sanandaj, Iran
| | - Sonia Jafari
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, 66177-15177 Sanandaj, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, 66177-15177 Sanandaj, Iran
| |
Collapse
|
8
|
Bowling PE, Broderick DR, Herbert JM. Fragment-Based Calculations of Enzymatic Thermochemistry Require Dielectric Boundary Conditions. J Phys Chem Lett 2023; 14:3826-3834. [PMID: 37061921 DOI: 10.1021/acs.jpclett.3c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electronic structure calculations on enzymes require hundreds of atoms to obtain converged results, but fragment-based approximations offer a cost-effective solution. We present calculations on enzyme models containing 500-600 atoms using the many-body expansion, comparing to benchmarks in which the entire enzyme-substrate complex is described at the same level of density functional theory. When the amino acid fragments contain ionic side chains, the many-body expansion oscillates under vacuum boundary conditions but rapid convergence is restored using low-dielectric boundary conditions. This implies that full-system calculations in the gas phase are inappropriate benchmarks for assessing errors in fragment-based approximations. A three-body protocol retains sub-kilocalorie per mole fidelity with respect to a supersystem calculation, as does a two-body calculation combined with a full-system correction at a low-cost level of theory. These protocols pave the way for application of high-level quantum chemistry to large systems via rigorous, ab initio treatment of many-body polarization.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dustin R Broderick
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Clemente CM, Capece L, Martí MA. Best Practices on QM/MM Simulations of Biological Systems. J Chem Inf Model 2023; 63:2609-2627. [PMID: 37100031 DOI: 10.1021/acs.jcim.2c01522] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
During the second half of the 20th century, following structural biology hallmark works on DNA and proteins, biochemists shifted their questions from "what does this molecule look like?" to "how does this process work?". Prompted by the theoretical and practical developments in computational chemistry, this led to the emergence of biomolecular simulations and, along with the 2013 Nobel Prize in Chemistry, to the development of hybrid QM/MM methods. QM/MM methods are necessary whenever the problem we want to address involves chemical reactivity and/or a change in the system's electronic structure, with archetypal examples being the studies of an enzyme's reaction mechanism and a metalloprotein's active site. In the last decades QM/MM methods have seen an increasing adoption driven by their incorporation in widely used biomolecular simulation software. However, properly setting up a QM/MM simulation is not an easy task, and several issues need to be properly addressed to obtain meaningful results. In the present work, we describe both the theoretical concepts and practical issues that need to be considered when performing QM/MM simulations. We start with a brief historical perspective on the development of these methods and describe when and why QM/MM methods are mandatory. Then we show how to properly select and analyze the performance of the QM level of theory, the QM system size, and the position and type of the boundaries. We show the relevance of performing prior QM model system (or QM cluster) calculations in a vacuum and how to use the corresponding results to adequately calibrate those derived from QM/MM. We also discuss how to prepare the starting structure and how to select an adequate simulation strategy, including those based on geometry optimizations as well as free energy methods. In particular, we focus on the determination of free energy profiles using multiple steered molecular dynamics (MSMD) combined with Jarzynski's equation. Finally, we describe the results for two illustrative and complementary examples: the reaction performed by chorismate mutase and the study of ligand binding to hemoglobins. Overall, we provide many practical recommendations (or shortcuts) together with important conceptualizations that we hope will encourage more and more researchers to incorporate QM/MM studies into their research projects.
Collapse
Affiliation(s)
- Camila M Clemente
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
10
|
Ritacca AG, Rovaletti A, Moro G, Cosentino U, Ryde U, Sicilia E, Greco C. Unraveling the Reaction Mechanism of Mo/Cu CO Dehydrogenase Using QM/MM Calculations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandra G. Ritacca
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Rende 87036, Italy
| | - Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| | - Giorgio Moro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Ugo Cosentino
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, Lund SE-221 00, Sweden
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Rende 87036, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| |
Collapse
|
11
|
Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences. Top Catal 2021; 65:165-186. [DOI: 10.1007/s11244-021-01521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Harder, better, faster, stronger: Large-scale QM and QM/MM for predictive modeling in enzymes and proteins. Curr Opin Struct Biol 2021; 72:9-17. [PMID: 34388673 DOI: 10.1016/j.sbi.2021.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022]
Abstract
Computational prediction of enzyme mechanism and protein function requires accurate physics-based models and suitable sampling. We discuss recent advances in large-scale quantum mechanical (QM) modeling of biochemical systems that have reduced the cost of high-accuracy models. Tradeoffs between sampling and accuracy have motivated modeling with molecular mechanics (MM) in a multiscale QM/MM or iterative approach. Limitations to both conventional density-functional theory and classical MM force fields remain for describing noncovalent interactions in comparison to experiment or wavefunction theory. Because predictions of enzyme action (i.e. electrostatics), free energy barriers, and mechanisms are sensitive to the protocol and embedding method in QM/MM, convergence tests and systematic methods for quantifying QM-level interactions are a needed, active area of development.
Collapse
|
13
|
Summers TJ, Cheng Q, Palma MA, Pham DT, Kelso DK, Webster CE, DeYonker NJ. Cheminformatic quantum mechanical enzyme model design: A catechol-O-methyltransferase case study. Biophys J 2021; 120:3577-3587. [PMID: 34358526 DOI: 10.1016/j.bpj.2021.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022] Open
Abstract
To accurately simulate the inner workings of an enzyme active site with quantum mechanics (QM), not only must the reactive species be included in the model but also important surrounding residues, solvent, or coenzymes involved in crafting the microenvironment. Our lab has been developing the Residue Interaction Network Residue Selector (RINRUS) toolkit to utilize interatomic contact network information for automated, rational residue selection and QM-cluster model generation. Starting from an x-ray crystal structure of catechol-O-methyltransferase, RINRUS was used to construct a series of QM-cluster models. The reactant, product, and transition state of the methyl transfer reaction were computed for a total of 550 models, and the resulting free energies of activation and reaction were used to evaluate model convergence. RINRUS-designed models with only 200-300 atoms are shown to converge. RINRUS will serve as a cornerstone for improved and automated cheminformatics-based enzyme model design.
Collapse
Affiliation(s)
- Thomas J Summers
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Qianyi Cheng
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Manuel A Palma
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Diem-Trang Pham
- Department of Chemistry, The University of Memphis, Memphis, Tennessee; Department of Computer Science, The University of Memphis, Memphis, Tennessee
| | - Dudley K Kelso
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi
| | - Nathan J DeYonker
- Department of Chemistry, The University of Memphis, Memphis, Tennessee.
| |
Collapse
|
14
|
Rocha-Santos A, Chaves EJ, Grillo IB, de Freitas AS, Araújo DAM, Rocha GB. Thermochemical and Quantum Descriptor Calculations for Gaining Insight into Ricin Toxin A (RTA) Inhibitors. ACS OMEGA 2021; 6:8764-8777. [PMID: 33842748 PMCID: PMC8027999 DOI: 10.1021/acsomega.0c02588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/30/2020] [Indexed: 05/03/2023]
Abstract
In this work, we performed a study to assess the interactions between the ricin toxin A (RTA) subunit of ricin and some of its inhibitors using modern semiempirical quantum chemistry and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods. Two approaches were followed (calculation of binding enthalpies, ΔH bind, and reactivity quantum chemical descriptors) and compared with the respective half-maximal inhibitory concentration (IC50) experimental data, to gain insight into RTA inhibitors and verify which quantum chemical method would better describe RTA-ligand interactions. The geometries for all RTA-ligand complexes were obtained after running classical molecular dynamics simulations in aqueous media. We found that single-point energy calculations of ΔH bind with the PM6-DH+, PM6-D3H4, and PM7 semiempirical methods and ONIOM QM/MM presented a good correlation with the IC50 data. We also observed, however, that the correlation decreased significantly when we calculated ΔH bind after full-atom geometry optimization with all semiempirical methods. Based on the results from reactivity descriptors calculations for the cases studied, we noted that both types of interactions, molecular overlap and electrostatic interactions, play significant roles in the overall affinity of these ligands for the RTA binding pocket.
Collapse
Affiliation(s)
- Acassio Rocha-Santos
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Elton José
Ferreira Chaves
- Department
of Biotechnology, Federal University of
Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Igor Barden Grillo
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Amanara Souza de Freitas
- Department
of Chemical Engineering, Federal University
of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | | | - Gerd Bruno Rocha
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
- . Phone/Fax: +55-83-3216-7437
| |
Collapse
|
15
|
Jafari S, Ryde U, Irani M. QM/MM Study of the Catalytic Reaction of Myrosinase; Importance of Assigning Proper Protonation States of Active-Site Residues. J Chem Theory Comput 2021; 17:1822-1841. [PMID: 33543623 PMCID: PMC8023669 DOI: 10.1021/acs.jctc.0c01121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Myrosinase from Sinapis alba hydrolyzes glycosidic
bonds of β-d-S-glucosides. The enzyme
shows an enhanced activity in the presence of l-ascorbic
acid. In this work, we employed combined quantum mechanical and molecular
mechanical (QM/MM) calculations and molecular dynamics simulations
to study the catalytic reaction of wild-type myrosinase and its E464A,
Q187A, and Q187E mutants. Test calculations show that a proper QM
region to study the myrosinase reaction must contain the whole substrate,
models of Gln-187, Glu-409, Gln-39, His-141, Asn-186, Tyr-330, Glu-464,
Arg-259, and a water molecule. Furthermore, to make the deglycosylation
step possible, Arg-259 must be charged, Glu-464 must be protonated
on OE2, and His-141 must be protonated on the NE2 atom. The results
indicate that assigning proper protonation states of the residues
is more important than the size of the model QM system. Our model
reproduces the anomeric retaining characteristic of myrosinase and
also reproduces the experimental fact that ascorbate increases the
rate of the reaction. A water molecule in the active site, positioned
by Gln-187, helps the aglycon moiety of the substrate to stabilize
the buildup of negative charge during the glycosylation reaction and
this in turn makes the moiety a better leaving group. The water molecule
also lowers the glycosylation barrier by ∼9 kcal/mol. The results
indicate that the Q187E and E464A mutants but not the Q187A mutant
can perform the glycosylation step. However, the energy profiles for
the deglycosylation step of the mutants are not similar to that of
the wild-type enzyme. The Glu-464 residue lowers the barriers of the
glycosylation and deglycosylation steps. The ascorbate ion can act
as a general base in the reaction of the wild-type enzyme only if
the Glu-464 and His-141 residues are properly protonated.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry, University of Kurdistan, 66175-416 Sanandaj, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, 66175-416 Sanandaj, Iran
| |
Collapse
|
16
|
Rovaletti A, Greco C, Ryde U. QM/MM study of the binding of H 2 to MoCu CO dehydrogenase: development and applications of improved H 2 van der Waals parameters. J Mol Model 2021; 27:68. [PMID: 33538901 PMCID: PMC7862525 DOI: 10.1007/s00894-020-04655-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/20/2020] [Indexed: 11/28/2022]
Abstract
The MoCu CO dehydrogenase enzyme not only transforms CO into CO2 but it can also oxidise H2. Even if its hydrogenase activity has been known for decades, a debate is ongoing on the most plausible mode for the binding of H2 to the enzyme active site and the hydrogen oxidation mechanism. In the present work, we provide a new perspective on the MoCu-CODH hydrogenase activity by improving the in silico description of the enzyme. Energy refinement—by means of the BigQM approach—was performed on the intermediates involved in the dihydrogen oxidation catalysis reported in our previously published work (Rovaletti, et al. “Theoretical Insights into the Aerobic Hydrogenase Activity of Molybdenum–Copper CO Dehydrogenase.” Inorganics 7 (2019) 135). A suboptimal description of the H2–HN(backbone) interaction was observed when the van der Waals parameters described in previous literature for H2 were employed. Therefore, a new set of van der Waals parameters is developed here in order to better describe the hydrogen–backbone interaction. They give rise to improved binding modes of H2 in the active site of MoCu CO dehydrogenase. Implications of the resulting outcomes for a better understanding of hydrogen oxidation catalysis mechanisms are proposed and discussed.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, Milano-Bicocca University, Piazza della Scienza 1, 20126, Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, Milano-Bicocca University, Piazza della Scienza 1, 20126, Milan, Italy.
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00, Lund, Sweden.
| |
Collapse
|
17
|
Jafari S, Ryde U, Irani M. Two-Substrate Glyoxalase I Mechanism: A Quantum Mechanics/Molecular Mechanics Study. Inorg Chem 2021; 60:303-314. [PMID: 33315368 DOI: 10.1021/acs.inorgchem.0c02957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glyoxalase I (GlxI) is an important enzyme that catalyzes the detoxification of methylglyoxal (MG) with the help of glutathione (H-SG). It is currently unclear whether MG and H-SG are substrates of GlxI or whether the enzyme processes hemithioacetal (HTA), which is nonenzymatically formed from MG and H-SG. Most previous studies have concentrated on the latter mechanism. Here, we study the two-substrate reaction mechanism of GlxI from humans (HuGlxI) and corn (ZmGlxI), which are Zn(II)-active and -inactive, respectively. Hybrid quantum mechanics/molecular mechanics calculations were used to obtain geometrical structures of the stationary points along reaction paths, and big quantum mechanical systems with more than 1000 atoms and free-energy perturbations were used to improve the quality of the calculated energies. We studied, on an equal footing, all reasonable reaction paths to the S- and R-enantiomers of HTA from MG and H-SG (the latter was considered in two different binding modes). The results indicate that the MG and H-SG reaction in both enzymes can follow the same path to reach S-HTA. However, the respective overall barriers and reaction energies are different for the two enzymes (6.1 and -9.8 kcal/mol for HuGlxI and 15.7 and -2.2 kcal/mol for ZmGlxI). The first reaction step to produce S-HTA is facilitated by a crystal water molecule that forms hydrogen bonds with a Glu and a Thr residue in the active site. The two enzymes also follow similar paths to R-HTA. However, the reactions reach a deprotonated and protonated R-HTA in the human and corn enzymes, respectively. The production of deprotonated R-HTA in HuGlxI is consistent with other theoretical and experimental works. However, our calculations show a different behavior for ZmGlxI (both S- and R-HTA can be formed in the enzyme with the alcoholic proton on HTA). This implies that Glu-144 of corn GlxI is not basic enough to keep the alcoholic proton. In HuGlxI, the two binding modes of H-SG that lead to S- and R-HTA are degenerate, but the barrier leading to R-HTA is lower than the barrier to S-HTA. On the other hand, ZmGlxI prefers the binding mode, which produces S-HTA; this observation is consistent with experiments. Based on the results, we present a modification for a previously proposed two-substrate reaction mechanism for ZmGlxI.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, Sanandaj, Iran.,Department of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, Sanandaj, Iran
| |
Collapse
|
18
|
Cummins PL, Gready JE. Kohn-Sham Density Functional Calculations Reveal Proton Wires in the Enolization and Carboxylase Reactions Catalyzed by Rubisco. J Phys Chem B 2020; 124:3015-3026. [PMID: 32208706 DOI: 10.1021/acs.jpcb.0c01169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ribulose 1,5-bisphosphate (RuBP) carboxylase-oxygenase (Rubisco) plays a fundamental role in the carbon cycle by fixing the atmospheric CO2 used in photosynthesis. Rubisco is all the more remarkable because it must catalyze some difficult multistep reaction chemistry involving proton transfers within the one active site. In the present study, we have used Kohn-Sham density functional theory at the B3LYP/6-31G* level with basis set superposition error and dispersion corrections (B3LYP-gCP-D3) to examine the possibility that the proton transfers can take place through molecular wires (including active-site water molecules) via the classical Grotthuss proton-shuttle mechanism. The results support an essential role for water molecules found in the crystal structures of Rubisco complexes as facilitators of proton transport in all the rate-limiting (catalytic) reaction steps through a network of short proton wires within the Rubisco active site. We suggest that completion of the initial product turnover (cycle) requires two excess protons produced in the initial carbamylation that is required for Rubisco activation. By use of proton wires, a large number of reaction steps may be accommodated within a single active site without necessitating the input of excessive conformational strain energy arising from the movement of residue side chains into positions where direct protonation of substrates can occur. The involvement of the identified types of proton wires in the kinetic mechanism is capable of providing a unique explanation for various experimental observations, including deuterium isotope effects and the results of site-directed mutagenesis experiments, and may thus provide a realistic solution to the problem of Rubisco's challenging chemistry.
Collapse
Affiliation(s)
- Peter L Cummins
- Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Jill E Gready
- Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
19
|
Jafari S, Ryde U, Fouda AEA, Alavi FS, Dong G, Irani M. Quantum Mechanics/Molecular Mechanics Study of the Reaction Mechanism of Glyoxalase I. Inorg Chem 2020; 59:2594-2603. [PMID: 32011880 DOI: 10.1021/acs.inorgchem.9b03621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glyoxalase I (GlxI) is a member of the glyoxalase system, which is important in cell detoxification and converts hemithioacetals of methylglyoxal (a cytotoxic byproduct of sugar metabolism that may react with DNA or proteins and introduce nucleic acid strand breaks, elevated mutation frequencies, and structural or functional changes of the proteins) and glutathione into d-lactate. GlxI accepts both the S and R enantiomers of hemithioacetal, but converts them to only the S-d enantiomer of lactoylglutathione. Interestingly, the enzyme shows this unusual specificity with a rather symmetric active site (a Zn ion coordinated to two glutamate residues; Glu-99 and Glu-172), making the investigation of its reaction mechanism challenging. Herein, we have performed a series of combined quantum mechanics and molecular mechanics calculations to study the reaction mechanism of GlxI. The substrate can bind to the enzyme in two different modes, depending on the direction of its alcoholic proton (H2; toward Glu-99 or Glu-172). Our results show that the S substrate can react only if H2 is directed toward Glu-99 and the R substrate only if H2 is directed toward Glu-172. In both cases, the reactions lead to the experimentally observed S-d enantiomer of the product. In addition, the results do not show any low-energy paths to the wrong enantiomer of the product from neither the S nor the R substrate. Previous studies have presented several opposing mechanisms for the conversion of R and S enantiomers of the substrate to the correct enantiomer of the product. Our results confirm one of them for the S substrate, but propose a new one for the R substrate.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry , University of Kurdistan , P.O. Box 66175-416, Sanandaj 66177-15177 , Iran.,Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Adam Emad Ahmed Fouda
- Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Fatemeh Sadat Alavi
- Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Geng Dong
- Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Mehdi Irani
- Department of Chemistry , University of Kurdistan , P.O. Box 66175-416, Sanandaj 66177-15177 , Iran
| |
Collapse
|
20
|
Dasgupta S, Herbert JM. Using Atomic Confining Potentials for Geometry Optimization and Vibrational Frequency Calculations in Quantum-Chemical Models of Enzyme Active Sites. J Phys Chem B 2020; 124:1137-1147. [PMID: 31986049 DOI: 10.1021/acs.jpcb.9b11060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantum-chemical studies of enzymatic reaction mechanisms sometimes use truncated active-site models as simplified alternatives to mixed quantum mechanics molecular mechanics (QM/MM) procedures. Eliminating the MM degrees of freedom reduces the complexity of the sampling problem, but the trade-off is the need to introduce geometric constraints in order to prevent structural collapse of the model system during geometry optimizations that do not contain a full protein backbone. These constraints may impair the efficiency of the optimization, and care must be taken to avoid artifacts such as imaginary vibrational frequencies. We introduce a simple alternative in which terminal atoms of the model system are placed in soft harmonic confining potentials rather than being rigidly constrained. This modification is simple to implement and straightforward to use in vibrational frequency calculations, unlike iterative constraint-satisfaction algorithms, and allows the optimization to proceed without constraint even though the practical result is to fix the anchor atoms in space. The new approach is more efficient for optimizing minima and transition states, as compared to the use of fixed-atom constraints, and also more robust against unwanted imaginary frequencies. We illustrate the method by application to several enzymatic reaction pathways where entropy makes a significant contribution to the relevant reaction barriers. The use of confining potentials correctly describes reaction paths and facilitates calculation of both vibrational zero-point and finite-temperature entropic corrections to barrier heights.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - John M Herbert
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
21
|
Summers TJ, Daniel BP, Cheng Q, DeYonker NJ. Quantifying Inter-Residue Contacts through Interaction Energies. J Chem Inf Model 2019; 59:5034-5044. [DOI: 10.1021/acs.jcim.9b00804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas J. Summers
- The Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152-3550, United States
| | - Baty P. Daniel
- The Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152-3550, United States
| | - Qianyi Cheng
- The Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152-3550, United States
| | - Nathan J. DeYonker
- The Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152-3550, United States
| |
Collapse
|
22
|
A thiocarbonate sink on the enzymatic energy landscape of aerobic CO oxidation? Answers from DFT and QM/MM models of Mo Cu CO-dehydrogenases. J Catal 2019. [DOI: 10.1016/j.jcat.2019.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
QM/MM study of the stereospecific proton exchange of glutathiohydroxyacetone by glyoxalase I. RESULTS IN CHEMISTRY 2019. [DOI: 10.1016/j.rechem.2019.100011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
24
|
Dong G, Phung QM, Pierloot K, Ryde U. Reaction Mechanism of [NiFe] Hydrogenase Studied by Computational Methods. Inorg Chem 2018; 57:15289-15298. [PMID: 30500163 DOI: 10.1021/acs.inorgchem.8b02590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
[NiFe] hydrogenases catalyze the reversible conversion of molecular hydrogen to protons and electrons. This seemingly simple reaction has attracted much attention because of the prospective use of H2 as a clean fuel. In this paper, we have studied the full reaction mechanism of this enzyme with various computational methods. Geometries were obtained with combined quantum mechanical and molecular mechanics (QM/MM) calculations. To get more accurate energies and obtain a detailed account of the surroundings, we performed big-QM calculations with 819 atoms in the QM region. Moreover, QM/MM thermodynamic cycle perturbation calculations were performed to obtain free energies. Finally, density matrix renormalisation group complete active space self-consistent field calculations were carried out to study the electronic structures of the various states in the reaction mechanism. Our calculations indicate that the Ni-L state is not involved in the reaction mechanism. Instead, the Ni-C state is reduced by one electron and then the bridging hydride ion is transferred to the sulfur atom of Cys546 as a proton and the two electrons transfer to the Ni ion. This step turned out to be rate-determining with an energy barrier of 58 kJ/mol, which is consistent with the experimental rate of 750 ± 90 s-1 (corresponding to ∼52 kJ/mol). The cleavage of the H-H bond is facile with an energy barrier of 33 kJ/mol, according to our calculations. We also find that the reaction energies are sensitive to the size of the QM system, the basis set, and the density functional theory method, in agreement with previous studies.
Collapse
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry, Chemical Centre , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
- Department of Biochemistry and Molecular Biology , Shantou University Medical College , Shantou 514041 , Guangdong , PR China
| | - Quan Manh Phung
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Kristine Pierloot
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical Centre , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
| |
Collapse
|
25
|
Kulik HJ. Large-scale QM/MM free energy simulations of enzyme catalysis reveal the influence of charge transfer. Phys Chem Chem Phys 2018; 20:20650-20660. [PMID: 30059109 PMCID: PMC6085747 DOI: 10.1039/c8cp03871f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations provide key insights into enzyme structure-function relationships. Numerous studies have demonstrated that large QM regions are needed to systematically converge ground state, zero temperature properties with electrostatic embedding QM/MM. However, it is not well known if ab initio QM/MM free energy simulations have this same dependence, in part due to the hundreds of thousands of energy evaluations required for free energy estimations that in turn limit QM region size. Here, we leverage recent advances in electronic structure efficiency and accuracy to carry out range-separated hybrid density functional theory free energy simulations in a representative methyltransferase. By studying 200 ps of ab initio QM/MM dynamics for each of five QM regions from minimal (64 atoms) to one-sixth of the protein (544 atoms), we identify critical differences between large and small QM region QM/MM in charge transfer between substrates and active site residues as well as in geometric structure and dynamics that coincide with differences in predicted free energy barriers. Distinct geometric and electronic structure features in the largest QM region indicate that important aspects of enzymatic rate enhancement in methyltransferases are identified with large-scale electronic structure.
Collapse
Affiliation(s)
- Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Abstract
Sulfite oxidase is a mononuclear molybdenum enzyme that oxidises sulfite to sulfate in many organisms, including man. Three different reaction mechanisms have been suggested, based on experimental and computational studies. Here, we study all three with combined quantum mechanical (QM) and molecular mechanical (QM/MM) methods, including calculations with large basis sets, very large QM regions (803 atoms) and QM/MM free-energy perturbations. Our results show that the enzyme is set up to follow a mechanism in which the sulfur atom of the sulfite substrate reacts directly with the equatorial oxo ligand of the Mo ion, forming a Mo-bound sulfate product, which dissociates in the second step. The first step is rate limiting, with a barrier of 39–49 kJ/mol. The low barrier is obtained by an intricate hydrogen-bond network around the substrate, which is preserved during the reaction. This network favours the deprotonated substrate and disfavours the other two reaction mechanisms. We have studied the reaction with both an oxidised and a reduced form of the molybdopterin ligand and quantum-refinement calculations indicate that it is in the normal reduced tetrahydro form in this protein.
Collapse
|
27
|
Das S, Nam K, Major DT. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical–Molecular Mechanical Simulations of Proton Transfer in DNA. J Chem Theory Comput 2018; 14:1695-1705. [DOI: 10.1021/acs.jctc.7b00964] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Susanta Das
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Kwangho Nam
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
28
|
Kollar J, Frecer V. How accurate is the description of ligand–protein interactions by a hybrid QM/MM approach? J Mol Model 2017; 24:11. [DOI: 10.1007/s00894-017-3537-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
|
29
|
Quantum chemical approaches to [NiFe] hydrogenase. Essays Biochem 2017; 61:293-303. [PMID: 28487405 DOI: 10.1042/ebc20160079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 11/17/2022]
Abstract
The mechanism by which [NiFe] hydrogenase catalyses the oxidation of molecular hydrogen is a significant yet challenging topic in bioinorganic chemistry. With far-reaching applications in renewable energy and carbon mitigation, significant effort has been invested in the study of these complexes. In particular, computational approaches offer a unique perspective on how this enzyme functions at an electronic and atomistic level. In this article, we discuss state-of-the art quantum chemical methods and how they have helped deepen our comprehension of [NiFe] hydrogenase. We outline the key strategies that can be used to compute the (i) geometry, (ii) electronic structure, (iii) thermodynamics and (iv) kinetic properties associated with the enzymatic activity of [NiFe] hydrogenase and other bioinorganic complexes.
Collapse
|
30
|
Roßbach S, Ochsenfeld C. Quantum-Chemical Study of the Discrimination against dNTP in the Nucleotide Addition Reaction in the Active Site of RNA Polymerase II. J Chem Theory Comput 2017; 13:1699-1705. [PMID: 28271886 DOI: 10.1021/acs.jctc.7b00157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic RNA polymerase II catalyzes the transcription of DNA into mRNA very efficiently and with an extremely low error rate with regard to matching base and sugar moiety. Despite its importance, little is known about how it discriminates against 2'-deoxy NTPs during the chemical reaction. To investigate the differences in the addition reactions of ATP and dATP, we used FF-MD and QM/MM calculations within a nudged elastic band approach, which allowed us to find the energetically accessible reaction coordinates. By converging the QM size, we found that 800 QM atoms are necessary to properly describe the active site. We show how the absence of a single hydrogen bond between the enzyme and the NTP 2'-OH group leads to an increase of the reaction barrier by 16 kcal/mol and therefore conclude that Arg446 is the key residue in the discrimination process.
Collapse
Affiliation(s)
- Sven Roßbach
- Chair of Theoretical Chemistry, Department of Chemistry and ‡Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU Munich) , Butenandtstrasse 7, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry and ‡Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU Munich) , Butenandtstrasse 7, D-81377 Munich, Germany
| |
Collapse
|
31
|
Hedegård ED, Ryde U. Multiscale Modelling of Lytic Polysaccharide Monooxygenases. ACS OMEGA 2017; 2:536-545. [PMID: 31457454 PMCID: PMC6641039 DOI: 10.1021/acsomega.6b00521] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 05/27/2023]
Abstract
Lytic polysaccharide monooxygenase (LPMO) enzymes have attracted considerable attention owing to their ability to enhance polysaccharide depolymerization, making them interesting with respect to production of biofuel from cellulose. LPMOs are metalloenzymes that contain a mononuclear copper active site, capable of activating dioxygen. However, many details of this activation are unclear. Some aspects of the mechanism have previously been investigated from a computational angle. Yet, either these studies have employed only molecular mechanics (MM), which are inaccurate for metal active sites, or they have described only the active site with quantum mechanics (QM) and neglected the effect of the protein. Here, we employ hybrid QM and MM (QM/MM) methods to investigate the first steps of the LPMO mechanism, which is reduction of CuII to CuI and the formation of a CuII-superoxide complex. In the latter complex, the superoxide can bind either in an equatorial or an axial position. For both steps, we obtain structures that are markedly different from previous suggestions, based on small QM-cluster calculations. Our calculations show that the equatorial isomer of the superoxide complex is over 60 kJ/mol more stable than the axial isomer because it is stabilized by interactions with a second-coordination-sphere glutamine residue, suggesting a possible role for this residue. The coordination of superoxide in this manner agrees with recent experimental suggestions.
Collapse
|
32
|
Roßbach S, Ochsenfeld C. Influence of Coupling and Embedding Schemes on QM Size Convergence in QM/MM Approaches for the Example of a Proton Transfer in DNA. J Chem Theory Comput 2017; 13:1102-1107. [PMID: 28195707 DOI: 10.1021/acs.jctc.6b00727] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of embedding and coupling schemes on the convergence of the QM size in the QM/MM approach is investigated for the transfer of a proton in a DNA base pair. We find that the embedding scheme (mechanical or electrostatic) has a much greater impact on the convergence behavior than the coupling scheme (additive QM/MM or subtractive ONIOM). To achieve size convergence, QM regions with up to 6000 atoms are necessary for pure QM or mechanical embedding. In contrast, electrostatic embedding converges faster: for the example of the transfer of a proton between DNA base pairs, we recommend including at least five base pairs and 5 Å of solvent (including counterions) into the QM region, i.e., a total of 1150 atoms.
Collapse
Affiliation(s)
- Sven Roßbach
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU Munich) , Butenandtstr. 7, D-81377 Munich, Germany.,Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU Munich) , Butenandtstr, 5-13, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU Munich) , Butenandtstr. 7, D-81377 Munich, Germany.,Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU Munich) , Butenandtstr, 5-13, D-81377 Munich, Germany
| |
Collapse
|
33
|
Karelina M, Kulik HJ. Systematic Quantum Mechanical Region Determination in QM/MM Simulation. J Chem Theory Comput 2017; 13:563-576. [DOI: 10.1021/acs.jctc.6b01049] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maria Karelina
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
34
|
Dong G, Phung QM, Hallaert SD, Pierloot K, Ryde U. H2binding to the active site of [NiFe] hydrogenase studied by multiconfigurational and coupled-cluster methods. Phys Chem Chem Phys 2017; 19:10590-10601. [DOI: 10.1039/c7cp01331k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CCSD(T) and DMRG-CASPT2 calculations show that H2prefers to bind to Ni rather than to Fe in [NiFe] hydrogenase.
Collapse
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| | - Quan Manh Phung
- Department of Chemistry
- University of Leuven
- B-3001 Leuven
- Belgium
| | | | | | - Ulf Ryde
- Department of Theoretical Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| |
Collapse
|
35
|
Kulik H, Zhang J, Klinman J, Martínez TJ. How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O-Methyltransferase. J Phys Chem B 2016; 120:11381-11394. [PMID: 27704827 PMCID: PMC5108028 DOI: 10.1021/acs.jpcb.6b07814] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/09/2016] [Indexed: 01/29/2023]
Abstract
Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations are widely used in studies of enzymatic catalysis. Until recently, it has been cost prohibitive to determine the asymptotic limit of key energetic and structural properties with respect to increasingly large QM regions. Leveraging recent advances in electronic structure efficiency and accuracy, we investigate catalytic properties in catechol O-methyltransferase, a prototypical methyltransferase critical to human health. Using QM regions ranging in size from reactants-only (64 atoms) to nearly one-third of the entire protein (940 atoms), we show that properties such as the activation energy approach within chemical accuracy of the large-QM asymptotic limits rather slowly, requiring approximately 500-600 atoms if the QM residues are chosen simply by distance from the substrate. This slow approach to asymptotic limit is due to charge transfer from protein residues to the reacting substrates. Our large QM/MM calculations enable identification of charge separation for fragments in the transition state as a key component of enzymatic methyl transfer rate enhancement. We introduce charge shift analysis that reveals the minimum number of protein residues (approximately 11-16 residues or 200-300 atoms for COMT) needed for quantitative agreement with large-QM simulations. The identified residues are not those that would be typically selected using criteria such as chemical intuition or proximity. These results provide a recipe for a more careful determination of QM region sizes in future QM/MM studies of enzymes.
Collapse
Affiliation(s)
- Heather
J. Kulik
- Department
of Chemistry and PULSE Institute, Stanford
University, Stanford, California 94305, United States
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jianyu Zhang
- Departments
of Chemistry and of Molecular and Cell Biology, and California Institute
for Quantitative Biosciences, University
of California, Berkeley, California 94720, United States
| | - Judith
P. Klinman
- Departments
of Chemistry and of Molecular and Cell Biology, and California Institute
for Quantitative Biosciences, University
of California, Berkeley, California 94720, United States
| | - Todd J. Martínez
- Department
of Chemistry and PULSE Institute, Stanford
University, Stanford, California 94305, United States
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
36
|
Fouda A, Ryde U. Does the DFT Self-Interaction Error Affect Energies Calculated in Proteins with Large QM Systems? J Chem Theory Comput 2016; 12:5667-5679. [DOI: 10.1021/acs.jctc.6b00903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Adam Fouda
- Department of Theoretical
Chemistry, Chemical Centre, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical
Chemistry, Chemical Centre, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
37
|
Misini Ignjatović M, Caldararu O, Dong G, Muñoz-Gutierrez C, Adasme-Carreño F, Ryde U. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations. J Comput Aided Mol Des 2016; 30:707-730. [PMID: 27565797 PMCID: PMC5078160 DOI: 10.1007/s10822-016-9942-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/17/2016] [Indexed: 11/25/2022]
Abstract
We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.
Collapse
Affiliation(s)
- Majda Misini Ignjatović
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden
| | - Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden
| | - Geng Dong
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden
| | - Camila Muñoz-Gutierrez
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Francisco Adasme-Carreño
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
38
|
Olsson MA, Söderhjelm P, Ryde U. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level. J Comput Chem 2016; 37:1589-600. [PMID: 27117350 PMCID: PMC5074236 DOI: 10.1002/jcc.24375] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/15/2022]
Abstract
In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martin A Olsson
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, Lund, SE-221 00, Sweden
| | - Pär Söderhjelm
- Department of Biophysical Chemistry, Lund University, Chemical Centre, P. O. Box 124, Lund, SE-221 00, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, Lund, SE-221 00, Sweden
| |
Collapse
|
39
|
Sadhu B, Sundararajan M. Asn47 and Phe114 modulate the inner sphere reorganization energies of type zero copper proteins. Phys Chem Chem Phys 2016; 18:16748-56. [PMID: 27271560 DOI: 10.1039/c6cp00747c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The geometric structures and electron transfer properties of type 1 Cu proteins are reasonably understood at the molecular level (E. I. Solomon and R. G. Hadt, Coord. Chem. Rev., 2011, 255, 774-789, J. J. Warren, K. M. Lancaster, J. H. Richards and H. B. Gray, J. Inorg. Biochem., 2012, 115, 119-126). Much understanding of type 1 copper electron transfer reactivity has come from site directed mutagenesis studies. For example, artificial "type zero" Cu-centres constructed in cupredoxin-azurin have showcased the capacity of outer-sphere hydrogen bonding networks to enhance Cu II/I electron transfer reactivity. In this paper, we have elaborated on earlier kinetics and electronic structural studies of type zero Cu by calculating the inner sphere reorganization energies of type 1, type 2, and type zero Cu proteins using density functional theory (DFT). Although the choice of density functionals for copper systems is not straightforward, we have benchmarked the density functionals against the recently reported ESI-PES data for two synthetic copper models (S. Niu, D.-L. Huang, P. D. Dau, H.-T. Liu, L.-S. Wang and T. J. Ichiye, Chem. Theory Comput., 2014, 10, 1283). For the Cu proteins, our calculations predict that changes in the coordination number upon metal reduction lead to large inner sphere reorganization energies for type 2 Cu sites, whereas retention in the coordination number is observed for type zero Cu sites. These variations in the coordination number are modulated by the outer-sphere coordinating residues Asn47 and Phe114, which are involved in hydrogen bonding with the Asp112 side chain.
Collapse
Affiliation(s)
- Biswajit Sadhu
- Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India
| | - Mahesh Sundararajan
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai - 400 094, India.
| |
Collapse
|
40
|
Gao T, Li H, Li W, Li L, Fang C, Li H, Hu L, Lu Y, Su ZM. A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases. J Cheminform 2016; 8:24. [PMID: 27148408 PMCID: PMC4855356 DOI: 10.1186/s13321-016-0133-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
Background Non-covalent interactions (NCIs) play critical roles in supramolecular chemistries; however, they are difficult to measure. Currently, reliable computational methods are being pursued to meet this challenge, but the accuracy of calculations based on low levels of theory is not satisfactory and calculations based on high levels of theory are often too costly. Accordingly, to reduce the cost and increase the accuracy of low-level theoretical calculations to describe NCIs, an efficient approach is proposed to correct NCI calculations based on the benchmark databases S22, S66 and X40 (Hobza in Acc Chem Rev 45: 663–672, 2012; Řezáč et al. in J Chem Theory Comput 8:4285, 2012). Results A novel type of NCI correction is presented for density functional theory (DFT) methods. In this approach, the general regression neural network machine learning method is used to perform the correction for DFT methods on the basis of DFT calculations. Various DFT methods, including M06-2X, B3LYP, B3LYP-D3, PBE, PBE-D3 and ωB97XD, with two small basis sets (i.e., 6-31G* and 6-31+G*) were investigated. Moreover, the conductor-like polarizable continuum model with two types of solvents (i.e., water and pentylamine, which mimics a protein environment with ε = 4.2) were considered in the DFT calculations. With the correction, the root mean square errors of all DFT calculations were improved by at least 70 %. Relative to CCSD(T)/CBS benchmark values (used as experimental NCI values because of its high accuracy), the mean absolute error of the best result was 0.33 kcal/mol, which is comparable to high-level ab initio methods or DFT methods with fairly large basis sets. Notably, this level of accuracy is achieved within a fraction of the time required by other methods. For all of the correction models based on various DFT approaches, the validation parameters according to OECD principles (i.e., the correlation coefficient R2, the predictive squared correlation coefficient q2 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q_{cv}^{2}$$\end{document}qcv2 from cross-validation) were >0.92, which suggests that the correction model has good stability, robustness and predictive power. Conclusions The correction can be added following DFT calculations. With the obtained molecular descriptors, the NCIs produced by DFT methods can be improved to achieve high-level accuracy. Moreover, only one parameter is introduced into the correction model, which makes it easily applicable. Overall, this work demonstrates that the correction model may be an alternative to the traditional means of correcting for NCIs.A machine learning correction model efficiently improved the accuracy of non-covalent interactions(NCIs) calculated by DFT methods. The application of the correction model is easy and flexible, so it may be an alternative correction means for NCIs by first-principle calculations. ![]() Electronic supplementary material The online version of this article (doi:10.1186/s13321-016-0133-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Gao
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117 China
| | - Hongzhi Li
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117 China
| | - Wenze Li
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117 China
| | - Lin Li
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117 China
| | - Chao Fang
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117 China
| | - Hui Li
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117 China
| | - LiHong Hu
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117 China
| | - Yinghua Lu
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117 China ; Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
| |
Collapse
|
41
|
Harris TV, Szilagyi RK. Protein environmental effects on iron-sulfur clusters: A set of rules for constructing computational models for inner and outer coordination spheres. J Comput Chem 2016; 37:1681-96. [DOI: 10.1002/jcc.24384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Travis V. Harris
- NAI Astrobiology Biogeocatalysis Research Center, Department of Chemistry and Biochemistry, Montana State University; Bozeman Montana 59717
| | - Robert K. Szilagyi
- NAI Astrobiology Biogeocatalysis Research Center, Department of Chemistry and Biochemistry, Montana State University; Bozeman Montana 59717
| |
Collapse
|
42
|
Ryde U, Söderhjelm P. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Chem Rev 2016; 116:5520-66. [DOI: 10.1021/acs.chemrev.5b00630] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ulf Ryde
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Pär Söderhjelm
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
43
|
Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods. J Biol Inorg Chem 2016; 21:383-94. [DOI: 10.1007/s00775-016-1348-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
44
|
|
45
|
Vedha SA, Velmurugan G, Venuvanalingam P. Noncovalent interactions between the second coordination sphere and the active site of [NiFeSe] hydrogenase. RSC Adv 2016. [DOI: 10.1039/c6ra11295a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
QM/MM studies on seven truncated models of the oxidized as-isolated state of the [NiFeSe] Hases reveal the influence of the residues in the second coordination sphere on the active site.
Collapse
Affiliation(s)
- Swaminathan Angeline Vedha
- Theoretical and Computational Chemistry Laboratory
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli-620 024
- India
| | - Gunasekaran Velmurugan
- Theoretical and Computational Chemistry Laboratory
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli-620 024
- India
| | - Ponnambalam Venuvanalingam
- Theoretical and Computational Chemistry Laboratory
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli-620 024
- India
| |
Collapse
|
46
|
Fattebert JL, Lau EY, Bennion BJ, Huang P, Lightstone FC. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis. J Chem Theory Comput 2015; 11:5688-95. [PMID: 26642985 DOI: 10.1021/acs.jctc.5b00606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale first-principles molecular dynamics simulations and applied them to the study of the enzymatic reaction catalyzed by acetylcholinesterase. We carried out density functional theory calculations for a quantum-mechanical (QM) subsystem consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM subsystem is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite-temperature sampling by first-principles molecular dynamics for the acylation reaction of acetylcholine catalyzed by acetylcholinesterase. Our calculations show two energy barriers along the reaction coordinate for the enzyme-catalyzed acylation of acetylcholine. The second barrier (8.5 kcal/mol) is rate-limiting for the acylation reaction and in good agreement with experiment.
Collapse
Affiliation(s)
- Jean-Luc Fattebert
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Edmond Y Lau
- Physical and Life Sciences, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Brian J Bennion
- Physical and Life Sciences, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Patrick Huang
- Physical and Life Sciences, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Felice C Lightstone
- Physical and Life Sciences, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| |
Collapse
|
47
|
Spyrakis F, Cavasotto CN. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Arch Biochem Biophys 2015; 583:105-19. [DOI: 10.1016/j.abb.2015.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 01/05/2023]
|
48
|
Svensson F, Engen K, Lundbäck T, Larhed M, Sköld C. Virtual Screening for Transition State Analogue Inhibitors of IRAP Based on Quantum Mechanically Derived Reaction Coordinates. J Chem Inf Model 2015; 55:1984-93. [DOI: 10.1021/acs.jcim.5b00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fredrik Svensson
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Karin Engen
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Thomas Lundbäck
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen
23A, SE-171 65 Solna, Sweden
| | - Mats Larhed
- Science
for Life Laboratory, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Christian Sköld
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
49
|
Abstract
The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses.
Collapse
Affiliation(s)
- Serge Pérez
- Department of Molecular Pharmacochemistry, CNRS, University Grenoble-Alpes, Grenoble, France.
| | - Igor Tvaroška
- Department of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Nitra, Slovak Republic.
| |
Collapse
|
50
|
The Importance of the MM Environment and the Selection of the QM Method in QM/MM Calculations: Applications to Enzymatic Reactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015. [PMID: 26415844 DOI: 10.1016/bs.apcsb.2015.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In this chapter, we discuss the influence of an anisotropic protein environment on the reaction mechanisms of saccharopine reductase and uroporphyrinogen decarboxylase, respectively, via the use of a quantum mechanical and molecular mechanical (QM/MM) approach. In addition, we discuss the importance of selecting a suitable DFT functional to be used in a QM/MM study of a key intermediate in the mechanism of 8R-lipoxygenase, a nonheme iron enzyme. In the case of saccharopine reductase, while the enzyme utilizes a substrate-assisted catalytic pathway, it was found that only through treating the polarizing effect of the active site, via the use of an electronic embedding formalism, was agreement with experimental kinetic data obtained. Similarly, in the case of uroporphyrinogen decarboxylase, the effect of the protein environment on the catalytic mechanism was found to be such that the calculated rate-limiting barrier is in good agreement with related experimentally determined values for the first decarboxylation of the substrate. For 8R-lipoxygenase, it was found that the geometries and energies of the multicentered open-shell intermediate complexes formed during the mechanism are quite sensitive to the choice of the density functional theory method. Thus, while density functional theory has become the method of choice in QM/MM studies, care must be taken in the selection of a particular high-level method.
Collapse
|