1
|
Bendrea AD, Cianga L, Ailiesei GL, Göen Colak D, Popescu I, Cianga I. Thiophene α-Chain-End-Functionalized Oligo(2-methyl-2-oxazoline) as Precursor Amphiphilic Macromonomer for Grafted Conjugated Oligomers/Polymers and as a Multifunctional Material with Relevant Properties for Biomedical Applications. Int J Mol Sci 2022; 23:7495. [PMID: 35886844 PMCID: PMC9317439 DOI: 10.3390/ijms23147495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Because the combination of π-conjugated polymers with biocompatible synthetic counterparts leads to the development of bio-relevant functional materials, this paper reports a new oligo(2-methyl-2-oxazoline) (OMeOx)-containing thiophene macromonomer, denoted Th-OMeOx. It can be used as a reactive precursor for synthesis of a polymerizable 2,2'-3-OMeOx-substituted bithiophene by Suzuki coupling. Also a grafted polythiophene amphiphile with OMeOx side chains was synthesized by its self-acid-assisted polymerization (SAAP) in bulk. The results showed that Th-OMeOx is not only a reactive intermediate but also a versatile functional material in itself. This is due to the presence of 2-bromo-substituted thiophene and ω-hydroxyl functional end-groups, and due to the multiple functionalities encoded in its structure (photosensitivity, water self-dispersibility, self-assembling capacity). Thus, analysis of its behavior in solvents of different selectivities revealed that Th-OMeOx forms self-assembled structures (micelles or vesicles) by "direct dissolution".Unexpectedly, by exciting the Th-OMeOx micelles formed in water with λabs of the OMeOx repeating units, the intensity of fluorescence emission varied in a concentration-dependent manner.These self-assembled structures showed excitation-dependent luminescence as well. Attributed to the clusteroluminescence phenomenon due to the aggregation and through space interactions of electron-rich groups in non-conjugated, non-aromatic OMeOx, this behavior certifies that polypeptides mimic the character of Th-OMeOx as a non-conventional intrinsic luminescent material.
Collapse
Affiliation(s)
- Anca-Dana Bendrea
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Luminita Cianga
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Gabriela-Liliana Ailiesei
- NMR Spectroscopy Department, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Demet Göen Colak
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey;
| | - Irina Popescu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Ioan Cianga
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| |
Collapse
|
2
|
Membrane-active diacylglycerol-terminated thermoresponsive polymers: RAFT synthesis and biocompatibility evaluation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Hahn D, Sonntag JM, Lück S, Maitz MF, Freudenberg U, Jordan R, Werner C. Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels-Expanding the Physicochemical Parameter Space of Biohybrid Materials. Adv Healthc Mater 2021; 10:e2101327. [PMID: 34541827 PMCID: PMC11481032 DOI: 10.1002/adhm.202101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Poly(ethylene glycol) (PEG)-glycosaminoglycan (GAG) hydrogel networks are established as very versatile biomaterials. Herein, the synthetic gel component of the biohybrid materials is systematically varied by combining different poly(2-alkyl-2-oxazolines) (POx) with heparin applying a Michael-type addition crosslinking scheme: POx of gradated hydrophilicity and temperature-responsiveness provides polymer networks of distinctly different stiffness and swelling. Adjusting the mechanical properties and the GAG concentration of the gels to similar values allows for modulating the release of GAG-binding growth factors (VEGF165 and PDGF-BB) by the choice of the POx and its temperature-dependent conformation. Adsorption of fibronectin, growth of fibroblasts, and bacterial adhesion scale with the hydrophobicity of the gel-incorporated POx. In vitro hemocompatibility tests with freshly drawn human whole blood show advantages of POx-based gels compared to the PEG-based reference materials. Biohybrid POx hydrogels can therefore enable biomedical technologies requiring GAG-based materials with customized and switchable physicochemical characteristics.
Collapse
Affiliation(s)
- Dominik Hahn
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Jannick M. Sonntag
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Steffen Lück
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Rainer Jordan
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Fetscherstr. 10501307DresdenGermany
| |
Collapse
|
4
|
Le Coeur C, Lorthioir C, Feoktystov A, Wu B, Volet G, Amiel C. Laponite/poly(2-methyl-2-oxazoline) hydrogels: Interplay between local structure and rheological behaviour. J Colloid Interface Sci 2020; 582:149-158. [PMID: 32814221 DOI: 10.1016/j.jcis.2020.07.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022]
Abstract
HYPOTHESIS Dispersions of Laponite in water may form gels, the rheological properties of which being possibly tuned by the addition of polymer chains. Laponite-based hydrogels with poly(ethylene oxide) (PEO) were the most widely investigated systems and the PEO chains were then found to reduce the elastic modulus. EXPERIMENTS Here, hydrogels based on Laponite and poly(2-methyl-2-oxazoline) (POXA) were considered. The adsorption behavior and the local structures within these nanocomposite gels were investigated by small-angle neutron scattering and NMR. The same materials were macroscopically characterized using rheology. FINDINGS An original evolution of the storage modulus G' with the POXA concentration is evidenced compared to Laponite/PEO hydrogels. At low POXA concentrations, a continuous reduction of G' is observed upon increasing the polymer content, as with PEO, due to the screening of electrostatic interactions between the clay platelets. However, above a critical value of the POXA concentration, G' increases with the polymer content. This difference with PEO-based hydrogels is correlated to the stronger affinity of POXA chains for the clay surfaces, which results in the reduction of the inhomogeneities for the Laponite disks within the gels. Steric repulsions would then counterbalance the effect of electrostatic repulsions and lead to the strengthening of the POXA-based hydrogels.
Collapse
Affiliation(s)
- C Le Coeur
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, 2 Rue Henri Dunant, 94320 Thiais, France; Laboratoire Léon Brillouin, CEA-CNRS (UMR-12), CEA Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - C Lorthioir
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France.
| | - A Feoktystov
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum MLZ, Lichtenbergstraße 1, 85748 Garching, Germany.
| | - B Wu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum MLZ, Lichtenbergstraße 1, 85748 Garching, Germany.
| | - G Volet
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, 2 Rue Henri Dunant, 94320 Thiais, France; Université d'Evry Val d'Essonne, Rue du Père Jarlan, 91025 Evry Cedex, France.
| | - C Amiel
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, 2 Rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
5
|
Simon L, Marcotte N, Devoisselle JM, Begu S, Lapinte V. Recent advances and prospects in nano drug delivery systems using lipopolyoxazolines. Int J Pharm 2020; 585:119536. [PMID: 32531447 DOI: 10.1016/j.ijpharm.2020.119536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
Facing the growing demand in nano drug delivery systems (nDDS), hybrid excipients based on natural molecules and well-defined synthetic polymers are intensively investigated. Lipopolyoxazolines (LipoPOx) composed of a polyoxazoline block (POx) and a lipid or lipid-like derivative are detailed in this review. The nature of lipids used, the route to synthesize LipoPOx and their advantages for the formulation of drugs are reported. The place of POx family in nanomedicine is discussed compared to PEG, considered as the gold standard of hydrophilic polymers. LipoPOx nanoformulations including liposomes, mixed micelles, lipid nanocapsules are provided alongside discussion of the nDDS for intravenous or topical administration.
Collapse
Affiliation(s)
- L Simon
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - N Marcotte
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - S Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - V Lapinte
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
6
|
Pidhatika B, Nalam PC. Investigation of design parameters in generating antifouling and lubricating surfaces using hydrophilic polymer brushes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bidhari Pidhatika
- Laboratory for Surface Science and Technology, Department of MaterialsETH Zürich Vladimir‐Prelog‐Weg 1‐5/10, 8093, Zurich Switzerland
| | - Prathima C. Nalam
- Laboratory for Surface Science and Technology, Department of MaterialsETH Zürich Vladimir‐Prelog‐Weg 1‐5/10, 8093, Zurich Switzerland
| |
Collapse
|
7
|
Delage B, Briou B, Brossier T, Catrouillet S, Robin J, Lapinte V. Polyoxazoline associated with cardanol for bio‐based linear alkyl benzene surfactants. POLYM INT 2019. [DOI: 10.1002/pi.5763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Benoit Delage
- ICGMUniversity of Montpellier, CNRS, ENSCM Montpellier France
| | - Benoit Briou
- ICGMUniversity of Montpellier, CNRS, ENSCM Montpellier France
| | - Thomas Brossier
- ICGMUniversity of Montpellier, CNRS, ENSCM Montpellier France
| | | | | | - Vincent Lapinte
- ICGMUniversity of Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
8
|
Johner A, Lee NK. The Daoud and Cotton blob model and the interaction of star-shaped polymers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:88. [PMID: 30039228 DOI: 10.1140/epje/i2018-11698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Since it was first proposed in 1982, the Daoud and Cotton (DC) model for star-shaped polymers was intensively used also for self-assembled copolymers and small colloids grafted with long polymers. We try to clarify the position of the DC model and focus on the star partition function which plays a central role in self-assembly and gives access to the star-star interaction. While the predicted star-star interaction agrees with scattering data by Likos et al. (Phys. Rev. Lett. 80, 4450 (1998)), an extensive simulation by Hsu et al. (Macromolecules, 37, 4658 (2004)) does not recover the prediction for the partition function. We try to reconcile this seemingly conflicting results. We discuss star-star interactions, star free energy in θ -solvents, mixing of A/B branches in copolymer stars, within or beyond the Daoud and Cotton blob model.
Collapse
Affiliation(s)
- Albert Johner
- Institut Charles Sadron CNRS, Université de Strasbourg, Rue du Loess, 67034, Strasbourg Cedex 2, France.
| | - Nam-Kyung Lee
- Department of Physics, Sejong University, 05006, Seoul, South Korea
| |
Collapse
|
9
|
|
10
|
Rayeroux D, Travelet C, Lapinte V, Borsali R, Robin JJ, Bouilhac C. Tunable amphiphilic graft copolymers bearing fatty chains and polyoxazoline: synthesis and self-assembly behavior in solution. Polym Chem 2017. [DOI: 10.1039/c7py00632b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and self-assembly behavior in solution of tunable copolymers with amphiphilic grafts based on fatty chain polymethacrylate and polyoxazoline.
Collapse
Affiliation(s)
- David Rayeroux
- Institut Charles Gerhardt - UMR 5253 CNRS/UM/ENSCM - Ingénierie et Architectures Macromoléculaires
- Université Montpellier
- F-34095 Montpellier Cedex 5
- France
| | | | - Vincent Lapinte
- Institut Charles Gerhardt - UMR 5253 CNRS/UM/ENSCM - Ingénierie et Architectures Macromoléculaires
- Université Montpellier
- F-34095 Montpellier Cedex 5
- France
| | | | - Jean-Jacques Robin
- Institut Charles Gerhardt - UMR 5253 CNRS/UM/ENSCM - Ingénierie et Architectures Macromoléculaires
- Université Montpellier
- F-34095 Montpellier Cedex 5
- France
| | - Cécile Bouilhac
- Institut Charles Gerhardt - UMR 5253 CNRS/UM/ENSCM - Ingénierie et Architectures Macromoléculaires
- Université Montpellier
- F-34095 Montpellier Cedex 5
- France
| |
Collapse
|
11
|
Maiti B, Maiti S, De P. Self-assembly of well-defined fatty acid based amphiphilic thermoresponsive random copolymers. RSC Adv 2016. [DOI: 10.1039/c6ra00336b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Side-chain stearic acid containing thermoresponsive and crystalline random copolymers are synthesized via RAFT technique, which self-assembled to spherical micellar structures in aqueous solution depending on stearate content in the copolymer.
Collapse
Affiliation(s)
- Binoy Maiti
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| | - Sankar Maiti
- Department of Biological Sciences
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| | - Priyadarsi De
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| |
Collapse
|
12
|
Korchia L, Bouilhac C, Lapinte V, Travelet C, Borsali R, Robin JJ. Photodimerization as an alternative to photocrosslinking of nanoparticles: proof of concept with amphiphilic linear polyoxazoline bearing coumarin unit. Polym Chem 2015. [DOI: 10.1039/c5py00834d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photo-dimerization of the coumarinated inner compartment of the nanoparticles is investigated.
Collapse
Affiliation(s)
- Laetitia Korchia
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM
- Equipe Ingénierie et Architectures Macromoléculaires
- F-34095 Montpellier cedex 5
- France
| | - Cécile Bouilhac
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM
- Equipe Ingénierie et Architectures Macromoléculaires
- F-34095 Montpellier cedex 5
- France
| | - Vincent Lapinte
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM
- Equipe Ingénierie et Architectures Macromoléculaires
- F-34095 Montpellier cedex 5
- France
| | | | | | - Jean-Jacques Robin
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM
- Equipe Ingénierie et Architectures Macromoléculaires
- F-34095 Montpellier cedex 5
- France
| |
Collapse
|
13
|
de la Rosa VR, Hoogenboom R. Solution Polymeric Optical Temperature Sensors with Long-Term Memory Function Powered by Supramolecular Chemistry. Chemistry 2014; 21:1302-11. [DOI: 10.1002/chem.201405161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 12/12/2022]
|
14
|
Safari J, Farkhondeh Masouleh S, Zarnegar Z, Enayati Najafabadi A. Water-dispersible Fe3O4 nanoparticles stabilized with a biodegradable amphiphilic copolymer. CR CHIM 2014. [DOI: 10.1016/j.crci.2013.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Rotta J, Pham PD, Lapinte V, Borsali R, Minatti E, Robin JJ. Synthesis of Amphiphilic Polymers Based on Fatty Acids and Glycerol-Derived Monomers - A Study of Their Self-Assembly in Water. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201300483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jefferson Rotta
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1; Equipe Ingénierie et Architectures Macromoléculaires; Université Montpellier II cc1702; Place Eugène Bataillon 34095 Montpellier Cedex 5 France
- Laboratory of Polymer and Surfactant Solutions; Department of Chemistry; Federal University of Santa Catarina; 88040-900 Florianópolis SC Brazil
| | - Phuoc Dien Pham
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1; Equipe Ingénierie et Architectures Macromoléculaires; Université Montpellier II cc1702; Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Vincent Lapinte
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1; Equipe Ingénierie et Architectures Macromoléculaires; Université Montpellier II cc1702; Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | | | - Edson Minatti
- Laboratory of Polymer and Surfactant Solutions; Department of Chemistry; Federal University of Santa Catarina; 88040-900 Florianópolis SC Brazil
| | - Jean-Jacques Robin
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1; Equipe Ingénierie et Architectures Macromoléculaires; Université Montpellier II cc1702; Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| |
Collapse
|
16
|
|
17
|
Stemmelen M, Travelet C, Lapinte V, Borsali R, Robin JJ. Synthesis and self-assembly of amphiphilic polymers based on polyoxazoline and vegetable oil derivatives. Polym Chem 2013. [DOI: 10.1039/c2py20840g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Polyoxazoline adsorption on silica nanoparticles mediated by host–guest interactions. Colloids Surf B Biointerfaces 2012; 91:269-73. [DOI: 10.1016/j.colsurfb.2011.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/19/2022]
|
19
|
|
20
|
Volet G, Lav TX, Babinot J, Amiel C. Click-Chemistry: An Alternative Way to Functionalize Poly(2-methyl-2-oxazoline). MACROMOL CHEM PHYS 2010. [DOI: 10.1002/macp.201000556] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 2010; 31:9135-44. [PMID: 20817292 DOI: 10.1016/j.biomaterials.2010.08.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/04/2010] [Indexed: 01/22/2023]
Abstract
Realization of the full potential of human pluripotent stem cells (hPSCs) in regenerative medicine requires the development of well-defined culture conditions for their long-term growth and directed differentiation. Current practices for maintaining hPSCs generally utilize empirically determined combinations of feeder cells and other animal-based products, which are expensive, difficult to isolate, subject to batch-to-batch variations, and unsuitable for cell-based therapies. Using a high-throughput screening approach, we identified several polymers that can support self-renewal of hPSCs. While most of these polymers provide support for only a short period of time, we identified a synthetic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-alt-MA) that supported the long-term attachment, proliferation and self-renewal of HUES1, HUES9, and iPSCs. The hPSCs cultured on PMVE-alt-MA maintained their characteristic morphology, expressed high levels of markers of pluripotency, and retained a normal karyotype. Such cost-effective, polymer-based matrices that support long-term self-renewal and proliferation of hPSCs will not only help to accelerate the translational perspectives of hPSCs, but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- David A Brafman
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0695, United States
| | | | | | | | | | | |
Collapse
|
22
|
Volet G, Deschamps ACL, Amiel C. Association of hydrophobically α,ω-end-capped poly(2-methyl-2-oxazoline) in water. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|