1
|
Lampis S, Carboni M, Steri D, Murgia S, Monduzzi M. Lipid based liquid-crystalline stabilized formulations for the sustained release of bioactive hydrophilic molecules. Colloids Surf B Biointerfaces 2018; 168:35-42. [DOI: 10.1016/j.colsurfb.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
|
2
|
van 't Hag L, Gras SL, Conn CE, Drummond CJ. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design. Chem Soc Rev 2018; 46:2705-2731. [PMID: 28280815 DOI: 10.1039/c6cs00663a] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).
Collapse
Affiliation(s)
- Leonie van 't Hag
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
3
|
Larkin TJ, Garvey CJ, Shishmarev D, Kuchel PW, Momot KI. Na + and solute diffusion in aqueous channels of Myverol bicontinuous cubic phase: PGSE NMR and computer modelling. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:464-471. [PMID: 27002682 DOI: 10.1002/mrc.4432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
The apparent diffusion coefficients of 23 Na+ ions and the solute 2-fluoroethylamine present in the aqueous domain of a Myverol/water bulk bicontinuous cubic phase (BCP) were measured using pulsed field-gradient spin echo (PGSE) NMR spectroscopy. The measured values were dependent on the diffusion time interval, which is a characteristic of restricted diffusion. The translational motion of 23 Na+ and water in the aqueous channels of a cubic phase were simulated using a Monte-Carlo random walk algorithm, and the simulation results were compared with those from real PGSE NMR experiments. The simulations indicated that diffusion of 23 Na+ ions and water would appear to be restricted even on the shortest timescales available to PGSE NMR experiments. The micro-viscosity of the aqueous domain of the BCPs was estimated from the longitudinal relaxation times of 23 Na+ and 2-fluoroethylamine; this was three times higher than in free solution and suggests one of (but not the only) likely impediments to the release of hydrophilic drugs from stabilised aqueous dispersions of BCPs (cubosomes) when they are used therapeutically in vivo. Monte Carlo simulations of diffusive efflux from cubosomes suggest that the principal impediment to drug release is presented by a surfactant or lipid barrier at the cubosome surface, which separates the BCP aqueous channels from the bulk solution. The dynamics inferred from these studies informs quantitative predictions of drug delivery from cubosomes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timothy J Larkin
- Neurosurgery Unit, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Christopher J Garvey
- Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales, Australia
| | - Dmitry Shishmarev
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Philip W Kuchel
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Konstantin I Momot
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Liu Z, Wang D, Cao M, Han Y, Xu H, Wang Y. Enhanced Molecular Recognition between Nucleobases and Guanine-5'-monophosphate-disodium (GMP) by Surfactant Aggregates in Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15078-15087. [PMID: 26106937 DOI: 10.1021/acsami.5b04441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Only specific base pairs on DNA can bind with each other through hydrogen bonds, which is called the Watson-Crick (W/C) pairing rule. However, without the constraint of DNA chains, the nucleobases in bulk aqueous solution usually do not follow the W/C pairing rule anymore because of the strong competitive effect of water and the multi-interaction edges of nucleobases. The present work applied surfactant aggregates noncovalently functionalized by nucleotide to enhance the recognition between nucleobases without DNA chains in aqueous solution, and it revealed the effects of their self-assembling ability and morphologies on the recognition. The cationic ammonium monomeric, dimeric, and trimeric surfactants DTAB, 12-3-12, and 12-3-12-3-12 were chosen. The surfactants with guanine-5'-monophosphate-disodium (GMP) form micelles, vesicles, and fingerprint-like and plate-like aggregates bearing the hydrogen-bonding sites of GMP, respectively. The binding parameters of these aggregates with adenine (A), uracil (U), guanine (G), and cytosine(C) indicate that the surfactants can promote W/C recognitions in aqueous solution when they form vesicles (GMP/DTAB) or plate-like aggregates (GMP/12-3-12) with proper molecular packing compactness, which not only provide hydrophobic environments but also shield non-W/C recognition edges. However, the GMP/12-3-12 micelles with loose molecular packing, the GMP/12-3-12 fingerprint-like aggregates where the hydrogen bond sites of GMP are occupied by itself, and the GMP/12-3-12-3-12 vesicles with too strong self-assembling ability cannot promote W/C recognition. This work provides insight into how to design self-assemblies with the performance of enhanced molecule recognition.
Collapse
Affiliation(s)
- Zhang Liu
- †Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dong Wang
- ‡Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Meiwen Cao
- ‡Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yuchun Han
- †Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hai Xu
- ‡Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yilin Wang
- †Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Monduzzi M, Lampis S, Murgia S, Salis A. From self-assembly fundamental knowledge to nanomedicine developments. Adv Colloid Interface Sci 2014; 205:48-67. [PMID: 24182715 DOI: 10.1016/j.cis.2013.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 02/01/2023]
Abstract
This review highlights the key role of NMR techniques in demonstrating the molecular aspects of the self-assembly of surfactant molecules that nowadays constitute the basic knowledge which modern nanoscience relies on. The aim is to provide a tutorial overview. The story of a rigorous scientific approach to understand self-assembly in surfactant systems and biological membranes starts in the early seventies when the progresses of SAXRD and NMR technological facilities allowed to demonstrate the existence of ordered soft matter, and the validity of Tanford approach concerning self-assembly at a molecular level. Particularly, NMR quadrupolar splittings, NMR chemical shift anisotropy, and NMR relaxation of dipolar and quadrupolar nuclei in micellar solutions, microemulsions, and liquid crystals proved the existence of an ordered polar-apolar interface, on the NMR time scale. NMR data, rationalized in terms of the two-step model of relaxation, allowed to quantify the dynamic aspects of the supramolecular aggregates in different soft matter systems. In addition, NMR techniques allowed to obtain important information on counterion binding as well as on size of the aggregate through molecular self-diffusion. Indeed NMR self-diffusion proved without any doubt the existence of bicontinuous microemulsions and bicontinuous cubic liquid crystals, suggested by pioneering and brilliant interpretation of SAXRD investigations. Moreover, NMR self-diffusion played a fundamental role in the understanding of microemulsion and emulsion nanostructures, phase transitions in phase diagrams, and particularly percolation phenomena in microemulsions. Since the nineties, globalization of the knowledge along with many other technical facilities such as electron microscopy, particularly cryo-EM, produced huge progresses in surfactant and colloid science. Actually we refer to nanoscience: bottom up/top down strategies allow to build nanodevices with applications spanning from ICT to food technology. Developments in the applied fields have also been addressed by important progresses in theoretical skills aimed to understand intermolecular forces, and specific ion interactions. Nevertheless, this is still an open question. Our predictive ability has however increased, hence more ambitious targets can be planned. Nanomedicine represents a major challenging field with its main aims: targeted drug delivery, diagnostic, theranostics, tissue engineering, and personalized medicine. Few recent examples will be mentioned. Although the real applications of these systems still need major work, nevertheless new challenges are open, and perspectives based on integrated multidisciplinary approaches would enable both a deeper basic knowledge and the expected advances in biomedical field.
Collapse
Affiliation(s)
- Maura Monduzzi
- Dept. Scienze Chimiche e Geologiche, CNBS & CSGI, University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato, CA, Italy.
| | - Sandrina Lampis
- Dept. Scienze Chimiche e Geologiche, CNBS & CSGI, University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato, CA, Italy
| | - Sergio Murgia
- Dept. Scienze Chimiche e Geologiche, CNBS & CSGI, University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Dept. Scienze Chimiche e Geologiche, CNBS & CSGI, University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato, CA, Italy
| |
Collapse
|
6
|
Carboni M, Falchi AM, Lampis S, Sinico C, Manca ML, Schmidt J, Talmon Y, Murgia S, Monduzzi M. Physicochemical, cytotoxic, and dermal release features of a novel cationic liposome nanocarrier. Adv Healthc Mater 2013. [PMID: 23184424 DOI: 10.1002/adhm.201200302] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A novel cationic liposome nanocarrier, having interesting performance in topical drug delivery, is here presented and evaluated for its features. Two penetration enhancers, namely monoolein and lauroylcholine chloride, are combined to rapidly formulate (15 min) a cationic liposome nanostructure endowed of excellent stability (>6 months) and skin penetration ability, along with low short-term cytotoxicity, as evaluated via the MTT test. Cytotoxicity tests and lipid droplet analysis give a strong indication that monoolein and lauroylcholine synergistically endanger long-term cells viability. The physicochemical features, investigated through SAXS, DLS, and cryo-TEM techniques, reveal that the nanostructure is retained after loading with diclofenac in its acid (hydrophobic) form. The drug release performances are studied using intact newborn pig skin. Analysis of the different skin strata proves that the drug mainly accumulates into the viable epidermis with almost no deposition into the derma. Indeed, the flux of the drug across the skin is exceptionally low, with only 1% release after 24 h. These results validate the use of this novel formulation for topical drug release when the delivery to the systemic circulation should be avoided.
Collapse
Affiliation(s)
- Maura Carboni
- Department of Chemical and Geological Sciences, University of Cagliari, CNBS and CSGI, s.s. 554, bivio Sestu, 09042 Monserrato (CA), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Characterization of the Solutol® HS15/water phase diagram and the impact of the Δ9-tetrahydrocannabinol solubilization. J Colloid Interface Sci 2013; 390:129-36. [DOI: 10.1016/j.jcis.2012.08.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/22/2022]
|
8
|
Montis C, Milani S, Berti D, Baglioni P. Complexes of nucleolipid liposomes with single-stranded and double-stranded nucleic acids. J Colloid Interface Sci 2012; 373:57-68. [DOI: 10.1016/j.jcis.2011.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/18/2011] [Accepted: 10/22/2011] [Indexed: 01/10/2023]
|
9
|
Nucleic Acid Based Fluorinated Derivatives: New Tools for Biomedical Applications. APPLIED SCIENCES-BASEL 2012. [DOI: 10.3390/app2020245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Specific interactions between nucleolipid doped liposomes and DNA allow a more efficient polynucleotide condensation. J Colloid Interface Sci 2012; 365:184-90. [DOI: 10.1016/j.jcis.2011.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/19/2022]
|
11
|
Murgia S, Palazzo G, Mamusa M, Lampis S, Monduzzi M. Aerosol-OT in water forms fully-branched cylindrical direct micelles in the presence of the ionic liquid 1-butyl-3-methylimidazolium bromide. Phys Chem Chem Phys 2011; 13:9238-45. [DOI: 10.1039/c1cp20209j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Murgia S, Lampis S, Zucca P, Sanjust E, Monduzzi M. Nucleotide recognition and phosphate linkage hydrolysis at a lipid cubic interface. J Am Chem Soc 2010; 132:16176-84. [PMID: 20977215 DOI: 10.1021/ja1069745] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mononucleotides, when entrapped within a mono-olein-based cubic Ia3d liquid crystalline phase, have been found to undergo hydrolysis at the sugar-phosphate ester bond in spite of their natural inertness toward hydrolysis. Here, kinetics of the hydrolysis reaction and interactions between the lipid matrix and the mononucleotide adenosine 5'-monophosphate disodium salt (AMP) and its 2'-deoxy derivative (dAMP) are thoroughly investigated in order to shed some light on the mechanism of the nucleotide recognition and phosphate ester hydrolysis. Experiments evidenced that molecular recognition occurs essentially through the sn-2 and the sn-3 alcoholic OH groups of mono-olein. As deduced from the apparent activation energies, the mechanism underlying the hydrolysis reaction is the same for AMP and dAMP. Nevertheless, the reaction proceeds slower for the latter, highlighting a substantial difference in the chemical behavior of the two nucleotides. A model that explains the hydrolysis reaction is presented. Remarkably, the hydrolysis mechanism appears to be highly specific for the Ia3d phase.
Collapse
Affiliation(s)
- Sergio Murgia
- Department of Chemical Science, Cagliari University, CNBS and CSGI, ss 554, bivio Sestu, 09042 Monserrato (CA), Italy.
| | | | | | | | | |
Collapse
|
13
|
Murgia S, Falchi AM, Mano M, Lampis S, Angius R, Carnerup AM, Schmidt J, Diaz G, Giacca M, Talmon Y, Monduzzi M. Nanoparticles from lipid-based liquid crystals: emulsifier influence on morphology and cytotoxicity. J Phys Chem B 2010; 114:3518-25. [PMID: 20170140 DOI: 10.1021/jp9098655] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, monoolein-based nanoparticles (NPs), obtained through fragmentation of bulk liquid crystalline phases, and stabilized by two different emulsifiers, namely, Pluronic F127 (PF127) and lauroylcholine chloride (LCh), are investigated for structural features and for short-term in vitro cytotoxicity. Depending on the emulsifiers, different morphologies of the lipid NPs (cubosomes and liposomes) are obtained, as demonstrated by cryo-TEM images. Although NPs offer many advantages in medical applications and various chemicals used for their preparation are under investigation, so far there are no standardized procedures to evaluate cell biocompatibility. Two different protocols to evaluate the impact of these lipid NPs on biological systems are presented. Results show that nanoparticles stabilized by PF127 (cubosomes) display a relevant toxicity toward different cell lines, whereas those stabilized by LCh (liposomes) affect cell viability at a much lesser extent.
Collapse
Affiliation(s)
- Sergio Murgia
- Department of Chemical Science, Cagliari University, CNBS and CSGI, ss 554, bivio Sestu, 09042 Monserrato (CA), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|