1
|
Burke JH, Bae DY, Wallick RF, Dykstra CP, Rossi TC, Smith LE, Leahy CA, Schaller RD, Mirica LM, Vura-Weis J, van der Veen RM. High-Spin State of a Ferrocene Electron Donor Revealed by Optical and X-ray Transient Absorption Spectroscopy. J Am Chem Soc 2024; 146:21651-21663. [PMID: 39051542 PMCID: PMC11311227 DOI: 10.1021/jacs.4c05646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Ferrocene is one of the most common electron donors, and mapping its ligand-field excited states is critical to designing donor-acceptor (D-A) molecules with long-lived charge transfer states. Although 3(d-d) states are commonly invoked in the photophysics of ferrocene complexes, mention of the high-spin 5(d-d) state is scarce. Here, we provide clear evidence of 5(d-d) formation in a bimetallic D-A molecule, ferrocenyl cobaltocenium hexafluorophosphate ([FcCc]PF6). Femtosecond optical transient absorption (OTA) spectroscopy reveals two distinct electronic excited states with 30 and 500 ps lifetimes. Using a combination of ultraviolet, visible, near-infrared, and short-wave infrared probe pulses, we capture the spectral features of these states over an ultrabroadband range spanning 320 to 2200 nm. Time-dependent density functional theory (DFT) calculations of the lowest triplet and quintet states, both primarily Fe(II) (d-d) in character, qualitatively agree with the experimental OTA spectra, allowing us to assign the 30 ps state as the 3(d-d) state and the 500 ps state as the high-spin 5(d-d) state. To confirm the ferrocene-centered high-spin character of the 500 ps state, we performed X-ray transient absorption (XTA) spectroscopy at the Fe and Co K edges. The Fe K-edge XTA spectrum at 150 ps shows a red shift of the absorption edge that is consistent with an Fe(II) high-spin state, as supported by ab initio calculations. The transient signal detected at the Co K-edge is 50× weaker, confirming the ferrocene-centered character of the excited state. Fitting of the transient extended X-ray absorption fine structure region yields an Fe-C bond length increase of 0.25 ± 0.1 Å in the excited state, as expected for the high-spin state based on DFT. Altogether, these results demonstrate that the high-spin state of ferrocene should be considered when designing donor-acceptor assemblies for photocatalysis and photovoltaics.
Collapse
Affiliation(s)
- John H. Burke
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Dae Young Bae
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Rachel F. Wallick
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Conner P. Dykstra
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thomas C. Rossi
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
| | - Laura E. Smith
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Clare A. Leahy
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Richard D. Schaller
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Liviu M. Mirica
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Renske M. van der Veen
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
- Institute
of Optics and Atomic Physics, Technical
University of Berlin, 10623 Berlin, Germany
| |
Collapse
|
2
|
Drabik G, Szklarzewicz J, Radoń M. Spin-state energetics of metallocenes: How do best wave function and density functional theory results compare with the experimental data? Phys Chem Chem Phys 2021; 23:151-172. [PMID: 33313617 DOI: 10.1039/d0cp04727a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We benchmark the accuracy of quantum-chemical methods, including wave function theory methods [coupled cluster theory at the CCSD(T) level, multiconfigurational perturbation-theory (CASPT2, NEVPT2) and internally contracted multireference configuration interaction (MRCI)] and 30 density functional theory (DFT) approximations, in reproducing the spin-state splittings of metallocenes. The reference values of the electronic energy differences are derived from the experimental spin-crossover enthalpy for manganocene and the spectral data of singlet-triplet transitions for ruthenocene, ferrocene, and cobaltocenium. For ferrocene and cobaltocenium we revise the previous experimental interpretations regarding the lowest triplet energy; our argument is based on the comparison with the lowest singlet excitation energy and herein reported, carefully determined absorption spectrum of ferrocene. When deriving vertical energies from the experimental band maxima, we go beyond the routine vertical energy approximation by introducing vibronic corrections based on simulated vibrational envelopes. The benchmarking result confirms the high accuracy of the CCSD(T) method (in particular, for UCCSD(T) based on Hartree-Fock orbitals we find for our dataset: maximum error 0.12 eV, weighted mean absolute error 0.07 eV, weighted mean signed error 0.01 eV). The high accuracy of the single-reference method is corroborated by the analysis of a multiconfigurational character of the complete active space wave function for the triplet state of ferrocene. On the DFT side, our results confirm the non-universality problem with approximate functionals. The present study is an important step toward establishing an extensive and representative benchmark set of experiment-derived spin-state energetics for transition metal complexes.
Collapse
Affiliation(s)
- Gabriela Drabik
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| | | | | |
Collapse
|
3
|
Prabu S, David E, Viswanathan T, Thirumoorthy K, Panda T, Dragonetti C, Colombo A, Marinotto D, Righetto S, Roberto D, Palanisami N. NLO-active Y-shaped ferrocene conjugated imidazole chromophores as precursors for SHG polymeric films. Dalton Trans 2020; 49:1854-1863. [PMID: 31967141 DOI: 10.1039/c9dt03637g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New Y-shaped ferrocene conjugated imidazole chromophores were prepared and fully characterized. The Y-shaped structure was confirmed by the single crystal X-ray diffraction technique. The chromophores show interesting second-order nonlinear optical (NLO) properties in solution, as determined by the Electric-Field Induced Second Harmonic generation (EFISH) technique. Remarkably, the trifluoro substituted compound 3 is characterized by a high μβEFISH value and has good potential as a molecular building block for composite films with Second Harmonic Generation (SHG) properties. For all compounds, the dipole moments and frontier orbital energies were calculated by the Density Functional Theoretical method.
Collapse
Affiliation(s)
- Selvam Prabu
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Barbon A, Dal Farra MG, Ciuti S, Albertini M, Bolzonello L, Orian L, Di Valentin M. Comprehensive investigation of the triplet state electronic structure of free-base 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin by a combined advanced EPR and theoretical approach. J Chem Phys 2020; 152:034201. [PMID: 31968969 DOI: 10.1063/1.5131753] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nature of the photoexcited triplet state of free-base 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4-) has been investigated by advanced Electron Paramagnetic Resonance (EPR) techniques combined with quantum chemical calculations. The zero-field splitting (ZFS) parameters, D and E, the orientation of the transition dipole moment in the ZFS tensor frame, and the proton hyperfine couplings have been determined by magnetophotoselection-EPR and pulse electron-nuclear double resonance spectroscopy. Both time-resolved and pulse experiments exploit the electron spin polarization of the photoexcited triplet state. Comparison of the magnetic observables with computational results, including CASSCF calculations of the ZFS interaction tensor, provides an accurate picture of the triplet-state electronic structure. The theoretical investigation has been integrated with a systematic analysis on the parent free-base porphyrin molecule to assess the effect of the sulfonatophenyl substituents on the magnetic tensors. Additionally, the magnetophotoselection effects are discussed in terms of tautomerization in the excited singlet state of H2TPPS4-.
Collapse
Affiliation(s)
- Antonio Barbon
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Maria Giulia Dal Farra
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Susanna Ciuti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Albertini
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Luca Bolzonello
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marilena Di Valentin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Livshits MY, Turlington MD, Trindle CO, Wang L, Altun Z, Wagenknecht PS, Rack JJ. Picosecond to Nanosecond Manipulation of Excited-State Lifetimes in Complexes with an Fe II to Ti IV Metal-to-Metal Charge Transfer: The Role of Ferrocene Centered Excited States. Inorg Chem 2019; 58:15320-15329. [PMID: 31686500 DOI: 10.1021/acs.inorgchem.9b02316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved transient absorption spectroscopy and computational analysis of D-π-A complexes comprising FeII donors and TiIV acceptors with the general formula RCp2Ti(C2Fc)2 (where RCp = Cp*, Cp, and MeOOCCp) and TMSCp2Ti(C2Fc)(C2R) (where R = Ph or CF3) are reported. The transient absorption spectra are consistent with an FeIII/TiIII metal-to-metal charge-transfer (MMCT) excited state for all complexes. Thus, excited-state decay is assigned to back-electron transfer (BET), the lifetime of which ranges from 18.8 to 41 ps. Though spectroscopic analysis suggests BET should fall into the Marcus inverted regime, the observed kinetics are not consistent with this assertion. TDDFT calculations reveal that the singlet metal-to-metal charge-transfer (1MMCT) excited state for the FeII/TiIV complexes is not purely MMCT in nature but is contaminated with the higher-energy 1Fc (d-d) state. For the diferrocenyl complexes, RCp2Ti(C2Fc)2, the ratio of MMCT to Fc centered character ranges from 57:43 for the Cp* complex to 85:15 for the MeOOCCp complex. For the diferrocenyl and monoferrocenyl complexes investigated herein, the excited-state lifetimes decrease with increased 1Fc character. The effect of CuI coordination was also analyzed by time-resolved transient absorption spectroscopy and reveals the elongation of the excited-state lifetime by 3 orders of magnitude to 63 ns. The transient spectra and TDDFT analysis suggest that the long-lived excited state in Cp2Ti(C2Fc)2·CuX (where X is Cl or Br) is a triplet iron species with an electron arrangement of TiIV-3FeII-CuI.
Collapse
Affiliation(s)
- Maksim Y Livshits
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Michael D Turlington
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - Carl O Trindle
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Lei Wang
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Zikri Altun
- Department of Physics , Marmara University , Göztepe Kampus , 34772 Istanbul , Turkey
| | - Paul S Wagenknecht
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
6
|
Yokota Y, Akiyama S, Kaneda Y, Imanishi A, Inagaki K, Morikawa Y, Fukui KI. Computational investigations of electronic structure modifications of ferrocene-terminated self-assembled monolayers: effects of electron donating/withdrawing functional groups attached on the ferrocene moiety. Phys Chem Chem Phys 2017; 19:32715-32722. [PMID: 29199295 DOI: 10.1039/c7cp07279a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The electrochemical properties of chemically modified electrodes have long been a significant focus of research. Although the electronic states are directly related to the electrochemical properties, there have been only limited systematic efforts to reveal the electronic structures of adsorbed redox molecules with respect to the local environment of the redox center. In this study, density functional theory (DFT) calculations were performed for ferrocene-terminated self-assembled monolayers with different electron-donating abilities, which can be regarded as the simplest class of chemically modified electrodes. We revealed that the local electrostatic potentials, which are changed by the electron donating/withdrawing functional groups at the ferrocene moiety and the dipole field of coadsorbed inert molecules, practically determine the density of states derived from the highest occupied molecular orbital (HOMO) and its vicinities (HOMO-1 and HOMO-2) with respect to the electrode Fermi level. Therefore, to design new, sophisticated electrodes with chemical modification, one should consider not only the electronic properties of the constituent molecules, but also the local electrostatic potentials formed by these molecules and coadsorbed inert molecules.
Collapse
Affiliation(s)
- Yasuyuki Yokota
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Design, synthesis and characterization of ferrocene based V-shaped chromophores with modified nonlinear effect. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Chatterley AS, Lackner F, Pemmaraju CD, Neumark DM, Leone SR, Gessner O. Dissociation Dynamics and Electronic Structures of Highly Excited Ferrocenium Ions Studied by Femtosecond XUV Absorption Spectroscopy. J Phys Chem A 2016; 120:9509-9518. [DOI: 10.1021/acs.jpca.6b09724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam S. Chatterley
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Florian Lackner
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - C. D. Pemmaraju
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel M. Neumark
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephen R. Leone
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Oliver Gessner
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Senthilkumar K, Thirumoorthy K, Dragonetti C, Marinotto D, Righetto S, Colombo A, Haukka M, Palanisami N. Ferrocene–quinoxaline Y-shaped chromophores as fascinating second-order NLO building blocks for long lasting highly active SHG polymeric films. Dalton Trans 2016; 45:11939-43. [DOI: 10.1039/c6dt01590e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first example of a Y-shaped ferrocene quinoxaline derivative with high and stable SHG response in polymeric films is reported.
Collapse
Affiliation(s)
- Kabali Senthilkumar
- Department of Chemistry
- School of Advanced Sciences
- VIT University
- Vellore 632014
- India
| | | | - Claudia Dragonetti
- Department of Chemistry and Centro CIMAINA
- University of Milan
- INSTM-Research Unit
- 20133 Milan
- Italy
| | - Daniele Marinotto
- Department of Chemistry and Centro CIMAINA
- University of Milan
- INSTM-Research Unit
- 20133 Milan
- Italy
| | - Stefania Righetto
- Department of Chemistry and Centro CIMAINA
- University of Milan
- INSTM-Research Unit
- 20133 Milan
- Italy
| | - Alessia Colombo
- Department of Chemistry and Centro CIMAINA
- University of Milan
- INSTM-Research Unit
- 20133 Milan
- Italy
| | - Matti Haukka
- Department of Chemistry
- University of Jyväskylä
- FI-40014 Jyväskylä
- Finland
| | - Nallasamy Palanisami
- Department of Chemistry
- School of Advanced Sciences
- VIT University
- Vellore 632014
- India
| |
Collapse
|
10
|
Donoli A, Bisello A, Cardena R, Crisma M, Orian L, Santi S. Charge Transfer Properties of Benzo[b]thiophene Ferrocenyl Complexes. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandro Donoli
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Annalisa Bisello
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Roberta Cardena
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Crisma
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131 Padova, Italy
| | - Laura Orian
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Saverio Santi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
11
|
Kaiser M, Knör G. Synthesis, Characterization, and Reactivity of Functionalized Trinuclear Iron-Sulfur Clusters - A New Class of Bioinspired Hydrogenase Models. Eur J Inorg Chem 2015; 2015:4199-4206. [PMID: 26512211 PMCID: PMC4612652 DOI: 10.1002/ejic.201500574] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 02/03/2023]
Abstract
The air- and moisture-stable iron-sulfur carbonyl clusters Fe3S2(CO)7(dppm) (1) and Fe3S2(CO)7(dppf) (2) carrying the bisphosphine ligands bis(diphenylphosphanyl)methane (dppm) and 1,1'-bis(diphenylphosphanyl)ferrocene (dppf) were prepared and fully characterized. Two alternative synthetic routes based on different thionation reactions of triiron dodecacarbonyl were tested. The molecular structures of the methylene-bridged compound 1 and the ferrocene-functionalized derivative 2 were determined by single-crystal X-ray diffraction. The catalytic reactivity of the trinuclear iron-sulfur cluster core for proton reduction in solution at low overpotential was demonstrated. These deeply colored bisphosphine-bridged sulfur-capped iron carbonyl systems are discussed as promising candidates for the development of new bioinspired model compounds of iron-based hydrogenases.
Collapse
Affiliation(s)
- Manuel Kaiser
- Institute of Inorganic Chemistry, Johannes Kepler University Linz (JKU) , Altenbergerstr. 69, 4040 Linz, Austria , http://www.anorganik.jku.at
| | - Günther Knör
- Institute of Inorganic Chemistry, Johannes Kepler University Linz (JKU) , Altenbergerstr. 69, 4040 Linz, Austria , http://www.anorganik.jku.at
| |
Collapse
|
12
|
Islam S, Wang F. The d-electrons of Fe in ferrocene: the excess orbital energy spectrum (EOES). RSC Adv 2015. [DOI: 10.1039/c4ra14506b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The EOES (Δεi=εE-Fci −εS-Fci) shows that the orbitals with significantly excess energies are Fe d-electron dominant.
Collapse
Affiliation(s)
- Shawkat Islam
- Molecular Model Discovery Laboratory
- Department of Chemistry and Biotechnology
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Melbourne
| | - Feng Wang
- Molecular Model Discovery Laboratory
- Department of Chemistry and Biotechnology
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Melbourne
| |
Collapse
|
13
|
Singh A, Chowdhury DR, Paul A. A kinetic study of ferrocenium cation decomposition utilizing an integrated electrochemical methodology composed of cyclic voltammetry and amperometry. Analyst 2014; 139:5747-54. [DOI: 10.1039/c4an01325e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Matei A, Constantinescu C, Ion V, Mitu B, Ionita I, Dinescu M, Vasiliu C, Emandi A. Ferrocene, an old molecule with a bright future: Thin films grown by matrix-assisted pulsed laser evaporation for nonlinear optical applications. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.10.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Orian L, Scuppa S, Santi S, Meneghetti M. Large excited state two photon absorptions in the near infrared region of surprisingly stable radical cations of (ferrocenyl)indenes. Phys Chem Chem Phys 2013; 15:12971-6. [PMID: 23817723 DOI: 10.1039/c3cp51257f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiphoton absorptions are important non-linear optical processes which allow us to explore excited states with low energy photons giving rise to new possibilities for photoinduced processes. Among these processes, multiphoton absorptions from excited states are particularly interesting because of the large susceptibilities characteristic of excited states. Here we explore the nonlinear transmission measurements recorded with 9 ns laser pulses at 1064 nm of the radical cations of (2-ferrocenyl)indene and of (2-ferrocenyl)-hexamethylindene, two interesting very stable molecules. The non-linear transmission data can be interpreted with a multiphoton sequence of three photon absorptions, the first being a one photon absorption related to the intramolecular charge transfer and the second a two photon absorption from the excited state created with the first process. The two photon absorption cross section is found to be several orders of magnitude larger than those usually found for two photon absorbing systems excited from the ground state.
Collapse
Affiliation(s)
- Laura Orian
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
16
|
Salzner U. Quantitatively Correct UV-vis Spectrum of Ferrocene with TDB3LYP. J Chem Theory Comput 2013; 9:4064-73. [DOI: 10.1021/ct400322v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ulrike Salzner
- Department of Chemistry, Bilkent University, 06800 Bilkent, Ankara, Turkey
| |
Collapse
|
17
|
|
18
|
Fromager E, Knecht S, Jensen HJA. Multi-configuration time-dependent density-functional theory based on range separation. J Chem Phys 2013; 138:084101. [DOI: 10.1063/1.4792199] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Ultrafast third-order nonlinear optical properties of an azobenzene-containing ionic liquid crystalline polymer. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Scuppa S, Orian L, Donoli A, Santi S, Meneghetti M. Anti-Kasha’s Rule Fluorescence Emission in (2-Ferrocenyl)indene Generated by a Twisted Intramolecular Charge-Transfer (TICT) Process. J Phys Chem A 2011; 115:8344-9. [DOI: 10.1021/jp2021227] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Aloukos P, Iliopoulos K, Couris S, Guldi DM, Sooambar C, Mateo-Alonso A, Nagaswaran PG, Bonifazi D, Prato M. Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03520c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Gu B, Lou K, Chen J, Li Y, Wang HT, Ji W. Excited-state enhancement of third-order optical nonlinearities: photodynamics and characterization. OPTICS EXPRESS 2010; 18:26843-26853. [PMID: 21196961 DOI: 10.1364/oe.18.026843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Based on the simplified five-level rate-equation theory, we investigate the hybrid third-order optical nonlinear processes which combine the instantaneous nonlinearity and the one-photon absorption induced excited-state nonlinearity. We obtain the analytical third-order nonlinear absorption and refraction coefficients originating from the singlet and triplet excited-state effects. We explore the photodynamic process and give the corresponding level diagram in the nanosecond, picosecond, and femtosecond regimes. We develop the pulse-duration-dependent Z-scan theory for characterizing the simultaneous instantaneous nonlinearity and cumulative effect of the excited-state nonlinearity. We also demonstrate the validity of the presented theory to analyze the experimental results.
Collapse
Affiliation(s)
- Bing Gu
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Nankai University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
23
|
Wagnert L, Berg A, Saltsman I, Gross Z, Rozenshtein V. Time-Resolved Electron Paramagnetic Resonance Study of Rhodium(III) Corrole Excited States. J Phys Chem A 2010; 114:2059-72. [DOI: 10.1021/jp909967b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linn Wagnert
- Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, and Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Alexander Berg
- Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, and Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Irena Saltsman
- Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, and Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Zeev Gross
- Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, and Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Vladimir Rozenshtein
- Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, and Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|