1
|
Kołodziejski K, Masiewicz E, Alamri A, Zampetoulas V, Samuel L, Murray G, Lurie DJ, Broche LM, Kruk D. Markers of low field NMR relaxation features of tissues. Sci Rep 2024; 14:24901. [PMID: 39438494 PMCID: PMC11496659 DOI: 10.1038/s41598-024-74055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
This work presents an approach to exploiting Nuclear Magnetic Resonance (NMR) relaxometry data (1H spin-lattice relaxation rates covering the frequency range from below 1 kHz to 10 MHz) for the purpose of differentiating between pathological and reference tissues. Characteristic quantities (markers) that can be obtained in a straightforward manner, not resorting to an advanced analysis of 1H spin-lattice relaxation data, have been identified and compared for pathological and reference colon tissues. Moreover, the relaxation data have been parametrised in terms of Lorentzian spectral densities and the possibility of using the obtained dipolar relaxation constants and correlation times as biomarkers to assess the state of tissues has been discussed. It has also been demonstrated that the relaxation data for the reference and the pathological tissues can be attributed to two groups (for each case). The studies are a step towards exploiting the potential of NMR relaxometry for characterisation of pathological changes in tissues.
Collapse
Affiliation(s)
- Karol Kołodziejski
- Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland
| | - Elzbieta Masiewicz
- Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland
| | - Amnah Alamri
- School of Medicine, Medical Sciences and Nutrition, Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vasileios Zampetoulas
- School of Medicine, Medical Sciences and Nutrition, Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Leslie Samuel
- School of Medicine, Medical Sciences and Nutrition, Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Graeme Murray
- School of Medicine, Medical Sciences and Nutrition, Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - David J Lurie
- School of Medicine, Medical Sciences and Nutrition, Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Lionel M Broche
- School of Medicine, Medical Sciences and Nutrition, Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Danuta Kruk
- Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland
| |
Collapse
|
2
|
Shirley JC, Baiz CR. MANUSCRIPT Local Crowd, Local Probe: Strengths and Drawbacks of Azidohomoalanine as a Site-Specific Crowding Probe. J Phys Chem B 2024; 128:5310-5319. [PMID: 38806061 DOI: 10.1021/acs.jpcb.4c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Every residue on a protein can be characterized by its interaction with water, in lack or in excess, as water is the matrix of biological systems. Infrared spectroscopy and the implementation of local azidohomoalanine (AHA) probes allow us to move beyond an ensemble or surface-driven conceptualization of water behavior and toward a granular, site-specific picture. In this paper, we examined the role of crowding in modulating both global and local behavior on the β-hairpin, TrpZip2 using a combination of Fourier-transform infrared spectroscopy (FTIR) spectroscopy, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics simulations. We found that, at the amino acid level, crowding drove dehydration of both sheet and turn peptide sites as well as free AHA. However, the subpicosecond dynamics showed highly individualized responses based on the local environment. Interestingly, while steady-state FTIR measurements revealed similar responses at the amino-acid level to hard versus soft crowding (dehydration), we found that PEG and glucose had opposite stabilizing and destabilizing effects on the protein secondary structure, emphasizing an important distinction in understanding the impact of crowding on protein structure as well as the role of crowding across length scales.
Collapse
Affiliation(s)
- Joseph C Shirley
- Department of Chemistry, University of Texas, Austin 78712, Texas, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas, Austin 78712, Texas, United States
| |
Collapse
|
3
|
Leal Auccaise AC, Masiewicz E, Kolodziejski K, Kruk D. Dynamic of binary molecular systems-Advantages and limitations of NMR relaxometry. J Chem Phys 2024; 160:144116. [PMID: 38606737 DOI: 10.1063/5.0188257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
1H spin-lattice relaxation studies have been performed for binary systems, including glycerol as the first component and alanine, glycine, and aspartic acid (with different levels of deuteration) as the second one. The relaxation studies have been performed in the frequency range from 10 kHz to 10 MHz vs temperature. A theoretical framework, including all relevant 1H-1H and 1H-2H relaxation pathways, has been formulated. The theory has been exploited for a thorough interpretation of a large set of the experimental data. The importance of the 1H-2H relaxation contributions has been discussed, and the possibility of revealing dynamical properties of individual liquid components in binary liquids has been carefully investigated. As far as the dynamical properties of the specific binary liquids, chosen as an example, are considered, it has been shown that in the presence of the second component (alanine, glycine, and aspartic acid), both molecular fractions undergo dynamics similar to that of glycerol in bulk.
Collapse
Affiliation(s)
- Adriane Consuelo Leal Auccaise
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Elzbieta Masiewicz
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Karol Kolodziejski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Danuta Kruk
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
4
|
Stankiewicz A, Kasparek A, Masiewicz E, Kruk D. Diffusion of Water Molecules on the Surface of Silica Nanoparticles─Insights from Nuclear Magnetic Resonance Relaxometry. J Phys Chem B 2024; 128:1535-1543. [PMID: 38295281 PMCID: PMC10875636 DOI: 10.1021/acs.jpcb.3c06451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
1H spin-lattice nuclear magnetic resonance (NMR) relaxation experiments have been performed for water dispersions of functionalized silica nanoparticles of diameters of 25 and 45 nm. The experiments have been performed in a broad frequency range spanning 3 orders of magnitude, from 10 kHz to 10 MHz, versus temperature, from 313 to 263 K. On the basis of the data, two-dimensional translation diffusion (diffusion close to the nanoparticle surface within a layer of the order of a few diameters of water molecules) has been revealed. The translational correlation times as well as the residence life times on the nanoparticle surface have been determined. It has turned out that the residence lifetime is temperature-independent and is on the order of 5 × 10-6 s for the smaller nanoparticles and by about a factor of 3 longer for the larger ones. The translational correlation time for the case of 25 nm nanoparticles is also temperature-independent and yields about 6 × 10-7 s, while for the dispersion of the larger nanoparticles, the correlation times changed from about 8 × 10-7 s at 313 K to about 1.2 × 10-6 s at 263 K. In addition to the quantitative characterization of the two-dimensional translation diffusion, correlation times associated with bound water molecules have been determined. The studies have also given insights into the population of the bound and diffusing water on the surface water fractions.
Collapse
Affiliation(s)
- Aleksandra Stankiewicz
- Department of Physics and
Biophysics, University of Warmia & Mazury
in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Adam Kasparek
- Department of Physics and
Biophysics, University of Warmia & Mazury
in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Elzbieta Masiewicz
- Department of Physics and
Biophysics, University of Warmia & Mazury
in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Danuta Kruk
- Department of Physics and
Biophysics, University of Warmia & Mazury
in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
5
|
Ishigaki M, Kato Y, Chatani E, Ozaki Y. Variations in the Protein Hydration and Hydrogen-Bond Network of Water Molecules Induced by the Changes in the Secondary Structures of Proteins Studied through Near-Infrared Spectroscopy. J Phys Chem B 2023; 127:7111-7122. [PMID: 37477646 DOI: 10.1021/acs.jpcb.3c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
This study investigated how the secondary structural changes of proteins in aqueous solutions affect their hydration and the hydrogen-bond network of water molecules using near-infrared (NIR) spectroscopy. The aqueous solutions of three types of proteins, i.e., ovalbumin, β-lactoglobulin, and bovine serum albumin, were denatured by heating, and changes in the NIR bands of water reflecting the states of hydrogen bonds induced via protein secondary structural changes were investigated. On heating, the intermolecular hydrogen bonds between water molecules as well as between water and protein molecules were broken, and protein molecules were no longer strongly bound by the surrounding water molecules. Consequently, the denaturation was observed to proceed depending on the thermodynamic properties of the proteins. When the aqueous solutions of proteins were cooled after denaturation, the hydrogen-bond network was reformed. However, the state of protein hydration was changed owing to the secondary structural changes of proteins, and the variation patterns were different depending on the protein species. These changes in protein hydration may be derived from the differences in the surface charges of proteins. The elucidation of the mechanism of protein hydration and the formation of the hydrogen-bond network of water molecules will afford a comprehensive understanding of the protein functioning and dysfunctioning derived from the structural changes in proteins.
Collapse
Affiliation(s)
- Mika Ishigaki
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yoshiki Kato
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
6
|
Water Dynamics in Highly Concentrated Protein Systems-Insight from Nuclear Magnetic Resonance Relaxometry. Int J Mol Sci 2023; 24:ijms24044093. [PMID: 36835511 PMCID: PMC9963861 DOI: 10.3390/ijms24044093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
1H spin-lattice relaxation experiments have been performed for water-Bovine Serum Albumin (BSA) mixtures, including 20%wt and 40%wt of BSA. The experiments have been carried out in a frequency range encompassing three orders of magnitude, from 10 kHz to 10 MHz, versus temperature. The relaxation data have been thoroughly analyzed in terms of several relaxation models with the purpose of revealing the mechanisms of water motion. For this purpose, four relaxation models have been used: the data have been decomposed into relaxation contributions expressed in terms of Lorentzian spectral densities, then three-dimensional translation diffusion has been assumed, next two-dimensional surface diffusion has been considered, and eventually, a model of surface diffusion mediated by acts of adsorption to the surface has been employed. In this way, it has been demonstrated that the last concept is the most plausible. Parameters describing the dynamics in a quantitative manner have been determined and discussed.
Collapse
|
7
|
Gao T, Korb JP, Lukšič M, Mériguet G, Malikova N, Rollet AL. Ion influence on surface water dynamics and proton exchange at protein surfaces - A unified model for transverse and longitudinal NMR relaxation dispersion. J Mol Liq 2022; 367:120451. [PMID: 37790165 PMCID: PMC10544814 DOI: 10.1016/j.molliq.2022.120451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In all biologically relevant media, proteins interact in the presence of surrounding ions, and such interactions are water-mediated. Water molecules play a crucial role in the restructuring of proteins in solution and indeed in their biological activity. Surface water dynamics and proton exchange at protein surfaces is investigated here using NMR relaxometry, for two well-known globular proteins, lysozyme and bovine serum albumin, with particular attention to the role of surface ions. We present a unified model of surface water dynamics and proton exchange, accounting simultaneously for the observed longitudinal and transverse relaxation rates. The most notable effect of salt (0.1 M) concerns the slow surface water dynamics, related to rare water molecules embedded in energy wells on the protein surface. This response is protein-specific. On the other hand, the proton exchange time between labile protein-protons and water-protons at the protein surface seems to be very similar for the two proteins and is insensitive to the addition of salts at the concentration studied.
Collapse
Affiliation(s)
- Tadeja Gao
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Jean-Pierre Korb
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Guillaume Mériguet
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Natalie Malikova
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Anne-Laure Rollet
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| |
Collapse
|
8
|
Hu K, Matsuura H, Shirakashi R. Stochastic Analysis of Molecular Dynamics Reveals the Rotation Dynamics Distribution of Water around Lysozyme. J Phys Chem B 2022; 126:4520-4530. [PMID: 35675630 DOI: 10.1021/acs.jpcb.2c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water dynamics is essential to biochemical processes by mediating all such reactions, including biomolecular degeneration in solutions. To disentangle the molecular-scale distribution of water dynamics around a solute biomolecule, we investigated here the rotational dynamics of water around lysozyme by combining molecular dynamics (MD) simulations and broadband dielectric spectroscopy (BDS). A statistical analysis using the relaxation times and trajectories of every single water molecule was proposed, and the two-dimensional probability distribution of water at a distance from the lysozyme surface with a rotational relaxation time was given. For the observed lysozyme solutions of 34-284 mg/mL, we discovered that the dielectric relaxation time obtained from this distribution agrees well with the measured γ relaxation time, which suggests that rotational self-correlation of water molecules underlies the gigahertz domain of the dielectric spectra. Regardless of protein concentration, water rotational relaxation time versus the distance from the lysozyme surface revealed that the water rotation is severely retarded within 3 Å from the lysozyme surface and is nearly comparable to pure water when farther than 10 Å. The dimension of the first hydration layer was subsequently identified in terms of the relationship between the acceleration of water rotation and the distance from the protein surface.
Collapse
Affiliation(s)
- Kang Hu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Matsuura
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan
| |
Collapse
|
9
|
Laity PR, Holland C. Seeking Solvation: Exploring the Role of Protein Hydration in Silk Gelation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020551. [PMID: 35056868 PMCID: PMC8781151 DOI: 10.3390/molecules27020551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023]
Abstract
The mechanism by which arthropods (e.g., spiders and many insects) can produce silk fibres from an aqueous protein (fibroin) solution has remained elusive, despite much scientific investigation. In this work, we used several techniques to explore the role of a hydration shell bound to the fibroin in native silk feedstock (NSF) from Bombyx mori silkworms. Small angle X-ray and dynamic light scattering (SAXS and DLS) revealed a coil size (radius of gyration or hydrodynamic radius) around 12 nm, providing considerable scope for hydration. Aggregation in dilute aqueous solution was observed above 65 °C, matching the gelation temperature of more concentrated solutions and suggesting that the strength of interaction with the solvent (i.e., water) was the dominant factor. Infrared (IR) spectroscopy indicated decreasing hydration as the temperature was raised, with similar changes in hydration following gelation by freezing or heating. It was found that the solubility of fibroin in water or aqueous salt solutions could be described well by a relatively simple thermodynamic model for the stability of the protein hydration shell, which suggests that the affected water is enthalpically favoured but entropically penalised, due to its reduced (vibrational or translational) dynamics. Moreover, while the majority of this investigation used fibroin from B. mori, comparisons with published work on silk proteins from other silkworms and spiders, globular proteins and peptide model systems suggest that our findings may be of much wider significance.
Collapse
|
10
|
Janc T, Korb JP, Lukšič M, Vlachy V, Bryant RG, Mériguet G, Malikova N, Rollet AL. Multiscale Water Dynamics on Protein Surfaces: Protein-Specific Response to Surface Ions. J Phys Chem B 2021; 125:8673-8681. [PMID: 34342225 DOI: 10.1021/acs.jpcb.1c02513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins function in crowded aqueous environments, interacting with a diverse range of compounds, and among them, dissolved ions. These interactions are water-mediated. In the present study, we combine field-dependent NMR relaxation (NMRD) and theory to probe water dynamics on the surface of proteins in concentrated aqueous solutions of hen egg-white lysozyme (LZM) and bovine serum albumin (BSA). The experiments reveal that the presence of salts (NaCl or NaI) leads to an opposite ion-specific response for the two proteins: an addition of salt to LZM solutions increases water relaxation rates with respect to the salt-free case, while for BSA solutions, a decrease is observed. The magnitude of the change depends on the ion identity. The developed model accounts for the non-Lorentzian shape of the NMRD profiles and reproduces the experimental data over four decades in Larmor frequency (10 kHz to 110 MHz). It is applicable up to high protein concentrations. The model incorporates the observed ion-specific effects via changes in the protein surface roughness, represented by the surface fractal dimension, and the accompanying changes in the surface water residence times. The response is protein-specific, linked to geometrical aspects of the individual protein surfaces, and goes beyond protein-independent Hofmeister-style ordering of ions.
Collapse
Affiliation(s)
- Tadeja Janc
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jean-Pierre Korb
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert G Bryant
- Chemistry Department, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Natalie Malikova
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France
| | | |
Collapse
|
11
|
Parigi G, Ravera E, Fragai M, Luchinat C. Unveiling protein dynamics in solution with field-cycling NMR relaxometry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:85-98. [PMID: 34479712 DOI: 10.1016/j.pnmrs.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Field-cycling NMR relaxometry is a well-established technique that can give information on molecular structure and dynamics of biological systems. It provides the nuclear relaxation rates as a function of the applied magnetic field, starting from fields as low as ~ 10-4 T up to about 1-3 T. The profiles so collected, called nuclear magnetic relaxation dispersion (NMRD) profiles, can be extended to include the relaxation rates at the largest fields achievable with high resolution NMR spectrometers. By exploiting this wide range of frequencies, the NMRD profiles can provide information on motions occurring on time scales from 10-6 to 10-9 s. 1H NMRD measurements have proved very useful also for the characterization of paramagnetic proteins, because they can help characterise a number of parameters including the number, distance and residence time of water molecules coordinated to the paramagnetic center, the reorientation correlation times and the electron spin relaxation time, and the electronic structure at the metal site.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy.
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Tan P, Huang J, Mamontov E, García Sakai V, Merzel F, Liu Z, Ye Y, Hong L. Decoupling between the translation and rotation of water in the proximity of a protein molecule. Phys Chem Chem Phys 2020; 22:18132-18140. [PMID: 32761039 DOI: 10.1039/d0cp02416c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interaction between water and biomacromolecules is of fundamental interest in biophysics, biochemistry and physical chemistry. By combining neutron scattering and molecular dynamics simulations on a perdeuterated protein at a series of hydration levels, we demonstrated that the translational motion of water is slowed down more significantly than its rotation, when water molecules approach the protein molecule. Further analysis of the simulation trajectories reveals that the observed decoupling results from the fact that the translational motion of water is more correlated over space and more retarded by the charged/polar residues and spatial confinement on the protein surface, than the rotation. Moreover, around the stable protein residues (with smaller atomic fluctuations), water exhibits more decoupled dynamics, indicating a connection between the observed translation-rotation decoupling in hydration water and the local stability of the protein molecule.
Collapse
Affiliation(s)
- Pan Tan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China. and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Eugene Mamontov
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
| | - Franci Merzel
- Theory Department, National Institute of Chemistry, SI 1000 Ljubljana, Slovenia
| | - Zhuo Liu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China. and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyang Ye
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China. and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Janc T, Lukšič M, Vlachy V, Rigaud B, Rollet AL, Korb JP, Mériguet G, Malikova N. Ion-specificity and surface water dynamics in protein solutions. Phys Chem Chem Phys 2018; 20:30340-30350. [PMID: 30488933 PMCID: PMC6318450 DOI: 10.1039/c8cp06061d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ion-specific effects at the protein surface are investigated here in light of the changes they infer to surface water dynamics, as observed by 1H NMR relaxation (at 20 MHz). Two well-known proteins, hen egg-white lysozyme (LZM) and bovine serum albumin (BSA), show qualitatively opposite trends in the transverse relaxation rate, R2(1H), along a series of different monovalent salt anions in the solution. Presence of salt ions increases R2(1H) in the case of lysozyme and diminishes it in the case of BSA. The effect magnifies for larger and more polarizable ions. The same contrasting effect between the two proteins is observed for protein-solvent proton exchange. This hints at subtle effects ion-binding might have on the accessibility of water surface sites on the protein. We suggest that the combination of the density of surface charge residues and surface roughness, at the atomic scale, dictates the response to the presence of salt ions and is proper to each protein. Further, a dramatic increase in R2(1H) is found to correlate closely with the formation of protein aggregates. The same ordering of salts in their ability to aggregate lysozyme, as seen previously by cloud point measurements, is reproduced here by R2(1H). 1H NMR relaxation data is supplemented by 35Cl and 14N NMR relaxation for selected salt ions to probe the ion-binding itself.
Collapse
Affiliation(s)
- Tadeja Janc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Water at interfaces governs many processes on the molecular scale from electrochemical and enzymatic reactions to protein folding. Here we focus on water transport through proteinaceous pores that are so narrow that the water molecules cannot overtake each other in the pore. After a short introduction into the single-file transport theory, we analyze experiments in which the unitary water permeability, pf, of water channel proteins (aquaporins, AQPs), potassium channels (KcsA), and antibiotics (gramicidin-A derivatives) has been obtained. A short outline of the underlying methods (scanning electrochemical microscopy, fluorescence correlation spectroscopy, measurements of vesicle light scattering) is also provided. We conclude that pf increases exponentially with a decreasing number NH of hydrogen bond donating or accepting residues in the channel wall. The variance in NH is responsible for a more than hundredfold change in pf. The dehydration penalty at the channel mouth has a smaller effect on pf. The intricate link between pf and the Gibbs activation energy barrier, ΔG‡t, for water flow suggests that conformational transitions of water channels act as a third determinant of pf.
Collapse
Affiliation(s)
- Andreas Horner
- Johannes Kepler University Linz, Institute of Biophysics, Gruberstr. 40, 4020 Linz, Austria.
| | | |
Collapse
|
15
|
Korb JP. Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 104:12-55. [PMID: 29405980 DOI: 10.1016/j.pnmrs.2017.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
The nuclear magnetic relaxation dispersion (NMRD) technique consists of measurement of the magnetic-field dependence of the longitudinal nuclear-spin-lattice relaxation rate 1/T1. Usually, the acquisition of the NMRD profiles is made using a fast field cycling (FFC) NMR technique that varies the magnetic field and explores a very large range of Larmor frequencies (10 kHz < ω0/(2π) <40 MHz). This allows extensive explorations of the fluctuations to which nuclear spin relaxation is sensitive. The FFC technique thus offers opportunities on multiple scales of both time and distance for characterizing the molecular dynamics and transport properties of complex liquids in bulk or embedded in confined environments. This review presents the principles, theories and applications of NMRD for characterizing fundamental properties such as surface correlation times, diffusion coefficients and dynamical surface affinity (NMR wettability) for various confined liquids. The basic longitudinal and transverse relaxation equations are outlined for bulk liquids. The nuclear relaxation of a liquid confined in pores is considered in detail in order to find the biphasic fast exchange relations for a liquid at proximity of a solid surface. The physical-chemistry of liquids at solid surfaces induces striking differences between NMRD profiles of aprotic and protic (water) liquids embedded in calibrated porous disordered materials. A particular emphasis of this review concerns the extension of FFC NMR relaxation to industrial applications. For instance, it is shown that the FFC technique is sufficiently rapid for following the progressive setting of cement-based materials (plasters, cement pastes, concretes). The technique also allows studies of the dynamics of hydrocarbons in proximity of asphaltene nano-aggregates and macro-aggregates in heavy crude oils as a function of the concentration of asphaltenes. It also gives new information on the wettability of petroleum fluids (brine and oil) embedded in shale oil rocks. It is useful for understanding the relations and correlations between NMR relaxation times T1 and T2, diffusion coefficients D, and viscosity η of heavy crude oils. This is of particular importance for interpreting T1, T2, 2D T1-T2 and D-T2 correlation spectra that could be obtained down-hole, thus giving a valuable tool for investigating in situ the molecular dynamics of petroleum fluids. Another domain of interest concerns biological applications. This is of particular importance for studying the complex dynamical spectrum of a folded polymeric structure that may span many decades in frequency or time. A direct NMRD characterization of water diffusional dynamics is presented at the protein interface. NMR experiments using a shuttle technique give results well above the frequency range accessible via the FFC technique; examples of this show protein dynamics over a range from fast and localized motions to slow and delocalized collective motions involving the whole protein. This review ends by an interpretation of the origin of the proton magnetic field dependence of T1 for different biological tissues of animals; this includes a proposal for interpreting in vivo MRI data from human brain at variable magnetic fields, where the FFC relaxation analysis suggests that brain white-matter is distinct from grey-matter, in agreement with diffusion-weighted MRI imaging.
Collapse
Affiliation(s)
- Jean-Pierre Korb
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, Université de Paris Saclay, 91128 Palaiseau Cedex, France; Sorbonne Universités, UPMC Univ. Paris 06, CNRS, PHENIX Laboratory, F-75005 Paris, France.
| |
Collapse
|
16
|
Abstract
The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water.
Collapse
Affiliation(s)
- Damien Laage
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
| | - Thomas Elsaesser
- Max-Born-Institut
für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - James T. Hynes
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| |
Collapse
|
17
|
Faux DA, McDonald PJ, Howlett NC. Nuclear-magnetic-resonance relaxation due to the translational diffusion of fluid confined to quasi-two-dimensional pores. Phys Rev E 2017; 95:033116. [PMID: 28415296 DOI: 10.1103/physreve.95.033116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 01/09/2023]
Abstract
Nuclear-magnetic-resonance (NMR) relaxation experimentation is an effective technique for nondestructively probing the dynamics of proton-bearing fluids in porous media. The frequency-dependent relaxation rate T_{1}^{-1} can yield a wealth of information on the fluid dynamics within the pore provided data can be fit to a suitable spin diffusion model. A spin diffusion model yields the dipolar correlation function G(t) describing the relative translational motion of pairs of ^{1}H spins which then can be Fourier transformed to yield T_{1}^{-1}. G(t) for spins confined to a quasi-two-dimensional (Q2D) pore of thickness h is determined using theoretical and Monte Carlo techniques. G(t) shows a transition from three- to two-dimensional motion with the transition time proportional to h^{2}. T_{1}^{-1} is found to be independent of frequency over the range 0.01-100 MHz provided h≳5 nm and increases with decreasing frequency and decreasing h for pores of thickness h<3 nm. T_{1}^{-1} increases linearly with the bulk water diffusion correlation time τ_{b} allowing a simple and direct estimate of the bulk water diffusion coefficient from the high-frequency limit of T_{1}^{-1} dispersion measurements in systems where the influence of paramagnetic impurities is negligible. Monte Carlo simulations of hydrated Q2D pores are executed for a range of surface-to-bulk desorption rates for a thin pore. G(t) is found to decorrelate when spins move from the surface to the bulk, display three-dimensional properties at intermediate times, and finally show a bulk-mediated surface diffusion (Lévy) mechanism at longer times. The results may be used to interpret NMR relaxation rates in hydrated porous systems in which the paramagnetic impurity density is negligible.
Collapse
Affiliation(s)
- D A Faux
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - P J McDonald
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - N C Howlett
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
18
|
Fink MJ, Syrén PO. Redesign of water networks for efficient biocatalysis. Curr Opin Chem Biol 2017; 37:107-114. [DOI: 10.1016/j.cbpa.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/01/2017] [Accepted: 02/08/2017] [Indexed: 01/28/2023]
|
19
|
Gavrilov Y, Leuchter JD, Levy Y. On the coupling between the dynamics of protein and water. Phys Chem Chem Phys 2017; 19:8243-8257. [DOI: 10.1039/c6cp07669f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The solvation entropy of flexible protein regions is higher than that of rigid regions and contributes differently to the overall thermodynamic stability.
Collapse
Affiliation(s)
- Yulian Gavrilov
- Department of Structural Biology
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Jessica D. Leuchter
- Department of Structural Biology
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yaakov Levy
- Department of Structural Biology
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|
20
|
Rosenberg MM, Redfield AG, Roberts MF, Hedstrom L. Substrate and Cofactor Dynamics on Guanosine Monophosphate Reductase Probed by High Resolution Field Cycling 31P NMR Relaxometry. J Biol Chem 2016; 291:22988-22998. [PMID: 27613871 PMCID: PMC5087720 DOI: 10.1074/jbc.m116.739516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/31/2016] [Indexed: 12/31/2022] Open
Abstract
Guanosine-5'-monophosphate reductase (GMPR) catalyzes the reduction of GMP to IMP and ammonia with concomitant oxidation of NADPH. Here we investigated the structure and dynamics of enzyme-bound substrates and cofactors by measuring 31P relaxation rates over a large magnetic field range using high resolution field cycling NMR relaxometry. Surprisingly, these experiments reveal differences in the low field relaxation profiles for the monophosphate of GMP compared with IMP in their respective NADP+ complexes. These complexes undergo partial reactions that mimic different steps in the overall catalytic cycle. The relaxation profiles indicate that the substrate monophosphates have distinct interactions in E·IMP·NADP+ and E·GMP·NADP+ complexes. These findings were not anticipated by x-ray crystal structures, which show identical interactions for the monophosphates of GMP and IMP in several inert complexes. In addition, the motion of the cofactor is enhanced in the E·GMP·NADP+ complex. Last, the motions of the substrate and cofactor are coordinately regulated; the cofactor has faster local motions than GMP in the deamination complex but is more constrained than IMP in that complex, leading to hydride transfer. These results show that field cycling can be used to investigate the dynamics of protein-bound ligands and provide new insights into how portions of the substrate remote from the site of chemical transformation promote catalysis.
Collapse
Affiliation(s)
| | | | - Mary F Roberts
- the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860
| | - Lizbeth Hedstrom
- From the Departments of Biology,
- Chemistry, Brandeis University, Waltham, Massachusetts 02453 and
| |
Collapse
|
21
|
Steele RM, Korb JP, Ferrante G, Bubici S. New applications and perspectives of fast field cycling NMR relaxometry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:502-9. [PMID: 25855084 DOI: 10.1002/mrc.4220] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/17/2014] [Accepted: 01/19/2015] [Indexed: 05/08/2023]
Abstract
The field cycling NMR relaxometry method (also known as fast field cycling (FFC) when instruments employing fast electrical switching of the magnetic field are used) allows determination of the spin-lattice relaxation time (T1 ) continuously over five decades of Larmor frequency. The method can be exploited to observe the T1 frequency dependence of protons, as well as any other NMR-sensitive nuclei, such as (2) H, (13) C, (31) P, and (19) F in a wide range of substances and materials. The information obtained is directly correlated with the physical/chemical properties of the compound and can be represented as a 'nuclear magnetic resonance dispersion' curve. We present some recent academic and industrial applications showing the relevance of exploiting FFC NMR relaxometry in complex materials to study the molecular dynamics or, simply, for fingerprinting or quality control purposes. The basic nuclear magnetic resonance dispersion features are outlined in representative examples of magnetic resonance imaging (MRI) contrast agents, porous media, proteins, and food stuffs. We will focus on the new directions and perspectives for the FFC technique. For instance, the introduction of the latest Wide Bore FFC NMR relaxometers allows probing, for the first time, of the dynamics of confined surface water contained in the macro-pores of carbonate rock cores. We also evidence the use of the latest field cycling technology with a new cryogen-free variable-field electromagnet, which enhances the range of available frequencies in the 2D T1 -T2 correlation spectrum for separating oil and water in crude oil. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Jean-Pierre Korb
- Physique de la Matière Condensée, Ecole Polytechnique-CNRS, 91128, Palaiseau, France
| | | | | |
Collapse
|
22
|
Bellissent-Funel MC, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia AE. Water Determines the Structure and Dynamics of Proteins. Chem Rev 2016; 116:7673-97. [PMID: 27186992 DOI: 10.1021/acs.chemrev.5b00664] [Citation(s) in RCA: 549] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water is an essential participant in the stability, structure, dynamics, and function of proteins and other biomolecules. Thermodynamically, changes in the aqueous environment affect the stability of biomolecules. Structurally, water participates chemically in the catalytic function of proteins and nucleic acids and physically in the collapse of the protein chain during folding through hydrophobic collapse and mediates binding through the hydrogen bond in complex formation. Water is a partner that slaves the dynamics of proteins, and water interaction with proteins affect their dynamics. Here we provide a review of the experimental and computational advances over the past decade in understanding the role of water in the dynamics, structure, and function of proteins. We focus on the combination of X-ray and neutron crystallography, NMR, terahertz spectroscopy, mass spectroscopy, thermodynamics, and computer simulations to reveal how water assist proteins in their function. The recent advances in computer simulations and the enhanced sensitivity of experimental tools promise major advances in the understanding of protein dynamics, and water surely will be a protagonist.
Collapse
Affiliation(s)
| | - Ali Hassanali
- International Center for Theoretical Physics, Condensed Matter and Statistical Physics 34151 Trieste, Italy
| | - Martina Havenith
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Richard Henchman
- Manchester Institute of Biotechnology The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Pohl
- Johannes Kepler University , Gruberstrasse, 40 4020 Linz, Austria
| | - Fabio Sterpone
- Institut de Biologie Physico-Chimique Laboratoire de Biochimie Théorique 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - David van der Spoel
- Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University , 751 24 Uppsala, Sweden
| | - Yao Xu
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
23
|
Perera AS, Thomas J, Poopari MR, Xu Y. The Clusters-in-a-Liquid Approach for Solvation: New Insights from the Conformer Specific Gas Phase Spectroscopy and Vibrational Optical Activity Spectroscopy. Front Chem 2016; 4:9. [PMID: 26942177 PMCID: PMC4766311 DOI: 10.3389/fchem.2016.00009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 11/30/2022] Open
Abstract
Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as powerful spectroscopic tools for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed in the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones that contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed "clusters-in-a-liquid" approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, VCD, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with the molecular dynamics snapshot approach are discussed and the successes of the seemingly random "ad hoc explicit solvation" reported before are also explained. To further test and improve the "clusters-in-a-liquid" model in practice, future work in terms of conformer specific gas phase spectroscopy of sequential solvation of a chiral solute, matrix isolation VCD measurements of small chiral hydration clusters, and more sophisticated models for the bulk solvent effects would be highly valuable.
Collapse
Affiliation(s)
| | | | | | - Yunjie Xu
- Department of Chemistry, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
24
|
Chemmi H, Petit D, Levitz P, Denoyel R, Galarneau A, Korb JP. Noninvasive Experimental Evidence of the Linear Pore Size Dependence of Water Diffusion in Nanoconfinement. J Phys Chem Lett 2016; 7:393-398. [PMID: 26751162 DOI: 10.1021/acs.jpclett.5b02718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We show that nuclear magnetic relaxation experiments at variable magnetic fields (NMRD) provide noninvasive means for probing the spatial dependence of liquid diffusion close to solid interfaces. These experiments performed on samples of cylindrical and spherical nanopore geometries demonstrate that the average diffusion coefficient parallel to the interface is proportional to the pore radii in different dynamics regimes. A master curve method allows extraction of gradients of diffusion coefficients in proximity of the pore surfaces, indicative of the efficiency of coupling between liquid layers. Due to their selectivity in frequency, NMRD experiments are able to differentiate the different water dynamical events induced by heterogeneous surfaces or composed dynamical processes. This analysis relevant in physical and biological confinements highlights the interplay between the molecular and continuous description of fluid dynamics near interfaces.
Collapse
Affiliation(s)
- Houria Chemmi
- Physique de la Matière Condensée, Ecole Polytechnique-CNRS , Palaiseau 91128, France
| | - Dominique Petit
- Physique de la Matière Condensée, Ecole Polytechnique-CNRS , Palaiseau 91128, France
| | - Pierre Levitz
- Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, CNRS-UMR 8234, Université Pierre et Marie Curie , 4 place Jussieu, 72522 Paris Cedex 5, France
| | - Renaud Denoyel
- MADIREL, Aix-Marseille Université, CNRS-UMR 7246 , Centre de St Jérôme, 13397 Marseille Cedex 20, France
| | - Anne Galarneau
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, ENSCM , 8 rue de l'Ecole Normale, 34296, Montpellier Cedex 05, France
| | - Jean-Pierre Korb
- Physique de la Matière Condensée, Ecole Polytechnique-CNRS , Palaiseau 91128, France
| |
Collapse
|
25
|
Saha D, Supekar S, Mukherjee A. Distribution of Residence Time of Water around DNA Base Pairs: Governing Factors and the Origin of Heterogeneity. J Phys Chem B 2015; 119:11371-81. [DOI: 10.1021/acs.jpcb.5b03553] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Debasis Saha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411021, India
| | - Shreyas Supekar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411021, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411021, India
| |
Collapse
|
26
|
Gerig JT. Further Efforts Toward a Molecular Dynamics Force Field for Simulations of Peptides in 40% Trifluoroethanol–Water. J Phys Chem B 2015; 119:5163-75. [DOI: 10.1021/acs.jpcb.5b01270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John T. Gerig
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93105 United States
| |
Collapse
|
27
|
Fogarty A, Laage D. Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation. J Phys Chem B 2014; 118:7715-29. [PMID: 24479585 PMCID: PMC4103960 DOI: 10.1021/jp409805p] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/27/2013] [Indexed: 02/08/2023]
Abstract
Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra.
Collapse
Affiliation(s)
- Aoife
C. Fogarty
- Department
of Chemistry, UMR ENS-CNRS-UPMC 8640, École
Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | - Damien Laage
- Department
of Chemistry, UMR ENS-CNRS-UPMC 8640, École
Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
28
|
Qin Y, Yang Y, Zhang L, Fowler JD, Qiu W, Wang L, Suo Z, Zhong D. Direct probing of solvent accessibility and mobility at the binding interface of polymerase (Dpo4)-DNA complex. J Phys Chem A 2013; 117:13926-34. [PMID: 24308461 DOI: 10.1021/jp410051w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Water plays essential structural and dynamical roles in protein-DNA recognition through contributing to enthalpic or entropic stabilization of binding complex and by mediating intermolecular interactions and fluctuations for biological function. These interfacial water molecules are confined by the binding partners in nanospace, but in many cases they are highly mobile and exchange with outside bulk solution. Here, we report our studies of the interfacial water dynamics in the binary and ternary complexes of a polymerase (Dpo4) with DNA and an incoming nucleotide using a site-specific tryptophan probe with femtosecond resolution. By systematic comparison of the interfacial water motions and local side chain fluctuations in the apo, binary, and ternary states of Dpo4, we observed that the DNA binding interface and active site are dynamically solvent accessible and the interfacial water dynamics are similar to the surface hydration water fluctuations on picosecond time scales. Our molecular dynamics simulations also show the binding interface full of water molecules and nonspecific weak interactions. Such a fluid binding interface facilitates the polymerase sliding on DNA for fast translocation whereas the spacious and mobile hydrated active site contributes to the low fidelity of the lesion-bypass Y-family DNA polymerase.
Collapse
Affiliation(s)
- Yangzhong Qin
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Victor KG, Korb JP, Bryant RG. Translational dynamics of water at the phospholipid interface. J Phys Chem B 2013; 117:12475-8. [PMID: 24059874 DOI: 10.1021/jp407149h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The residual water-proton magnetic relaxation dispersion profile obtained from suspensions of phospholipid vesicles in deuterium oxide was found to be a logarithmic function of the proton Larmor frequency at high magnetic field strengths, and independent of Larmor frequency at low magnetic field strengths. The residual proton relaxation is caused by dipole-dipole coupling between the residual water proton in otherwise deuterated water and the phospholipid protons. The logarithmic dependence on magnetic field strength is the signature of water-proton diffusive exploration on the interface that is approximately two-dimensionally constrained. Application of relaxation theory for two-dimensional diffusion to the spin-lattice relaxation data yields a translational correlation time of approximately 70 ps for water diffusing in the interface of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles.
Collapse
Affiliation(s)
- Ken G Victor
- Chemistry Department, University of Virginia Charlottesville, Virginia, United States
| | | | | |
Collapse
|
30
|
Diakova G, Korb JP, Bryant RG. The magnetic field dependence of water T1 in tissues. Magn Reson Med 2011; 68:272-7. [PMID: 22144333 DOI: 10.1002/mrm.23229] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/12/2011] [Accepted: 08/31/2011] [Indexed: 11/07/2022]
Abstract
The magnetic field dependence of the composite (1)H(2)O nuclear magnetic resonance signal T(1) was measured for excised samples of rat liver, muscle, and kidney over the field range from 0.7 to 7 T (35-300 MHz) with a nuclear magnetic resonance spectrometer using sample-shuttle methods. Based on extensive measurements on simpler component systems, the magnetic field dependence of T(1) of all tissues studied are readily fitted at Larmor frequencies above 1 MHz with a simple relaxation equation consisting of three contributions: a power law, A*ω(-0.60) related to the interaction of water with long-lived-protein binding sites, a logarithmic term B*τ(d) *log(1+1/(ωτ(d))(2)) related to water diffusion at macromolecular interfacial regions, and a constant term associated with the high frequency limit of water-spin-lattice relaxation. The parameters A and B include the concentration and surface area dependences respectively. The logarithmic diffusion term becomes significant at high magnetic fields and is consistent with rapid translational dynamics at macromolecular surfaces. The data are fitted well with translational correlation times of approximately 15 ps for human brain white matter, but with a B value three times larger than gray matter tissues. This analysis suggests that the water-surface translational correlation time is approximately three times longer than in gray matter.
Collapse
Affiliation(s)
- Galina Diakova
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | | | | |
Collapse
|
31
|
Korb JP, Goddard Y, Pajski J, Diakova G, Bryant RG. Extreme-Values Statistics and Dynamics of Water at Protein Interfaces. J Phys Chem B 2011; 115:12845-58. [DOI: 10.1021/jp2053426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jean-Pierre Korb
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
| | - Yanina Goddard
- Chemistry Department, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jason Pajski
- Chemistry Department, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Galina Diakova
- Chemistry Department, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert G. Bryant
- Chemistry Department, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
32
|
Bhattacharjee N, Biswas P. Structure of hydration water in proteins: a comparison of molecular dynamics simulations and database analysis. Biophys Chem 2011; 158:73-80. [PMID: 21665349 DOI: 10.1016/j.bpc.2011.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 05/07/2011] [Accepted: 05/08/2011] [Indexed: 11/15/2022]
Abstract
Hydration layer water molecules play important structural and functional roles in proteins. Despite being a critical component in biomolecular systems, characterizing the properties of hydration water poses a challenge for both experiments and simulations. In this context we investigate the local structure of hydration water molecules as a function of the distance from the protein and water molecules respectively in 188 high resolution protein structures and compare it with those obtained from molecular dynamics simulations. Tetrahedral order parameter of water in proteins calculated from previous and present simulation studies show that the potential of bulk water overestimates the average tetrahedral order parameter compared to those calculated from crystal structures. Hydration waters are found to be more ordered at a distance between the first and second solvation shell from the protein surface. The values of the order parameter decrease sharply when the water molecules are located very near or far away from the protein surface. At small water-water distance, the values of order parameter of water are very low. The average order parameter records a maximum value at a distance equivalent to the first solvation layer with respect to the water-water radial distribution and asymptotically approaches a constant value at large distances. Results from present analysis will help to get a better insight into structure of hydration water around proteins. The analysis will also help to improve the accuracy of water models on the protein surface.
Collapse
|
33
|
|
34
|
Diakova G, Goddard Y, Korb JP, Bryant RG. Water-proton-spin-lattice-relaxation dispersion of paramagnetic protein solutions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 208:195-203. [PMID: 21134772 PMCID: PMC3026090 DOI: 10.1016/j.jmr.2010.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/29/2010] [Accepted: 11/03/2010] [Indexed: 05/23/2023]
Abstract
The paramagnetic contributions to water-proton-spin-lattice relaxation rate constants in protein systems spin-labeled with nitroxide radicals were re-examined. As noted by others, the strength of the dipolar coupling between water protons and the protein-bound nitroxide radical often appears to be larger than physically reasonable when the relaxation is assumed to be controlled by 3-dimensional diffusive processes in the vicinity of the spin label. We examine the effects of the surface in biasing the diffusive exploration of the radical region and derive a relaxation model that incorporates 2-dimensional dynamics at the interfacial layer. However, we find that the local 2-dimensional dynamics changes the shape of the relaxation dispersion profile but does not necessarily reproduce the low-field relaxation efficiency found by experiment. We examine the contributions of long-range dipolar couplings between the paramagnetic center and protein-bound-water molecules and find that the contributions from these several long range couplings may be competitive with translational contributions because the correlation time for global rotation of the protein is approximately 1000 times longer than that for the diffusive motion of water at the interfacial region. As a result the electron-proton dipolar coupling to rare protein-bound-water-molecule protons may be significant for protein systems that accommodate long-lived-water molecules. Although the estimate of local diffusion coefficients is not seriously compromised because it derives from the Larmor frequency dependence, these several contributions confound efforts to fit relaxation data quantitatively with unique models.
Collapse
Affiliation(s)
| | | | - Jean-Pierre Korb
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128, Palaiseau, France
| | - Robert G. Bryant
- Chemistry Department University of Virginia Charlottesville, VA, USA
| |
Collapse
|
35
|
Kausik R, Han S. Dynamics and state of lipid bilayer-internal water unraveled with solution state 1H dynamic nuclear polarization. Phys Chem Chem Phys 2011; 13:7732-46. [DOI: 10.1039/c0cp02512g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Gnanasekaran R, Xu Y, Leitner DM. Dynamics of water clusters confined in proteins: a molecular dynamics simulation study of interfacial waters in a dimeric hemoglobin. J Phys Chem B 2010; 114:16989-96. [PMID: 21126033 DOI: 10.1021/jp109173t] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water confined in proteins exhibits dynamics distinct from the dynamics of water in the bulk or near the surface of a biomolecule. We examine the water dynamics at the interface of the two globules of the homodimeric hemoglobin from Scapharca inaequivalvis (HbI) by molecular dynamics (MD) simulations, with focus on water-protein hydrogen bond lifetimes and rotational anisotropy of the interfacial waters. We find that relaxation of the waters at the interface of both deoxy- and oxy-HbI, which contain a cluster of 17 and 11 interfacial waters, respectively, is well described by stretched exponentials with exponents from 0.1 to 0.6 and relaxation times of tens to thousands of picoseconds. The interfacial water molecules of oxy-HbI exhibit slower rotational relaxation and hydrogen bond rearrangement than those of deoxy-HbI, consistent with an allosteric transition from unliganded to liganded conformers involving the expulsion of several water molecules from the interface. Though the interfacial waters are translationally and rotationally static on the picosecond time scale, they contribute to fast communication between the globules via vibrations. We find that the interfacial waters enhance vibrational energy transport across the interface by ≈10%.
Collapse
|
37
|
Diakova G, Goddard YA, Korb JP, Bryant RG. Water and backbone dynamics in a hydrated protein. Biophys J 2010; 98:138-46. [PMID: 20085726 PMCID: PMC2800973 DOI: 10.1016/j.bpj.2009.09.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/24/2009] [Accepted: 09/28/2009] [Indexed: 11/26/2022] Open
Abstract
Rotational immobilization of proteins permits characterization of the internal peptide and water molecule dynamics by magnetic relaxation dispersion spectroscopy. Using different experimental approaches, we have extended measurements of the magnetic field dependence of the proton-spin-lattice-relaxation rate by one decade from 0.01 to 300 MHz for (1)H and showed that the underlying dynamics driving the protein (1)H spin-lattice relaxation is preserved over 4.5 decades in frequency. This extension is critical to understanding the role of (1)H(2)O in the total proton-spin-relaxation process. The fact that the protein-proton-relaxation-dispersion profile is a power law in frequency with constant coefficient and exponent over nearly 5 decades indicates that the characteristics of the native protein structural fluctuations that cause proton nuclear spin-lattice relaxation are remarkably constant over this wide frequency and length-scale interval. Comparison of protein-proton-spin-lattice-relaxation rate constants in protein gels equilibrated with (2)H(2)O rather than (1)H(2)O shows that water protons make an important contribution to the total spin-lattice relaxation in the middle of this frequency range for hydrated proteins because of water molecule dynamics in the time range of tens of ns. This water contribution is with the motion of relatively rare, long-lived, and perhaps buried water molecules constrained by the confinement. The presence of water molecule reorientational dynamics in the tens of ns range that are sufficient to affect the spin-lattice relaxation driven by (1)H dipole-dipole fluctuations should make the local dielectric properties in the protein frequency dependent in a regime relevant to catalytically important kinetic barriers to conformational rearrangements.
Collapse
Affiliation(s)
- Galina Diakova
- Chemistry Department, University of Virginia, Charlottesville, Virginia
| | - Yanina A. Goddard
- Chemistry Department, University of Virginia, Charlottesville, Virginia
| | - Jean-Pierre Korb
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, Palaiseau, France
| | - Robert G. Bryant
- Chemistry Department, University of Virginia, Charlottesville, Virginia
| |
Collapse
|