1
|
Morrison KA, Valenzuela BR, Denis EH, Nims MK, Atkinson DA, Clowers BH, Ewing RG. Non-contact vapor detection of illicit drugs via atmospheric flow tube-mass spectrometry. Analyst 2020; 145:6485-6492. [PMID: 32748910 DOI: 10.1039/d0an00691b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time, non-contact detection of illicit drugs is a desirable goal for the interdiction of these controlled substances, but the relatively low vapor pressures of such species present a challenge for trace vapor detection technologies. The introduction of atmospheric flow tube-mass spectrometry (AFT-MS), which has previously been demonstrated to detect gas-phase analytes at low parts-per-quadrillion levels for explosives and organophosphorus compounds, also enables the potential for non-contact drug detection. With AFT-MS, direct vapor detection of cocaine and methamphetamine from ∼5 μg residues at room temperature is demonstrated herein. Furthermore, thermal desorption of low- to sub-picogram levels of cocaine, methamphetamine, fentanyl, and heroin is observed via AFT-MS using a carrier flow rate of several L min-1 of air. These low levels can permit non-contact sampling through collection of vapor, effectively preconcentrating the analyte before desorption and analysis. Quantitative evaluation of the thermal desorption approach has yielded limits of detection (LODs) on the order of 10 fg for cocaine and fentanyl, 100 fg for methamphetamine, and 1.6 pg for heroin. The LOD for heroin was lowered to 300 fg by using tributyl phosphate as a dopant to form a proton-bound heterodimer with heroin. When used with AFT-MS, the intentional formation of specific drug-dopant adducts has the potential to enhance detection limits and selectivity of additional drug species. Species that are prone to form adducts present a challenge to analysis, but that difficulty can be overcome by the intentional addition of a dopant. Molecules unlikely to form adducts will remain essentially unimpacted, but the adduct-forming species will interact with the dopant to compress the analyte signal into a single peak. This approach would be valuable in the application of non-contact screening for illicit substances via vapor collection followed by thermal desorption for analysis.
Collapse
|
2
|
Rincón DA, Cordeiro MNDS, Mosquera RA. On the effects of the basis set superposition error on the change of QTAIM charges in adduct formation. Application to complexes between morphine and cocaine and their main metabolites. RSC Adv 2016. [DOI: 10.1039/c6ra22736h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
QTAIM atomic properties variation upon interaction is analyzed by: (i) deformation; (ii) BSSE estimated by counterpoise method; and (iii) binding.
Collapse
Affiliation(s)
- David A. Rincón
- Departamento de Química Física
- Universidade de Vigo
- 36310 Vigo
- Spain
| | | | | |
Collapse
|
3
|
Johnston AJ, Busch S, Pardo LC, Callear SK, Biggin PC, McLain SE. On the atomic structure of cocaine in solution. Phys Chem Chem Phys 2016; 18:991-9. [DOI: 10.1039/c5cp06090g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A combination of neutron diffraction and computation has been used to investigate the atomic scale structure of cocaine in aqueous solutions.
Collapse
Affiliation(s)
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ)
- Helmholtz-Zentrum Geesthacht GmbH
- 85747 Garching bei München
- Germany
| | - Luis Carlos Pardo
- Departament de Física i Enginyeria Nuclear
- Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB)
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | | | | | | |
Collapse
|
4
|
Model for vaccine design by prediction of B-epitopes of IEDB given perturbations in peptide sequence, in vivo process, experimental techniques, and source or host organisms. J Immunol Res 2014; 2014:768515. [PMID: 24741624 PMCID: PMC3987976 DOI: 10.1155/2014/768515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/17/2013] [Indexed: 11/17/2022] Open
Abstract
Perturbation methods add variation terms to a known experimental solution of one problem to approach a solution for a related problem without known exact solution. One problem of this type in immunology is the prediction of the possible action of epitope of one peptide after a perturbation or variation in the structure of a known peptide and/or other boundary conditions (host organism, biological process, and experimental assay). However, to the best of our knowledge, there are no reports of general-purpose perturbation models to solve this problem. In a recent work, we introduced a new quantitative structure-property relationship theory for the study of perturbations in complex biomolecular systems. In this work, we developed the first model able to classify more than 200,000 cases of perturbations with accuracy, sensitivity, and specificity >90% both in training and validation series. The perturbations include structural changes in >50000 peptides determined in experimental assays with boundary conditions involving >500 source organisms, >50 host organisms, >10 biological process, and >30 experimental techniques. The model may be useful for the prediction of new epitopes or the optimization of known peptides towards computational vaccine design.
Collapse
|
5
|
Duardo-Sánchez A, Munteanu CR, Riera-Fernández P, López-Díaz A, Pazos A, González-Díaz H. Modeling Complex Metabolic Reactions, Ecological Systems, and Financial and Legal Networks with MIANN Models Based on Markov-Wiener Node Descriptors. J Chem Inf Model 2013; 54:16-29. [DOI: 10.1021/ci400280n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aliuska Duardo-Sánchez
- Department
of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, 15071, A Coruña, A Coruña, Spain
- Department of Special Public Law, Financial
and Tributary Law Area, Faculty of Law, University of Santiago de Compostela (USC), 15782, Santiago de Compostela, A Coruña, Spain
| | - Cristian R. Munteanu
- Department
of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, 15071, A Coruña, A Coruña, Spain
| | - Pablo Riera-Fernández
- Department
of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, 15071, A Coruña, A Coruña, Spain
| | - Antonio López-Díaz
- Department of Special Public Law, Financial
and Tributary Law Area, Faculty of Law, University of Santiago de Compostela (USC), 15782, Santiago de Compostela, A Coruña, Spain
| | - Alejandro Pazos
- Department
of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, 15071, A Coruña, A Coruña, Spain
| | - Humberto González-Díaz
- Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
- IKERBASQUE, Basque
Foundation for Science, 48011, Bilbao, Biscay, Spain
| |
Collapse
|
6
|
Density functional theory investigation of cocaine water complexes. J Mol Model 2013; 19:3411-25. [PMID: 23686284 DOI: 10.1007/s00894-013-1866-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
Abstract
Twenty cocaine-water complexes were studied using density functional theory (DFT) B3LYP/6-311++G** level to understand their geometries, energies, vibrational frequencies, charge transfer and topological parameters. Among the 20 complexes, 12 are neutral and eight are protonated in the cocaine-water complexes. Based on the interaction energy, the protonated complexes are more stable than the neutral complexes. In both complexes, the most stable structure involves the hydrogen bond with water at nitrogen atom in the tropane ring and C=O groups in methyl ester. Carbonyl groups in benzoyl and methyl ester is the most reactive site in both forms and it is responsible for the stability order. The calculated topological results show that the interactions involved in the hydrogen bond are electrostatic dominant. Natural bond orbital (NBO) analysis confirms the presence of hydrogen bond and it supports the stability order. Atoms in molecules (AIM) and NBO analysis confirms the C-H···O hydrogen bonds formed between the cocaine-water complexes are blue shifted in nature.
Collapse
|
7
|
Rincón DA, Jorge M, Cordeiro MNDS, Mosquera RA, Borges F. Hydration Structure of Cocaine and its Metabolites: A Molecular Dynamics Study. J SOLUTION CHEM 2011. [DOI: 10.1007/s10953-011-9672-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|