1
|
Magsumov T, Ibraev I, Sedov I. Probing the Conformational Ensemble of the Amyloid Beta 16-22 Fragment with Parallel-Bias Metadynamics. J Phys Chem B 2024; 128:12333-12347. [PMID: 39635892 DOI: 10.1021/acs.jpcb.4c04919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aβ(16-22) is a segment of the Alzheimer's-related β-amyloid peptide that plays a crucial role in its aggregation. This study applies well-tempered parallel-bias metadynamics to investigate the impact of several denaturants and osmolytes on the conformational ensembles of both termini-capped and uncapped Aβ(16-22) monomers. Comparison of the different sets of collective variables in the metadynamics bias shows that using the set of backbone torsional angles results in better and faster convergence of simulations than employing more general structural characteristics of the short peptide. The equilibrium conformational ensembles of the peptides are characterized in pure water and in the presence of TMAO, urea, guanidinium chloride, and trifluoroethanol. In particular, trifluoroethanol and TMAO are found to increase the population of compact peptide conformations, whereas urea and guanidinium chloride favor extended structures. The analysis of the free energy surfaces in the presence of various substances with a comparison of the behavior of the capped and uncapped peptide forms reveals the role of different types of intrapeptide interactions such as salt bridges, hydrophobic contacts, and hydrogen bonds in stabilization of the compact or extended structures. As compounds reducing the abundance of the compact states of Aβ(16-22) and other disordered peptides are likely to suppress their amyloid fibril formation, simulations in the systems with this short peptide may be useful for the virtual screening of such compounds.
Collapse
Affiliation(s)
- Timur Magsumov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Ilya Ibraev
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| |
Collapse
|
2
|
Clemons TD, Egner SA, Grzybek J, Roan JJ, Sai H, Yang Y, Syrgiannis Z, Sun H, Palmer LC, Gianneschi NC, Stupp SI. Hybrid Bonding Bottlebrush Polymers Grafted from a Supramolecular Polymer Backbone. J Am Chem Soc 2024; 146:16085-16096. [PMID: 38831660 DOI: 10.1021/jacs.4c03320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Bottlebrush polymers, macromolecules consisting of dense polymer side chains grafted from a central polymer backbone, have unique properties resulting from this well-defined molecular architecture. With the advent of controlled radical polymerization techniques, access to these architectures has become more readily available. However, synthetic challenges remain, including the need for intermediate purification, the use of toxic solvents, and challenges with achieving long bottlebrush architectures due to backbone entanglements. Herein, we report hybrid bonding bottlebrush polymers (systems integrating covalent and noncovalent bonding of structural units) consisting of poly(sodium 4-styrenesulfonate) (p(NaSS)) brushes grafted from a peptide amphiphile (PA) supramolecular polymer backbone. This was achieved using photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization in water. The structure of the hybrid bonding bottlebrush architecture was characterized using cryogenic transmission electron microscopy, and its properties were probed using rheological measurements. We observed that hybrid bonding bottlebrush polymers were able to organize into block architectures containing domains with high brush grafting density and others with no observable brushes. This finding is possibly a result of dynamic behavior unique to supramolecular polymer backbones, enabling molecular exchange or translational diffusion of monomers along the length of the assemblies. The hybrid bottlebrush polymers exhibited higher solution viscosity at moderate shear, protected supramolecular polymer backbones from disassembly at high shear, and supported self-healing capabilities, depending on grafting densities. Our results demonstrate an opportunity for novel properties in easily synthesized bottlebrush polymer architectures built with supramolecular polymers that might be useful in biomedical applications or for aqueous lubrication.
Collapse
Affiliation(s)
- Tristan D Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Simon A Egner
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph Grzybek
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua J Roan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Yang Yang
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Zois Syrgiannis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hao Sun
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- International Institute of Nanotechnology, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- International Institute of Nanotechnology, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
3
|
Castelletto V, de Mello L, da Silva ER, Seitsonen J, Hamley IW. Comparison of the self-assembly and cytocompatibility of conjugates of Fmoc (9-fluorenylmethoxycarbonyl) with hydrophobic, aromatic, or charged amino acids. J Pept Sci 2024; 30:e3571. [PMID: 38374800 DOI: 10.1002/psc.3571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
The self-assembly in aqueous solution of three Fmoc-amino acids with hydrophobic (aliphatic or aromatic, alanine or phenylalanine) or hydrophilic cationic residues (arginine) is compared. The critical aggregation concentrations were obtained using intrinsic fluorescence or fluorescence probe measurements, and conformation was probed using circular dichroism spectroscopy. Self-assembled nanostructures were imaged using cryo-transmission electron microscopy and small-angle X-ray scattering (SAXS). Fmoc-Ala is found to form remarkable structures comprising extended fibril-like objects nucleating from spherical cores. In contrast, Fmoc-Arg self-assembles into plate-like crystals. Fmoc-Phe forms extended structures, in a mixture of straight and twisted fibrils coexisting with nanotapes. Spontaneous flow alignment of solutions of Fmoc-Phe assemblies is observed by SAXS. The cytocompatibility of the three Fmoc-amino acids was also compared via MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] mitochondrial activity assays. All three Fmoc-amino acids are cytocompatible with L929 fibroblasts at low concentration, and Fmoc-Arg shows cell viability up to comparatively high concentration (0.63 mM).
Collapse
Affiliation(s)
- Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Lucas de Mello
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading, UK
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading, UK
| |
Collapse
|
4
|
Kashyap S, Pal VK, Mohanty S, Roy S. Exploring a Solvent Dependent Strategy to Control Self-Assembling Behavior and Cellular Interaction in Laminin-Mimetic Short Peptide based Supramolecular Hydrogels. Chembiochem 2024; 25:e202300835. [PMID: 38390634 DOI: 10.1002/cbic.202300835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Self-assembled hydrogels, fabricated through diverse non-covalent interactions, have been extensively studied in regenerative medicines. Inspired from bioactive functional motifs of ECM protein, short peptide sequences have shown remarkable abilities to replicate the intrinsic features of the natural extracellular milieu. In this direction, we have fabricated two short hydrophobic bioactive sequences derived from the laminin protein i. e., IKVAV and YIGSR. Based on the substantial hydrophobicity of these peptides, we selected a co-solvent approach as a suitable gelation technique that included different concentrations of DMSO as an organic phase along with an aqueous solution containing 0.1 % TFA. These hydrophobic laminin-based bioactive peptides with limited solubility in aqueous physiological environment showed significantly enhanced solubility with higher DMSO content in water. The enhanced solubility resulted in extensive intermolecular interactions that led to the formation of hydrogels with a higher-order entangled network along with improved mechanical properties. Interestingly, by simply modulating DMSO content, highly tunable gels were accessed in the same gelator domain that displayed differential physicochemical properties. Further, the cellular studies substantiated the potential of these laminin-derived hydrogels in enhancing cell-matrix interactions, thereby reinforcing their applications in tissue engineering.
Collapse
Affiliation(s)
- Shambhavi Kashyap
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Vijay Kumar Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sweta Mohanty
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sangita Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| |
Collapse
|
5
|
Liu B, Li X, Zhang JP, Li X, Yuan Y, Hou GH, Zhang HJ, Zhang H, Li Y, Mezzenga R. Protein Nanotubes as Advanced Material Platforms and Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307627. [PMID: 37921269 DOI: 10.1002/adma.202307627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Protein nanotubes (PNTs) as state-of-the-art nanocarriers are promising for various potential applications both in the food and pharmaceutical industries. Derived from edible starting sources like α-lactalbumin, lysozyme, and ovalbumin, PNTs bear properties of biocompatibility and biodegradability. Their large specific surface area and hydrophobic core facilitate chemical modification and loading of bioactive substances, respectively. Moreover, their enhanced permeability and penetration ability across biological barriers such as intestinal mucus, extracellular matrix, and thrombus clot, make it promising platforms for health-related applications. Most importantly, their simple preparation processes enable large-scale production, supporting applications in the biomedical and nanotechnological fields. Understanding the self-assembly principles is crucial for controlling their morphology, size, and shape, and thus provides the ground to a multitude of applications. Here, the current state-of-the-art of PNTs including their building materials, physicochemical properties, and self-assembly mechanisms are comprehensively reviewed. The advantages and limitations, as well as challenges and prospects for their successful applications in biomaterial and pharmaceutical sectors are then discussed and highlighted. Potential cytotoxicity of PNTs and the need of regulations as critical factors for enabling in vivo applications are also highlighted. In the end, a brief summary and future prospects for PNTs as advanced platforms and delivery systems are included.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100091, P. R. China
| | - Xing Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Ji Peng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Xin Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Yu Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Guo Hua Hou
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hui Juan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hui Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zürich, 8092, Switzerland
- Department of Materials, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
6
|
Abernathy HG, Saha J, Kemp LK, Wadhwani P, Clemons TD, Morgan SE, Rangachari V. De novo amyloid peptides with subtle sequence variations differ in their self-assembly and nanomechanical properties. SOFT MATTER 2023; 19:5150-5159. [PMID: 37386911 DOI: 10.1039/d3sm00604b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Proteinaceous amyloids are well known for their widespread pathological roles but lately have emerged also as key components in several biological functions. The remarkable ability of amyloid fibers to form tightly packed conformations in a cross β-sheet arrangement manifests in their robust enzymatic and structural stabilities. These characteristics of amyloids make them attractive for designing proteinaceous biomaterials for various biomedical and pharmaceutical applications. In order to design customizable and tunable amyloid nanomaterials, it is imperative to understand the sensitivity of the peptide sequence for subtle changes based on amino acid position and chemistry. Here we report our results from four rationally-designed amyloidogenic decapeptides that subtly differ in hydrophobicity and polarity at positions 5 and 6. We show that making the two positions hydrophobic renders the peptide with enhanced aggregation and material properties while introducing polar residues in position 5 dramatically changes the structure and nanomechanical properties of the fibrils formed. A charged residue at position 6, however, abrogates amyloid formation. In sum, we show that subtle changes in the sequence do not make the peptide innocuous but rather sensitive to aggregation, reflected in the biophysical and nanomechanical properties of the fibrils. We conclude that tolerance of peptide amyloid for changes in the sequence, however small they may be, should not be neglected for the effective design of customizable amyloid nanomaterials.
Collapse
Affiliation(s)
- Hannah G Abernathy
- School of Polymer Science & Engineering, University of Southern Mississippi, Hattiesburg, MS, USA.
| | - Jhinuk Saha
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, USA.
| | - Lisa K Kemp
- School of Polymer Science & Engineering, University of Southern Mississippi, Hattiesburg, MS, USA.
| | - Parvesh Wadhwani
- Department of Molecular Biophysics (IBG 2), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany
| | - Tristan D Clemons
- School of Polymer Science & Engineering, University of Southern Mississippi, Hattiesburg, MS, USA.
| | - Sarah E Morgan
- School of Polymer Science & Engineering, University of Southern Mississippi, Hattiesburg, MS, USA.
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, USA.
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
7
|
Gerbelli BB, Filho PLO, Cortez B, Sodré PT, Coutinho-Neto MD, Hamley IW, Seitsonen J, Alves WA. Interaction between glyphosate pesticide and amphiphilic peptides for colorimetric analysis. NANOSCALE ADVANCES 2022; 4:3592-3599. [PMID: 36134354 PMCID: PMC9400510 DOI: 10.1039/d2na00345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
The large-scale use of glyphosate pesticides in food production has attracted attention due to environmental damage and toxicity risks. Several regulatory authorities have established safe limits or concentrations of these pesticides in water and various food products consumed daily. The irreversible inhibition of acetylcholinesterase (AChE) activity is one of the strategies used for pesticide detection. Herein, we found that lipopeptide sequences can act as biomimetic microenvironments of AChE, showing higher catalytic activities than natural enzymes in an aqueous solution, based on IC50 values. These biomolecules contain in the hydrophilic part the amino acids l-proline (P), l-arginine (R), l-tryptophan (W), and l-glycine (G), covalently linked to a hydrophobic part formed by one or two long aliphatic chains. The obtained materials are referred to as compounds 1 and 2, respectively. According to fluorescence assays, 2 is more hydrophobic than 1. The circular dichroism (CD) data present a significant difference in the molar ellipticity values, likely related to distinct conformations assumed by the proline residue in the lipopeptide supramolecular structure in solution. The morphological aspect was further characterized using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM), which showed that compounds 1 and 2 self-assembly into cylindrical and planar core-shell structures, respectively. The mimetic AchE behaviour of lipopeptides was confirmed by Ellman's hydrolysis reaction, where the proline residue in the peptides act as a nucleophilic scavenger of organophosphate pesticides. Moreover, the isothermal titration calorimetry (ITC) experiments revealed that host-guest interactions in both systems were dominated by enthalpically-driven thermodynamics. UV-vis kinetic experiments were performed to assess the inhibition of the lipopeptide catalytic activity and the IC50 values were obtained, and we found that the detection limit correlated with the increase in hydrophobicity of the lipopeptides, implying the micellization process is more favorable.
Collapse
Affiliation(s)
- Barbara B Gerbelli
- University of Reading, Department of Chemistry Reading UK
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| | - Pedro L O Filho
- University of Copenhagen, Niels Bohr Institute Copenhagen Denmark
- Universidade de São Paulo, Instituto de Física São Paulo SP Brazil
| | - Bruna Cortez
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| | - Pedro T Sodré
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| | | | - Ian W Hamley
- University of Reading, Department of Chemistry Reading UK
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University Puumiehenkuja 2 FIN-02150 Espoo Finland
| | - Wendel A Alves
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| |
Collapse
|
8
|
Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Sci Rep 2021; 11:19262. [PMID: 34584131 PMCID: PMC8479085 DOI: 10.1038/s41598-021-98644-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
Amyloid β (Aβ) peptide aggregation plays a central role in Alzheimer's disease (AD) etiology. AD drug candidates have included small molecules or peptides directed towards inhibition of Aβ fibrillogenesis. Although some Aβ-derived peptide fragments suppress Aβ fibril growth, comprehensive analysis of inhibitory potencies of peptide fragments along the whole Aβ sequence has not been reported. The aim of this work is (a) to identify the region(s) of Aβ with highest propensities for aggregation and (b) to use those fragments to inhibit Aβ fibrillogenesis. Structural and aggregation properties of the parent Aβ1-42 peptide and seven overlapping peptide fragments have been studied, i.e. Aβ1-10 (P1), Aβ6-15 (P2), Aβ11-20 (P3), Aβ16-25 (P4), Aβ21-30 (P5), Aβ26-36 (P6), and Aβ31-42 (P7). Structural transitions of the peptides in aqueous buffer have been monitored by circular dichroism and Fourier transform infrared spectroscopy. Aggregation and fibrillogenesis were analyzed by light scattering and thioflavin-T fluorescence. The mode of peptide-peptide interactions was characterized by fluorescence resonance energy transfer. Three peptide fragments, P3, P6, and P7, exhibited exceptionally high propensity for β-sheet formation and aggregation. Remarkably, only P3 and P6 exerted strong inhibitory effect on the aggregation of Aβ1-42, whereas P7 and P2 displayed moderate inhibitory potency. It is proposed that P3 and P6 intercalate between Aβ1-42 molecules and thereby inhibit Aβ1-42 aggregation. These findings may facilitate therapeutic strategies of inhibition of Aβ fibrillogenesis by Aβ-derived peptides.
Collapse
|
9
|
Pelin JN, Edwards-Gayle CJC, Castelletto V, Aguilar AM, Alves WA, Seitsonen J, Ruokolainen J, Hamley IW. Self-Assembly, Nematic Phase Formation, and Organocatalytic Behavior of a Proline-Functionalized Lipopeptide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13671-13679. [PMID: 32134243 PMCID: PMC7146753 DOI: 10.1021/acsami.0c00686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The self-assembly of the amphiphilic lipopeptide PAEPKI-C16 (P = proline, A = alanine, E = glutamic acid, K = lysine, I = isoleucine, and C16 = hexadecyl) was investigated using a combination of microscopy, spectroscopy, and scattering methods and compared to that of C16-IKPEAP with the same (reversed) peptide sequence and the alkyl chain positioned at the N-terminus and lacking a free N-terminal proline residue. The catalytic activity of these peptides was then compared using a model aldol reaction system. For PAEPKI-C16, the cryo-TEM images showed the formation of micrometer-length fibers, which by small-angle X-ray scattering (SAXS) were found to have radii of 2.5-2.6 nm. Spectroscopic analysis shows that these fibers are built from β-sheets. This behavior is in complete contrast to that of C16-IKPEAP, which forms spherical micelles with peptides in a disordered conformation [Hutchinson J. Phys. Chem. B 2019, 123, 613]. In PAEPKI-C16, spontaneous alignment of fibers was observed upon increasing pH, which was accompanied by observed birefringence and anisotropy of SAXS patterns. This shows the ability to form a nematic phase, and unprecedented nematic hydrogel formation was also observed for these lipopeptides at sufficiently high concentrations. SAXS shows retention of an ultrafine (1.7 nm core radius) fibrillar network within the hydrogel. PAEPKI-C16 with free N-terminal proline shows enhanced anti:syn diastereoselectivity and better conversion compared to C16-IKPEAP. The cytotoxicity of PAEPKI-C16 was also lower than that of C16-IKPEAP for both fibroblast and cancer cell lines. These results highlight the sensitivity of lipopeptide properties to the presence of a free proline residue. The spontaneous nematic phase formation by PAEPKI-C16 points to the high anisotropy of its ultrafine fibrillar structure, and the formation of such a phase at low concentrations in aqueous solution may be valuable for future applications.
Collapse
Affiliation(s)
- Juliane N.B.D. Pelin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo André 09210-580, Brazil
| | | | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Andrea M. Aguilar
- Instituto
de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Wendel A. Alves
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo André 09210-580, Brazil
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
10
|
Deng L, Wang Y. Multiscale computational prediction of β-sheet peptide self-assembly morphology. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1738426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Li Deng
- BGI-Qingdao, Qingdao, People’s Republic of China
- State Key Laboratory of Agricultural Genomics, Shenzhen, People’s Republic of China
- China National GeneBank, Shenzhen, People’s Republic of China
| | - Yanting Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Tuning the gelation behavior of short laminin derived peptides via solvent mediated self-assembly. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110483. [DOI: 10.1016/j.msec.2019.110483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
|
12
|
Hosseinpour S, Roeters SJ, Bonn M, Peukert W, Woutersen S, Weidner T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev 2020; 120:3420-3465. [DOI: 10.1021/acs.chemrev.9b00410] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 EP Amsterdam, The Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Bera S, Arad E, Schnaider L, Shaham-Niv S, Castelletto V, Peretz Y, Zaguri D, Jelinek R, Gazit E, Hamley IW. Unravelling the role of amino acid sequence order in the assembly and function of the amyloid-β core. Chem Commun (Camb) 2019; 55:8595-8598. [PMID: 31276123 PMCID: PMC7616937 DOI: 10.1039/c9cc03654g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
The amino acid sequence plays an essential role in amyloid formation. Here, using the central core recognition module of the Aβ peptide and its reverse sequence, we show that although both peptides assemble into β-sheets, their morphologies, kinetics and cell toxicities display marked differences. In addition, the native peptide, but not the reverse one, shows notable affinity towards bilayer lipid model membranes that modulates the aggregation pathways to stabilize the oligomeric intermediate states and function as the toxic agent responsible for neuronal dysfunction.
Collapse
Affiliation(s)
- Santu Bera
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Elad Arad
- Department of Chemistry & Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Lee Schnaider
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Shira Shaham-Niv
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | - Yossef Peretz
- Department of Chemistry & Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Dor Zaguri
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Raz Jelinek
- Department of Chemistry & Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, UK.
| |
Collapse
|
14
|
Abstract
The aggregation of monomeric amyloid β protein (Aβ) peptide into oligomers and amyloid fibrils in the mammalian brain is associated with Alzheimer's disease. Insight into the thermodynamic stability of the Aβ peptide in different polymeric states is fundamental to defining and predicting the aggregation process. Experimental determination of Aβ thermodynamic behavior is challenging due to the transient nature of Aβ oligomers and the low peptide solubility. Furthermore, quantitative calculation of a thermodynamic phase diagram for a specific peptide requires extremely long computational times. Here, using a coarse-grained protein model, molecular dynamics (MD) simulations are performed to determine an equilibrium concentration and temperature phase diagram for the amyloidogenic peptide fragment Aβ16-22 Our results reveal that the only thermodynamically stable phases are the solution phase and the macroscopic fibrillar phase, and that there also exists a hierarchy of metastable phases. The boundary line between the solution phase and fibril phase is found by calculating the temperature-dependent solubility of a macroscopic Aβ16-22 fibril consisting of an infinite number of β-sheet layers. This in silico determination of an equilibrium (solubility) phase diagram for a real amyloid-forming peptide, Aβ16-22, over the temperature range of 277-330 K agrees well with fibrillation experiments and transmission electron microscopy (TEM) measurements of the fibril morphologies formed. This in silico approach of predicting peptide solubility is also potentially useful for optimizing biopharmaceutical production and manufacturing nanofiber scaffolds for tissue engineering.
Collapse
|
15
|
Jasim SB, Li Z, Guest EE, Hirst JD. DichroCalc: Improvements in Computing Protein Circular Dichroism Spectroscopy in the Near-Ultraviolet. J Mol Biol 2018; 430:2196-2202. [DOI: 10.1016/j.jmb.2017.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/24/2017] [Accepted: 12/10/2017] [Indexed: 12/13/2022]
|
16
|
Methods to Characterize the Nanostructure and Molecular Organization of Amphiphilic Peptide Assemblies. Methods Mol Biol 2018; 1777:3-21. [PMID: 29744826 DOI: 10.1007/978-1-4939-7811-3_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methods to characterize the nanostructure and molecular organization of aggregates of peptides such as amyloid or amphiphilic peptide assemblies are reviewed. We discuss techniques to characterize conformation and secondary structure including circular and linear dichroism and FTIR and Raman spectroscopies, as well as fluorescence methods to detect aggregation. NMR spectroscopy methods, especially solid-state NMR measurements to probe beta-sheet packing motifs, are also briefly outlined. Also discussed are scattering methods including X-ray diffraction and small-angle scattering techniques including SAXS (small-angle X-ray scattering) and SANS (small-angle neutron scattering) and dynamic light scattering. Imaging methods are direct methods to uncover features of peptide nanostructures, and we provide a summary of electron microscopy and atomic force microscopy techniques. Selected examples are highlighted showing data obtained using these techniques, which provide a powerful suite of methods to probe ordering from the molecular scale to the aggregate superstructure.
Collapse
|
17
|
Hatip Koc M, Cinar Ciftci G, Baday S, Castelletto V, Hamley IW, Guler MO. Hierarchical Self-Assembly of Histidine-Functionalized Peptide Amphiphiles into Supramolecular Chiral Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7947-7956. [PMID: 28753315 DOI: 10.1021/acs.langmuir.7b01266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Controlling the hierarchical organization of self-assembling peptide amphiphiles into supramolecular nanostructures opens up the possibility of developing biocompatible functional supramolecular materials for various applications. In this study, we show that the hierarchical self-assembly of histidine- (His-) functionalized PAs containing d- or l-amino acids can be controlled by both solution pH and molecular chirality of the building blocks. An increase in solution pH resulted in the structural transition of the His-functionalized chiral PA assemblies from nanosheets to completely closed nanotubes through an enhanced hydrogen-bonding capacity and π-π stacking of imidazole ring. The effects of the stereochemistry and amino acid sequence of the PA backbone on the supramolecular organization were also analyzed by CD, TEM, SAXS, and molecular dynamics simulations. In addition, an investigation of chiral mixtures revealed the differences between the hydrogen-bonding capacities and noncovalent interactions of PAs with d- and l-amino acids.
Collapse
Affiliation(s)
- Meryem Hatip Koc
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, 06800 Turkey
| | - Goksu Cinar Ciftci
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, 06800 Turkey
| | - Sefer Baday
- Applied Informatics Department, Informatics Institute, Istanbul Technical University , Istanbul, 34469 Turkey
| | - Valeria Castelletto
- Department of Chemistry, University of Reading , Whiteknights, Reading RG6 6AD, U.K
| | - Ian W Hamley
- Department of Chemistry, University of Reading , Whiteknights, Reading RG6 6AD, U.K
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, 06800 Turkey
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637 United States
| |
Collapse
|
18
|
Li N, Jang H, Yuan M, Li W, Yun X, Lee J, Du Q, Nussinov R, Hou J, Lal R, Zhang F. Graphite-Templated Amyloid Nanostructures Formed by a Potential Pentapeptide Inhibitor for Alzheimer's Disease: A Combined Study of Real-Time Atomic Force Microscopy and Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6647-6656. [PMID: 28605901 PMCID: PMC7900909 DOI: 10.1021/acs.langmuir.7b00414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly of peptides is closely related to many diseases, including Alzheimer's, Parkinson's, and prion diseases. Understanding the basic mechanism of this assembly is essential for designing ultimate cure and preventive measures. Template-assisted self-assembly (TASA) of peptides on inorganic substrates can provide fundamental understanding of substrate-dependent peptides assemble, including the role of hydrophobic interface on the peptide fibrillization. Here, we have studied the self-assembly process of a potential pentapeptide inhibitor on the surface of highly oriented pyrolytic graphite (HOPG) using real time atomic force microscopy (RT-AFM) as well as molecular dynamics (MD) simulation. Experimental and simulation results show nanofilament formation consisting of β-sheet structures and epitaxial growth on HOPG. Height analysis of the nanofilaments and MD simulation indicate that the peptides adopt a lying down configuration of double-layered antiparallel β-sheets for its epitaxial growth, and the number of nanofilament layers is concentration-dependent. These findings provide new perspective for the mechanism of peptide-based fibrillization in amyloid diseases as well as for designing well-ordered micrometrical and nanometrical structures.
Collapse
Affiliation(s)
- Na Li
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Ming Yuan
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Wanrong Li
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Xiaolin Yun
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Joon Lee
- Materials Science and Engineering Program and Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 United States
| | - Qiqige Du
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jiahua Hou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ratnesh Lal
- Materials Science and Engineering Program and Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 United States
| | - Feng Zhang
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 United States
| |
Collapse
|
19
|
Backofen M, Schwach G, Koechling W, Weiss T, Goepferich A. Polyanion based controlled release system for the GnRH-receptor antagonist degarelix. Eur J Pharm Sci 2017; 104:65-71. [DOI: 10.1016/j.ejps.2017.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
|
20
|
Sonzini S, Stanyon HF, Scherman OA. Decreasing amyloid toxicity through an increased rate of aggregation. Phys Chem Chem Phys 2017; 19:1458-1465. [PMID: 27982149 PMCID: PMC5310522 DOI: 10.1039/c6cp06765d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/24/2016] [Indexed: 01/11/2023]
Abstract
Amyloid β is one of the peptides involved in the onset of Alzheimer's disease, yet the structure of the toxic species and its underlying mechanism remain elusive on account of the dynamic nature of the Aβ oligomerisation process. While it has been reported that incubation of Amyloid β (1-42) sequences (Aβ42) lead to formation of aggregates that vary in morphology and toxicity, we demonstrate that addition of a discrete macrocyclic host molecule, cucurbit[8]uril (CB[8]), substantially reduces toxicity in the neuronal cell line SH-SY5Y. The macrocycle preferentially targets Phe residues in Aβ42 complexing them in a 2 : 1 fashion in neighboring peptide strands. A small but significant structural 'switch' occurs, which induces an increased aggregation rate, suggesting a different cell-uptake mechanism for Aβ42 in the presence of CB[8]. Dramatically increasing the rate of Aβ42 aggregation with CB[8] bypasses the toxic, oligomeric state offering an alternative approach to counter Alzheimer's disease.
Collapse
Affiliation(s)
- Silvia Sonzini
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Helen F Stanyon
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
21
|
Malaspina T, Fileti EE, Colherinhas G. Elucidating the stability of bolaamphiphilic polypeptide nanosheets using atomistic molecular dynamics. Phys Chem Chem Phys 2017; 19:31921-31928. [DOI: 10.1039/c7cp06284b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atomistic molecular dynamics was employed to characterize bolaamphiphilic polypeptides nanosheets.
Collapse
Affiliation(s)
- T. Malaspina
- Instituto de Ciência e Tecnologia
- Universidade Federal de São Paulo
- São José dos Campos
- Brazil
| | - E. E. Fileti
- Instituto de Ciência e Tecnologia
- Universidade Federal de São Paulo
- São José dos Campos
- Brazil
| | - G. Colherinhas
- Departamento de Física
- CEPAE
- Universidade Federal de Goiás
- Goiânia
- Brazil
| |
Collapse
|
22
|
Hamley IW, Burholt S, Hutchinson J, Castelletto V, da Silva ER, Alves W, Gutfreund P, Porcar L, Dattani R, Hermida-Merino D, Newby G, Reza M, Ruokolainen J, Stasiak J. Shear Alignment of Bola-Amphiphilic Arginine-Coated Peptide Nanotubes. Biomacromolecules 2016; 18:141-149. [DOI: 10.1021/acs.biomac.6b01425] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights,
Reading, RG6 6AD, United Kingdom
| | - Samuel Burholt
- Department of Chemistry, University of Reading, Whiteknights,
Reading, RG6 6AD, United Kingdom
| | - Jessica Hutchinson
- Department of Chemistry, University of Reading, Whiteknights,
Reading, RG6 6AD, United Kingdom
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights,
Reading, RG6 6AD, United Kingdom
| | | | - Wendel Alves
- Centro de Ciências
Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Philipp Gutfreund
- Institut Max von Laue - Paul Langevin, CS 20156; 71, Avenue des Martyrs F-38042 Grenoble Cedex 9, France
| | - Lionel Porcar
- Institut Max von Laue - Paul Langevin, CS 20156; 71, Avenue des Martyrs F-38042 Grenoble Cedex 9, France
| | - Rajeev Dattani
- ESRF-The European Synchrotron, 38043 Grenoble
Cedex 9, France
| | | | - Gemma Newby
- ESRF-The European Synchrotron, 38043 Grenoble
Cedex 9, France
| | - Mehedi Reza
- Department of Applied Physics, Aalto University School of Science, Aalto FI-00076, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University School of Science, Aalto FI-00076, Finland
| | - Joanna Stasiak
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, United Kingdom
| |
Collapse
|
23
|
Ekiz MS, Cinar G, Khalily MA, Guler MO. Self-assembled peptide nanostructures for functional materials. NANOTECHNOLOGY 2016; 27:402002. [PMID: 27578525 DOI: 10.1088/0957-4484/27/40/402002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Collapse
Affiliation(s)
- Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800 Turkey
| | | | | | | |
Collapse
|
24
|
Wang J, Tao K, Zhou P, Pambou E, Li Z, Xu H, Rogers S, King S, Lu JR. Tuning self-assembled morphology of the Aβ(16-22) peptide by substitution of phenylalanine residues. Colloids Surf B Biointerfaces 2016; 147:116-123. [PMID: 27497075 DOI: 10.1016/j.colsurfb.2016.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022]
Abstract
The effects of the two phenylalanine (Phe) residues in the blocked Aβ(16-22) peptide on its self-assembly have been investigated by replacing both of them with two cyclohexylalanines (Chas) or two phenylglycines (Phgs). TEM and SANS studies revealed that the flat and wide nanoribbons of Aβ(16-22) were transformed into thin nanotubes when replaced with Chas, and thinner and twisted nanofibrils when replaced with Phgs. The red-shifting degree of characteristic CD peaks suggested an increased twisting in the self-assembly of the derivative peptides, especially in the case of Ac-KLV(Phg)(Phg)AE-NH2. Furthermore, molecular dynamics (MD) simulations also indicated the increasing trend in twisting when Chas or Phgs were substituted for Phes. These results demonstrated that the hydrophobic interactions and spatial conformation between Cha residues were sufficient to cause lateral association of β-sheets to twisted/helical nanoribbons, which finally developed into nanotubes, while for Phg residue, the loss of the rotational freedom of the aromatic ring induced much stronger steric hindrance for the lateral stacking of Ac-KLV(Phg)(Phg)AE-NH2 β-sheets, eventually leading to the nanofibril formation. This study thus demonstrates that both the aromatic structure and the steric conformation of Phe residues are crucial in Aβ(16-22) self-assembly, especially in the significant lateral association of β-sheets.
Collapse
Affiliation(s)
- Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China.
| | - Kai Tao
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Peng Zhou
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Elias Pambou
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Zongyi Li
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China.
| | - Sarah Rogers
- ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QZ, United Kingdom
| | - Stephen King
- ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QZ, United Kingdom
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
25
|
Dasgupta A. Exploring architectures at the nanoscale: the interplay between hydrophobic twin lipid chains and head groups of designer peptide amphiphiles in the self-assembly process and application. SOFT MATTER 2016; 12:4352-4360. [PMID: 27079384 DOI: 10.1039/c6sm00147e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The self-assembly of peptide amphiphiles (PAs) is found to be governed by the hydrophobic interactions induced by the hydrophobic groups/number of alkyl chains and the hydrophilic head groups. In this study, an assessment of the nanostructures formed by the self-assembly of simple twin chained PAs was carried out and compared to their single chain/short analogues. The spectroscopic and microscopic analysis revealed the fact that the twin chained amphiphiles had a high inclination to form β-sheet nanofibers and further towards hydrogelation. The mixture of twin chained PAs also exhibited cooperative self-assembly with improved aggregation behavior, although not much augmentation in β-type structuring was found. In contrast, the single chain/short analogue containing PAs showed very less of β-sheet type structures to a lesser extent and no hydrogelating behavior but resulted in mostly random conformations. The increase in the number or alteration of polar head groups in double chained PAs induced higher extent of β-type conformation and better gelling capability due to the combined hydrophobic effect of the twin chains. The overall results delineated the dominance of hydrophobic interactions. Finally, calcium phosphate bio-mineralization was done in the hydrogels of twin chained PAs with the aim of developing future biomaterials.
Collapse
Affiliation(s)
- Antara Dasgupta
- Department of Chemistry, IIT Guwahati, Guwahati, Assam - 781039, India.
| |
Collapse
|
26
|
Kirkham S, Castelletto V, Hamley IW, Reza M, Ruokolainen J, Hermida-Merino D, Bilalis P, Iatrou H. Self-Assembly of Telechelic Tyrosine End-Capped PEO and Poly(alanine) Polymers in Aqueous Solution. Biomacromolecules 2016; 17:1186-97. [DOI: 10.1021/acs.biomac.6b00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Steven Kirkham
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Ian William Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Mehedi Reza
- Department
of Applied Physics, Aalto University School of Science, P.O. Box 15100 FI-00076 Aalto, Finland
| | - Janne Ruokolainen
- Department
of Applied Physics, Aalto University School of Science, P.O. Box 15100 FI-00076 Aalto, Finland
| | | | - Panayiotis Bilalis
- University of Athens, Department of Chemistry, Panepistimiopolis Zografou, 157 71 Athens, Greece
| | - Hermis Iatrou
- University of Athens, Department of Chemistry, Panepistimiopolis Zografou, 157 71 Athens, Greece
| |
Collapse
|
27
|
Sukenik S, Sapir L, Harries D. Osmolyte Induced Changes in Peptide Conformational Ensemble Correlate with Slower Amyloid Aggregation: A Coarse-Grained Simulation Study. J Chem Theory Comput 2015; 11:5918-28. [DOI: 10.1021/acs.jctc.5b00657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shahar Sukenik
- Institute of Chemistry and
the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
| | - Liel Sapir
- Institute of Chemistry and
the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
| | - Daniel Harries
- Institute of Chemistry and
the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
28
|
Abstract
It is well established that amyloid fibril solubility is protein specific, but how solubility depends on the interactions between the fibril building blocks is not clear. Here we use a simple protein model and perform Monte Carlo simulations to directly measure the solubility of amyloid fibrils as a function of the interaction between the fibril building blocks. Our simulations confirms that the fibril solubility depends on the fibril thickness and that the relationship between the interactions and the solubility can be described by a simple analytical formula. The results presented in this study reveal general rules how side-chain-side-chain interactions, backbone hydrogen bonding, and temperature affect amyloid fibril solubility, which might prove to be a powerful tool to design protein fibrils with desired solubility and aggregation properties in general.
Collapse
Affiliation(s)
- L G Rizzi
- School of Chemistry, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - S Auer
- School of Chemistry, University of Leeds , Leeds LS2 9JT, United Kingdom
| |
Collapse
|
29
|
Li M, Zhao C, Ren J, Qu X. Chiral Metallo-Supramolecular Complex Directed Enantioselective Self-Assembly of β-Sheet Breaker Peptide for Amyloid Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4651-4655. [PMID: 26136296 DOI: 10.1002/smll.201501329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Chiral recognition plays an important role for biomacromolecules involved self-assembly and further affects their biological functions. Herein, it is demonstrated that two chiral metal complexes can enantioselectively bind with Aβ15-20, leading to the formation of different self-assembled nanostructures. With the ability of both metal complexes and Aβ15-20 to inhibit Aβ1-40 aggregation, the NiM@P hybrid particles can act as bifunctional Aβ inhibitors.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
30
|
Sonzini S, Jones ST, Walsh Z, Scherman OA. Simple fluorinated moiety insertion on Aβ 16-23 peptide for stain-free TEM imaging. Analyst 2015; 140:2735-40. [PMID: 25705744 DOI: 10.1039/c4an02278e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Peptide aggregation and fibre formation are one of the major underlying causes of several neurodegenerative disorders such as Alzheimer's disease. During the past decades the characterisation of these fibres has been widely studied in an attempt to further understand the nature of the related diseases and in an effort to develop treatments. Transmission electron microscopy (TEM) is one of the most commonly used techniques to identify these fibres, but requires the use of a radioactive staining agent. The procedure we report overcomes this drawback through simple addition of a fluorinated moiety to a short Amyloid β sequence via solid phase peptide synthesis (SPPS). This method is synthetically straightforward, widely applicable to different aggregation-prone sequences and, above all, allows for stain-free TEM imaging with improved quality compared to standard imaging procedures. The presence of the fluorinated moiety does not cause major changes in the fibre structure or aggregation, but rather serves to dissipate the microscope's electron beam, thus allowing for high contrast and straightforward imaging by TEM.
Collapse
Affiliation(s)
- Silvia Sonzini
- Melville Laboratory for Polymer Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | | | | | | |
Collapse
|
31
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
32
|
Castelletto V, Hamley IW, Reza M, Ruokolainen J. Interactions between lipid-free apolipoprotein-AI and a lipopeptide incorporating the RGDS cell adhesion motif. NANOSCALE 2015; 7:171-178. [PMID: 25406726 DOI: 10.1039/c4nr05072j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers' disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly "nanodisc" structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.
Collapse
Affiliation(s)
- V Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | | | | | | |
Collapse
|
33
|
Angelova A, Angelov B, Mutafchieva R, Lesieur S. Biocompatible Mesoporous and Soft Nanoarchitectures. J Inorg Organomet Polym Mater 2014. [DOI: 10.1007/s10904-014-0143-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Hamley IW, Kirkham S, Dehsorkhi A, Castelletto V, Adamcik J, Mezzenga R, Ruokolainen J, Mazzuca C, Gatto E, Venanzi M, Placidi E, Bilalis P, Iatrou H. Self-Assembly of a Model Peptide Incorporating a Hexa-Histidine Sequence Attached to an Oligo-Alanine Sequence, and Binding to Gold NTA/Nickel Nanoparticles. Biomacromolecules 2014; 15:3412-20. [DOI: 10.1021/bm500950c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Steven Kirkham
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Ashkan Dehsorkhi
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Jozef Adamcik
- Food and Soft Materials Science, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Raffaele Mezzenga
- Food and Soft Materials Science, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Janne Ruokolainen
- Department
of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Claudia Mazzuca
- Department of Chemical Sciences
and Technologies, University of Rome “Tor Vergata”, Via
Ricerca Scientifica 1, 00133 Rome, Italy
| | - Emanuela Gatto
- Department of Chemical Sciences
and Technologies, University of Rome “Tor Vergata”, Via
Ricerca Scientifica 1, 00133 Rome, Italy
| | - Mariano Venanzi
- Department of Chemical Sciences
and Technologies, University of Rome “Tor Vergata”, Via
Ricerca Scientifica 1, 00133 Rome, Italy
| | - Ernesto Placidi
- Institute of Structure of
Matter, CNR, Department of Physics, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Panayiotis Bilalis
- University of Athens, Department of Chemistry, Panepistimiopolis Zografou, 157 71 Athens, Greece
| | - Hermis Iatrou
- University of Athens, Department of Chemistry, Panepistimiopolis Zografou, 157 71 Athens, Greece
| |
Collapse
|
35
|
Li M, Howson SE, Dong K, Gao N, Ren J, Scott P, Qu X. Chiral metallohelical complexes enantioselectively target amyloid β for treating Alzheimer's disease. J Am Chem Soc 2014; 136:11655-63. [PMID: 25062433 DOI: 10.1021/ja502789e] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stereochemistry is a very important issue for the pharmaceutical industry and can determine drug efficacy. The design and synthesis of small molecules, especially chiral molecules, which selectively target and inhibit amyloid-β (Aβ) aggregation, represent valid therapeutic strategies for treatment of Alzheimer's disease (AD). Herein we report that two triple-helical dinuclear metallosupramolecular complexes can act as a novel class of chiral amyloid-β inhibitors. Through targeting α/β-discordant stretches at the early steps of aggregation, these metal complexes can enantioselectively inhibit Aβ aggregation, which is demonstrated using fluorescent living cell-based screening and multiple biophysical and biochemical approaches. To the best of our knowledge, this is the first report of enantioselective inhibition of Aβ aggregation. Intriguingly, as a promising candidate for AD treatment, the chiral metal complex can cross the blood-brain barrier and have superoxide dismutase activity. It is well-known that chiral discrimination is important for understanding chiral drug action. Generally, one enantiomer is pharmaceutically active while the other is inactive or exerts severe side effects. Chiral discrimination should be important for AD treatment. Our work provides new insights into chiral inhibition of Aβ aggregation and opens a new avenue for design and screening of chiral agents as Aβ inhibitors against AD.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Dehsorkhi A, Castelletto V, Hamley IW. Self-assembling amphiphilic peptides. J Pept Sci 2014; 20:453-67. [PMID: 24729276 PMCID: PMC4237179 DOI: 10.1002/psc.2633] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 01/08/2023]
Abstract
The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined.
Collapse
Affiliation(s)
- Ashkan Dehsorkhi
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| | - Valeria Castelletto
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| | - Ian W Hamley
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
37
|
Li S, Sidorov AN, Mehta AK, Bisignano AJ, Das D, Childers WS, Schuler E, Jiang Z, Orlando TM, Berland K, Lynn DG. Neurofibrillar Tangle Surrogates: Histone H1 Binding to Patterned Phosphotyrosine Peptide Nanotubes. Biochemistry 2014; 53:4225-7. [DOI: 10.1021/bi500599a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sha Li
- Departments
of Chemistry, Biology, and Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Anton N. Sidorov
- School
of Chemistry and Biochemistry, ⊥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anil K. Mehta
- Departments
of Chemistry, Biology, and Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Anthony J. Bisignano
- Departments
of Chemistry, Biology, and Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Dibyendu Das
- Departments
of Chemistry, Biology, and Physics, Emory University, Atlanta, Georgia 30322, United States
| | - W. Seth Childers
- Departments
of Chemistry, Biology, and Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Erin Schuler
- Departments
of Chemistry, Biology, and Physics, Emory University, Atlanta, Georgia 30322, United States
| | | | - Thomas M. Orlando
- School
of Chemistry and Biochemistry, ⊥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Keith Berland
- Departments
of Chemistry, Biology, and Physics, Emory University, Atlanta, Georgia 30322, United States
| | - David G. Lynn
- Departments
of Chemistry, Biology, and Physics, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
38
|
|
39
|
Abstract
The self-assembly of different classes of peptide, including cyclic peptides, amyloid peptides and surfactant-like peptides into nanotube structures is reviewed. The modes of self-assembly are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD (UK).
| |
Collapse
|
40
|
Dzwolak W. Chirality and Chiroptical Properties of Amyloid Fibrils. Chirality 2014; 26:580-7. [DOI: 10.1002/chir.22335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/28/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Wojciech Dzwolak
- Biological and Chemical Research Centre, Department of Chemistry; University of Warsaw; Warsaw Poland
| |
Collapse
|
41
|
Amit M, Ashkenasy N. Electronic Properties of Amyloid β-Based Peptide Filaments with Different Non-Natural Heterocyclic Side Chains. Isr J Chem 2014. [DOI: 10.1002/ijch.201400025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Castelletto V, Gouveia RJ, Connon CJ, Hamley IW. Self-assembly and bioactivity of a polymer/peptide conjugate containing the RGD cell adhesion motif and PEG. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Mendes AC, Baran ET, Reis RL, Azevedo HS. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:582-612. [DOI: 10.1002/wnan.1238] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/03/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Ana C. Mendes
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Erkan T. Baran
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Helena S. Azevedo
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
44
|
Chaitanya NK, Paul A, Saha A, Mandal B. Modulation of Aggregation Propensity of Aβ38 by Site Specific Multiple Proline Substitution. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9360-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Abstract
Peptide amphiphiles are molecules containing a peptide segment covalently bonded to a hydrophobic tail and are known to self-assemble in water into supramolecular nanostructures with shape diversity ranging from spheres to cylinders, twisted ribbons, belts, and tubes. Understanding the self-assembly mechanisms to control dimensions and shapes of the nanostructures remains a grand challenge. We report here on a systematic study of peptide amphiphiles containing valine-glutamic acid dimeric repeats known to promote self-assembly into belt-like flat assemblies. We find that the lateral growth of the assemblies can be controlled in the range of 100 nm down to 10 nm as the number of dimeric repeats is increased from two to six. Using circular dichroism, the degree of β-sheet twisting within the supramolecular assemblies was found to be directly proportional to the number of dimeric repeats in the PA molecule. Interestingly, as twisting increased, a threshold is reached where cylinders rather than flat assemblies become the dominant morphology. We also show that in the belt regime, the width of the nanostructures can be decreased by raising the pH to increase charge density and therefore electrostatic repulsion among glutamic acid residues. The control of size and shape of these nanostructures should affect their functions in biological signaling and drug delivery.
Collapse
Affiliation(s)
- Tyson J Moyer
- Department of Materials Science, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
46
|
Hamley IW, Dehsorkhi A, Castelletto V. Coassembly in binary mixtures of peptide amphiphiles containing oppositely charged residues. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5050-9. [PMID: 23534557 DOI: 10.1021/la400163q] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The self-assembly in water of designed peptide amphiphile (PA) C16-ETTES containing two anionic residues and its mixtures with C16-KTTKS containing two cationic residues has been investigated. Multiple spectroscopy, microscopy, and scattering techniques are used to examine ordering extending from the β-sheet structures up to the fibrillar aggregate structure. The peptide amphiphiles both comprise a hexadecyl alkyl chain and a charged pentapeptide headgroup containing two charged residues. For C16-ETTES, the critical aggregation concentration was determined by fluorescence experiments. FTIR and CD spectroscopy were used to examine β-sheet formation. TEM revealed highly extended tape nanostructures with some striped regions corresponding to bilayer structures viewed edge-on. Small-angle X-ray scattering showed a main 5.3 nm bilayer spacing along with a 3 nm spacing. These spacings are assigned respectively to predominant hydrated bilayers and a fraction of dehydrated bilayers. Signs of cooperative self-assembly are observed in the mixtures, including reduced bundling of peptide amphiphile aggregates (extended tape structures) and enhanced β-sheet formation.
Collapse
Affiliation(s)
- I W Hamley
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading, UK
| | | | | |
Collapse
|
47
|
Castelletto V, Gouveia RM, Connon CJ, Hamley IW. New RGD-peptide amphiphile mixtures containing a negatively charged diluent. Faraday Discuss 2013; 166:381-97. [DOI: 10.1039/c3fd00064h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Dehn S, Castelletto V, Hamley IW, Perrier S. Altering peptide fibrillization by polymer conjugation. Biomacromolecules 2012; 13:2739-47. [PMID: 22770360 DOI: 10.1021/bm3007117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A strategy is presented that exploits the ability of synthetic polymers of different nature to disturb the strong self-assembly capabilities of amyloid based β-sheet forming peptides. Following a convergent approach, the peptides of interest were synthesized via solid-phase peptide synthesis (SPPS) and the polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by a copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) to generate the desired peptide-polymer conjugates. This study focuses on a modified version of the core sequence of the β-amyloid peptide (Aβ), Aβ(16-20) (KLVFF). The influence of attaching short poly(N-isopropylacrylamide) and poly(hydroxyethylacrylate) to the peptide sequences on the self-assembly properties of the hybrid materials were studied via infrared spectroscopy, TEM, circular dichroism and SAXS. The findings indicate that attaching these polymers disturbs the strong self-assembly properties of the biomolecules to a certain degree and permits to influence the aggregation of the peptides based on their β-sheets forming abilities. This study presents an innovative route toward targeted and controlled assembly of amyloid-like fibers to drive the formation of polymeric nanomaterials.
Collapse
Affiliation(s)
- Sabrina Dehn
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | | | | | | |
Collapse
|
49
|
Masters CL, Selkoe DJ. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:a006262. [PMID: 22675658 PMCID: PMC3367542 DOI: 10.1101/cshperspect.a006262] [Citation(s) in RCA: 395] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Progressive cerebral deposition of the amyloid β-protein (Aβ) in brain regions serving memory and cognition is an invariant and defining feature of Alzheimer disease. A highly similar but less robust process accompanies brain aging in many nondemented humans, lower primates, and some other mammals. The discovery of Aβ as the subunit of the amyloid fibrils in meningocerebral blood vessels and parenchymal plaques has led to innumerable studies of its biochemistry and potential cytotoxic properties. Here we will review the discovery of Aβ, numerous aspects of its complex biochemistry, and current attempts to understand how a range of Aβ assemblies, including soluble oligomers and insoluble fibrils, may precipitate and promote neuronal and glial alterations that underlie the development of dementia. Although the role of Aβ as a key molecular factor in the etiology of Alzheimer disease remains controversial, clinical trials of amyloid-lowering agents, reviewed elsewhere in this book, are poised to resolve the question of its pathogenic primacy.
Collapse
Affiliation(s)
- Colin L Masters
- The Mental Health Research Institute, The University of Melbourne, Parkville 3010, Australia.
| | | |
Collapse
|
50
|
Childers WS, Anthony NR, Mehta AK, Berland KM, Lynn DG. Phase networks of cross-β peptide assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6386-6395. [PMID: 22439620 DOI: 10.1021/la300143j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recent evidence suggests that simple peptides can access diverse amphiphilic phases, and that these structures underlie the robust and widely distributed assemblies implicated in nearly 40 protein misfolding diseases. Here we exploit a minimal nucleating core of the Aβ peptide of Alzheimer's disease to map its morphologically accessible phases that include stable intermolecular molten particles, fibers, twisted and helical ribbons, and nanotubes. Analyses with both fluorescence lifetime imaging microscopy (FLIM) and transmission electron microscopy provide evidence for liquid-liquid phase separations, similar to the coexisting dilute and dense protein-rich liquid phases so critical for the liquid-solid transition in protein crystallization. We show that the observed particles are critical for transitions to the more ordered cross-β peptide phases, which are prevalent in all amyloid assemblies, and identify specific conditions that arrest assembly at the phase boundaries. We have identified a size dependence of the particles in order to transition to the para-crystalline phase and a width of the cross-β assemblies that defines the transition between twisted fibers and helically coiled ribbons. These experimental results reveal an interconnected network of increasing molecularly ordered cross-β transitions, greatly extending the initial computational models for cross-β assemblies.
Collapse
Affiliation(s)
- W Seth Childers
- Center for Fundamental and Applied Molecular Evolution, NSF/NASA Center for Chemical Evolution, Departments of Chemistry and Biology, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|