1
|
Saberi M, Dekkers R, Passerini L, Huber M, Overhand M, Ubbink M. Terminal spin labeling of xylotriose strongly affects interactions in the active site of xylanase BcX. JOURNAL OF BIOMOLECULAR NMR 2025:10.1007/s10858-025-00459-w. [PMID: 40072774 DOI: 10.1007/s10858-025-00459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Paramagnetic probes provide long-range distance information and report on minor conformations of biomacromolecules. However, it is important to realize that any probe can affect the system of interest. Here, we report on the effects of attaching a small nitroxide spin label [TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl] to xylotriose, a substrate of the enzyme xylanase from Bacillus circulans (BcX). BcX has a long and narrow active site cleft accommodating six xylose units and a secondary binding site on its surface. The aim of the study was to probe the interactions of the substrate with the enzyme using paramagnetic relaxation enhancements (PREs). Binding of the substrate to the surface exposed secondary binding site resulted in strong and localized PREs, indicative of well-defined binding. The xylotriose with diamagnetic control tag was still able to bind the active site cleft, though the rate of exchange was reduced relative to that of untagged xylotriose. The substrate with the paramagnetic TEMPO was not able to bind inside the active site cleft. Also, additional interactions on another surface location showed differences between the paramagnetic substrate and the diamagnetic control, despite the minimal chemical differences between TEMPO modified xylotriose and its reduced, diamagnetic counterpart. Our findings underscore the sensitivity of BcX substrate binding to minor substrate modifications. This study serves as a reminder that any probe, including the attachment of a small paramagnetic group, can affect the behavior of the system under investigation. Even the chemical difference between a paramagnetic tag and its diamagnetic control can result in differences in the molecular interactions.
Collapse
Affiliation(s)
- Mahin Saberi
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - René Dekkers
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Leonardo Passerini
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Mark Overhand
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
2
|
Queen A, Bhutto HN, Yousuf M, Syed MA, Hassan MI. Carbonic anhydrase IX: A tumor acidification switch in heterogeneity and chemokine regulation. Semin Cancer Biol 2022; 86:899-913. [PMID: 34998944 DOI: 10.1016/j.semcancer.2022.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
The primary physiological process of respiration produces carbon dioxide (CO2) that reacts with water molecules which subsequently liberates bicarbonate (HCO-3) and protons. Carbonic anhydrases (CAs) are the primary catalyst involved in this conversion. More than 16 isoforms of human CAs show organ or subcellular specific activity. Dysregulation of each CA is associated with multiple pathologies. Out of these members, the overexpression of membrane-bound carbonic anhydrase IX (CAIX) is associated explicitly with hypoxic tumors or various solid cancers. CAIX helps tumors deal with higher CO2 by sequestering it with bicarbonate ions and helping cancer cells to grow in a comparatively hypoxic or acidic environment, thus acting as a pH adaptation switch. CAIX-mediated adaptations in cancer cells include angiogenesis, metabolic alterations, tumor heterogeneity, drug resistance, and regulation of cancer-specific chemokines. This review comprehensively collects and describe the cancer-specific expression mechanism and role of CAIX in cancer growth, progression, heterogeneity, and its structural insight to develop future combinatorial targeted cancer therapies.
Collapse
Affiliation(s)
- Aarfa Queen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Humaira Naaz Bhutto
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
3
|
Sheff JG, Kelly JF, Robotham A, Sulea T, Malenfant F, L'Abbé D, Duchesne M, Pelletier A, Lefebvre J, Acel A, Parat M, Gosselin M, Wu C, Fortin Y, Baardsnes J, Van Faassen H, Awrey S, Chafe SC, McDonald PC, Dedhar S, Lenferink AEG. Hydrogen-deuterium exchange mass spectrometry reveals three unique binding responses of mAbs directed to the catalytic domain of hCAIX. MAbs 2021; 13:1997072. [PMID: 34812124 PMCID: PMC8632303 DOI: 10.1080/19420862.2021.1997072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human carbonic anhydrase (hCAIX), an extracellular enzyme that catalyzes the reversible hydration of CO2, is often overexpressed in solid tumors. This enzyme is instrumental in maintaining the survival of cancer cells in a hypoxic and acidic tumor microenvironment. Absent in most normal tissues, hCAIX is a promising therapeutic target for detection and treatment of solid tumors. Screening of a library of anti-hCAIX monoclonal antibodies (mAbs) previously identified three therapeutic candidates (mAb c2C7, m4A2 and m9B6) with distinct biophysical and functional characteristics. Selective binding to the catalytic domain was confirmed by yeast surface display and isothermal calorimetry, and deeper insight into the dynamic binding profiles of these mAbs upon binding were highlighted by bottom-up hydrogen-deuterium exchange mass spectrometry (HDX-MS). Here, a conformational and allosterically silent epitope was identified for the antibody-drug conjugate candidate c2C7. Unique binding profiles are described for both inhibitory antibodies, m4A2 and m9B6. M4A2 reduces the ability of the enzyme to hydrate CO2 by steric gating at the entrance of the catalytic cavity. Conversely, m9B6 disrupts the secondary structure that is necessary for substrate binding and hydration. The synergy of these two inhibitory mechanisms is demonstrated in in vitro activity assays and HDX-MS. Finally, the ability of m4A2 to modulate extracellular pH and intracellular metabolism is reported. By highlighting three unique modes by which hCAIX can be targeted, this study demonstrates both the utility of HDX-MS as an important tool in the characterization of anti-cancer biotherapeutics, and the underlying value of CAIX as a therapeutic target.
Collapse
Affiliation(s)
- Joey G Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - John F Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Félix Malenfant
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Denis L'Abbé
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Mélanie Duchesne
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Alex Pelletier
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Jean Lefebvre
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Andrea Acel
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Marie Parat
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Mylene Gosselin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Cunle Wu
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Yves Fortin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Henk Van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Shannon Awrey
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Shawn C Chafe
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Anne E G Lenferink
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
5
|
Takashima H, Fukuda M, Nakagaki F, Ogata T, Tsukahara K. Photoinduced Electron-Transfer Reactions of Carbonic Anhydrase Inhibitor Containing Tris(2,2′-bipyridine)ruthenium(II) Analogue. J Phys Chem B 2013; 117:2625-35. [DOI: 10.1021/jp310604w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hiroshi Takashima
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Misa Fukuda
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Fumie Nakagaki
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Tomoko Ogata
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Keiichi Tsukahara
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
6
|
Alterio V, Di Fiore A, D'Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012; 112:4421-68. [PMID: 22607219 DOI: 10.1021/cr200176r] [Citation(s) in RCA: 971] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | | | |
Collapse
|
7
|
Houriez C, Masella M, Ferré N. Structural and atoms-in-molecules analysis of hydrogen-bond network around nitroxides in liquid water. J Chem Phys 2010; 133:124508. [DOI: 10.1063/1.3478999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
8
|
Maresca A, Supuran CT. Coumarins incorporating hydroxy- and chloro-moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg Med Chem Lett 2010; 20:4511-4. [DOI: 10.1016/j.bmcl.2010.06.040] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 12/18/2022]
|
9
|
Innocenti A, Durdagi S, Doostdar N, Amanda Strom T, Barron AR, Supuran CT. Nanoscale enzyme inhibitors: Fullerenes inhibit carbonic anhydrase by occluding the active site entrance. Bioorg Med Chem 2010; 18:2822-8. [DOI: 10.1016/j.bmc.2010.03.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/04/2010] [Accepted: 03/11/2010] [Indexed: 01/17/2023]
|
10
|
Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of transmembrane isoforms IX, XII, and XIV with less investigated anions including trithiocarbonate and dithiocarbamate. Bioorg Med Chem Lett 2010; 20:1548-50. [DOI: 10.1016/j.bmcl.2010.01.081] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 12/29/2022]
|
11
|
Maresca A, Temperini C, Pochet L, Masereel B, Scozzafava A, Supuran CT. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J Med Chem 2010; 53:335-44. [PMID: 19911821 DOI: 10.1021/jm901287j] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coumarin derivatives were recently shown to constitute a totally new class of inhibitors of the zinc metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), being hydrolyzed within the CA active site to 2-hydroxycinnamic acids. We explore here a new series of variously substituted coumarins and a thiocoumarin for their interaction with 13 mammalian CA isoforms, detecting low nanomolar and isoform selective inhibitors. The mechanism of action of this class of inhibitors is delineated in detail by resolving the X-ray crystal structure of CA II in complex with trans-2-hydroxy-cinnamic acid, the in situ hydrolysis product of simple coumarin. Thiocoumarins also act as efficient CAIs, similarly to coumarins. The versatility of the (thio)coumarin chemistry, the cis-trans isomerization evidenced here, and easy derivatization of the (thio)coumarin rings, coupled with the nanomolar inhibition range of several isozymes, afford isoform-selective CAIs with various biomedical applications, which render these classes of compounds superior to the clinically used sulfonamides.
Collapse
Affiliation(s)
- Alfonso Maresca
- Universita degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | | | | | | | | | | |
Collapse
|
12
|
Supuran CT. Carbonic anhydrases as drug targets. Curr Pharm Des 2008; 20:3467-74. [PMID: 18336304 DOI: 10.1016/j.bmcl.2010.05.009] [Citation(s) in RCA: 533] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 12/20/2022]
Abstract
Carbonic anhydrases (CAs), the metalloenzymes that catalyze the conversion between carbon dioxide and bicarbonate, continue to be surprising targets, as many exciting new discoveries related to them emerge constantly. This is indeed unprecedented as these are quite "old" enzymes, which were discovered in 1933, and thoroughly investigated since then as drug targets. Furthermore, their inhibitors are in clinical use since the 50s. However, in the last years, a host of interesting reports were made regarding the catalytic/inhibition mechanism as well as isolation/characterization of new isozymes belonging to this family, as well as of CAs of non-vertebrate origin.
Collapse
|