1
|
Matsugi A, Suzuki S. Ring Growth Mechanism in the Reaction between Fulvenallenyl and Cyclopentadienyl Radicals. J Phys Chem A 2024; 128:1327-1338. [PMID: 38351621 DOI: 10.1021/acs.jpca.3c07441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Recombination between resonance-stabilized hydrocarbon radicals is an important class of reactions that contribute to molecular growth chemistry in combustion. In the present study, the ring growth mechanism in the reaction between fulvenallenyl (C7H5) and cyclopentadienyl (C5H5) radicals is investigated computationally. The reaction pathways are explored by quantum chemical calculations, and the phenomenological and steady-state rate constants are determined by solving the multiple-well master equations. The primary reaction routes following the recombination between the two radicals are found to be as follows: formation of the adducts, isomerization by hydrogen shift reactions, cyclization to form tricyclic compounds, and their isomerization and dissociation reactions, leading to the formation of acenaphthylene. The overall process can be approximately represented as C7H5 + C5H5 → acenaphthylene + 2H with the bimolecular rate constant of about 4 × 10-12 cm3 molecule-1 s-1. A reaction mechanism consisting of 20 reactions, including the formation, isomerization, and dissociation processes of major intermediate species, is proposed for use in kinetic modeling.
Collapse
Affiliation(s)
- Akira Matsugi
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Shunsuke Suzuki
- Research Institute for Energy Conversion, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba 305-8564, Japan
| |
Collapse
|
2
|
Martí C, Michelsen HA, Najm HN, Zádor J. Comprehensive Kinetics on the C 7H 7 Potential Energy Surface under Combustion Conditions. J Phys Chem A 2023; 127:1941-1959. [PMID: 36802584 DOI: 10.1021/acs.jpca.2c08035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The automated kinetics workflow code, KinBot, was used to explore and characterize the regions of the C7H7 potential energy surface that are relevant to combustion environments and especially soot inception. We first explored the lowest-energy region, which includes the benzyl, fulvenallene + H, and cyclopentadienyl + acetylene entry points. We then expanded the model to include two higher-energy entry points, vinylpropargyl + acetylene and vinylacetylene + propargyl. The automated search was able to uncover the pathways from the literature. In addition, three important new routes were discovered: a lower-energy pathway connecting benzyl with vinylcyclopentadienyl, a decomposition mechanism from benzyl that results in side-chain hydrogen atom loss to produce fulvenallene + H, and shorter and lower energy routes to the dimethylene-cyclopentenyl intermediates. We systematically reduced the extended model to a chemically relevant domain composed of 63 wells, 10 bimolecular products, 87 barriers, and 1 barrierless channel and constructed a master equation using the CCSD(T)-F12a/cc-pVTZ//ωB97X-D/6-311++G(d,p) level of theory to provide rate coefficients for chemical modeling. Our calculated rate coefficients show excellent agreement with measured ones. We also simulated concentration profiles and calculated branching fractions from the important entry points to provide an interpretation of this important chemical landscape.
Collapse
Affiliation(s)
- Carles Martí
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Hope A Michelsen
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Habib N Najm
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
3
|
Photodissociation dynamics of xylene isomers C6H4(CH3)2 at 157 nm using an ultracompact velocity map imaging spectrometer – The C7H7 channel. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Reilly NJ, Kokkin DL, Ward ML, Flores J, Ross SD, McCaslin LM, Stanton JF. Gas-Phase Optical Detection of 3-Ethynylcyclopentenyl: A Resonance-Stabilized C7H7 Radical with an Embedded 1-Vinylpropargyl Chromophore. J Am Chem Soc 2020; 142:10400-10411. [DOI: 10.1021/jacs.0c01579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Neil J. Reilly
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston Massachusetts 02125, United States
| | - Damian L. Kokkin
- Department of Chemistry, Marquette University, P.O. Box 1881 Milwaukee, Wisconsin 53201, United States
| | - Meredith L. Ward
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston Massachusetts 02125, United States
| | - Jonathan Flores
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston Massachusetts 02125, United States
| | - Sederra D. Ross
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston Massachusetts 02125, United States
| | - Laura M. McCaslin
- Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 9190401, Israel
| | - John F. Stanton
- Quantum Theory Project, Departments of Chemistry and Physics, The University of Florida, Gainesville Florida 32611, United States
| |
Collapse
|
5
|
Matsugi A. Thermal Decomposition of Benzyl Radicals: Kinetics and Spectroscopy in a Shock Tube. J Phys Chem A 2020; 124:824-835. [PMID: 31917568 DOI: 10.1021/acs.jpca.9b10705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the mechanism of high-temperature reactions of aromatic hydrocarbons and radicals is essential for the modeling of hydrocarbon growth processes in combustion environments. In this study, the thermal decomposition reaction of benzyl radicals was investigated using time-resolved broadband cavity-enhanced absorption spectroscopy behind reflected shock waves at a postshock pressure of 100 kPa and temperatures of 1530, 1630, and 1740 K. The transient absorption spectra during the decomposition were recorded over the spectral range of 282-410 nm. The spectra were contributed by the absorption of benzyl radicals and some transient and residual absorbing species. The temporal behavior of the absorption was analyzed using a kinetic model to determine the rate constant for benzyl decomposition. The obtained rate constants can be represented by the Arrhenius expression k1 = 1.1 × 1012 exp(-30 500 K/T) s-1 with an estimated logarithmic uncertainty of Δlog10 k = ±0.2. Kinetic simulation of the secondary reactions indicated that fulvenallenyl radicals are potentially responsible for the transient absorption that appeared around 400 nm. This assignment is consistent with the available spectroscopic information of this radical. Possible candidates for the residual absorbing species are presented, suggesting the potential importance of ortho-benzyne as a reactive intermediate.
Collapse
Affiliation(s)
- Akira Matsugi
- National Institute of Advanced Industrial Science and Technology (AIST) , 16-1 Onogawa , Tsukuba , Ibaraki 305-8569 , Japan
| |
Collapse
|
6
|
Abstract
New ideas and theoretical results offer a solution to soot particle inception following critical examination of prior proposals.
Collapse
Affiliation(s)
- Michael Frenklach
- Department of Mechanical Engineering
- University of California
- Berkeley
- USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Samara National Research University
| |
Collapse
|
7
|
Plehiers PP, Marin GB, Stevens CV, Van Geem KM. Automated reaction database and reaction network analysis: extraction of reaction templates using cheminformatics. J Cheminform 2018. [PMID: 29524042 PMCID: PMC5845084 DOI: 10.1186/s13321-018-0269-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Both the automated generation of reaction networks and the automated prediction of synthetic trees require, in one way or another, the definition of possible transformations a molecule can undergo. One way of doing this is by using reaction templates. In view of the expanding amount of known reactions, it has become more and more difficult to envision all possible transformations that could occur in a studied system. Nonetheless, most reaction network generation tools rely on user-defined reaction templates. Not only does this limit the amount of chemistry that can be accounted for in the reaction networks, it also confines the wide-spread use of the tools by a broad public. In retrosynthetic analysis, the quality of the analysis depends on what percentage of the known chemistry is accounted for. Using databases to identify templates is therefore crucial in this respect. For this purpose, an algorithm has been developed to extract reaction templates from various types of chemical databases. Some databases such as the Kyoto Encyclopedia for Genes and Genomes and RMG do not report an atom-atom mapping (AAM) for the reactions. This makes the extraction of a template non-straightforward. If no mapping is available, it is calculated by the Reaction Decoder Tool (RDT). With a correct AAM-either calculated by RDT or specified-the algorithm consistently extracts a correct template for a wide variety of reactions, both elementary and non-elementary. The developed algorithm is a first step towards data-driven generation of synthetic trees or reaction networks, and a greater accessibility for non-expert users.
Collapse
Affiliation(s)
- Pieter P Plehiers
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 914, 9052, Ghent, Belgium
| | - Guy B Marin
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 914, 9052, Ghent, Belgium
| | - Christian V Stevens
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 914, 9052, Ghent, Belgium.
| |
Collapse
|
8
|
Shapero M, Ramphal IA, Neumark DM. Photodissociation of the Cyclopentadienyl Radical at 248 nm. J Phys Chem A 2018; 122:4265-4272. [DOI: 10.1021/acs.jpca.7b11837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark Shapero
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Isaac A. Ramphal
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel M. Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Reilly NJ, da Silva G, Wilcox CM, Ge Z, Kokkin DL, Troy TP, Nauta K, Kable SH, McCarthy MC, Schmidt TW. Interconversion of Methyltropyl and Xylyl Radicals: A Pathway Unavailable to the Benzyl–Tropyl Rearrangement. J Phys Chem A 2018; 122:1261-1269. [DOI: 10.1021/acs.jpca.7b11914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Neil J. Reilly
- Department
of Chemistry, University of Massachusetts Boston, 100 Morrissey
Boulevard, Boston, Massachusetts 02125, United States
| | - Gabriel da Silva
- Department
of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Callan M. Wilcox
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Zijun Ge
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Damian L. Kokkin
- Department
of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Tyler P. Troy
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Klaas Nauta
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Scott H. Kable
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Michael C. McCarthy
- Harvard−Smithsonian
Center for Astrophysics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Timothy W. Schmidt
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
10
|
Affiliation(s)
- Curt Wentrup
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australien
| |
Collapse
|
11
|
Wentrup C. Flash Vacuum Pyrolysis: Techniques and Reactions. Angew Chem Int Ed Engl 2017; 56:14808-14835. [PMID: 28675675 DOI: 10.1002/anie.201705118] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 12/13/2022]
Abstract
Flash vacuum pyrolysis (FVP) had its beginnings in the 1940s and 1950s, mainly through mass spectrometric detection of pyrolytically formed free radicals. In the 1960s many organic chemists started performing FVP experiments with the purpose of isolating new and interesting compounds and understanding pyrolysis processes. Meanwhile, many different types of apparatus and techniques have been developed, and it is the purpose of this review to present the most important methods as well as a survey of typical reactions and observations that can be achieved with the various techniques. This includes preparative FVP, chemical trapping reactions, matrix isolation, and low temperature spectroscopy of reactive intermediates and unstable molecules, the use of online mass, photoelectron, microwave, and millimeterwave spectroscopies, gas-phase laser pyrolysis, pulsed pyrolysis with supersonic jet expansion, very low pressure pyrolysis for kinetic investigations, solution-spray and falling-solid FVP for involatile compounds, and pyrolysis over solid supports and reagents. Moreover, the combination of FVP with matrix isolation and photochemistry is a powerful tool for investigations of reaction mechanism.
Collapse
Affiliation(s)
- Curt Wentrup
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
12
|
Pachner K, Steglich M, Hemberger P, Fischer I. Photodissociation dynamics of the ortho- and para-xylyl radicals. J Chem Phys 2017; 147:084303. [DOI: 10.1063/1.4999906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kai Pachner
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Mathias Steglich
- Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland
| | - Patrick Hemberger
- Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
13
|
da Silva G. Mystery of 1-Vinylpropargyl Formation from Acetylene Addition to the Propargyl Radical: An Open-and-Shut Case. J Phys Chem A 2017; 121:2086-2095. [DOI: 10.1021/acs.jpca.6b12996] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel da Silva
- Department of Chemical and
Biomolecular Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
Ramphal IA, Shapero M, Haibach-Morris C, Neumark DM. Photodissociation dynamics of fulvenallene and the fulvenallenyl radical at 248 and 193 nm. Phys Chem Chem Phys 2017; 19:29305-29314. [DOI: 10.1039/c7cp05490d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photofragment translational spectroscopy was used to study the photodissociation of fulvenallene, C7H6, and the fulvenallenyl radical, C7H5. Fulvenallene only loses H atoms to form fulvenallenyl. Fulvenallenyl exhibits both C2H2-loss and C3H3-loss pathways.
Collapse
Affiliation(s)
- Isaac A. Ramphal
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Chemistry
| | - Mark Shapero
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Chemistry
| | | | - Daniel M. Neumark
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Chemistry
| |
Collapse
|
15
|
Savee JD, Selby TM, Welz O, Taatjes CA, Osborn DL. Time- and Isomer-Resolved Measurements of Sequential Addition of Acetylene to the Propargyl Radical. J Phys Chem Lett 2015; 6:4153-4158. [PMID: 26722791 DOI: 10.1021/acs.jpclett.5b01896] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Soot formation in combustion is a complex process in which polycyclic aromatic hydrocarbons (PAHs) are believed to play a critical role. Recent works concluded that three consecutive additions of acetylene (C2H2) to propargyl (C3H3) create a facile route to the PAH indene (C9H8). However, the isomeric forms of C5H5 and C7H7 intermediates in this reaction sequence are not known. We directly investigate these intermediates using time- and isomer-resolved experiments. Both the resonance stabilized vinylpropargyl (vp-C5H5) and 2,4-cyclopentadienyl (c-C5H5) radical isomers of C5H5 are produced, with substantially different intensities at 800 K vs 1000 K. In agreement with literature master equation calculations, we find that c-C5H5 + C2H2 produces only the tropyl isomer of C7H7 (tp-C7H7) below 1000 K, and that tp-C7H7 + C2H2 terminates the reaction sequence yielding C9H8 (indene) + H. This work demonstrates a pathway for PAH formation that does not proceed through benzene.
Collapse
Affiliation(s)
- John D Savee
- Combustion Research Facility, Sandia National Laboratories , Mail Stop 9055, Livermore, California 94551-0969, United States
| | - Talitha M Selby
- Combustion Research Facility, Sandia National Laboratories , Mail Stop 9055, Livermore, California 94551-0969, United States
| | - Oliver Welz
- Combustion Research Facility, Sandia National Laboratories , Mail Stop 9055, Livermore, California 94551-0969, United States
| | - Craig A Taatjes
- Combustion Research Facility, Sandia National Laboratories , Mail Stop 9055, Livermore, California 94551-0969, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories , Mail Stop 9055, Livermore, California 94551-0969, United States
| |
Collapse
|
16
|
Shapero M, Cole-Filipiak NC, Haibach-Morris C, Neumark DM. Benzyl Radical Photodissociation Dynamics at 248 nm. J Phys Chem A 2015; 119:12349-56. [DOI: 10.1021/acs.jpca.5b07125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark Shapero
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Neil C. Cole-Filipiak
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Courtney Haibach-Morris
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Daniel M. Neumark
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Bouwman J, Bodi A, Oomens J, Hemberger P. On the formation of cyclopentadiene in the C3H5˙ + C2H2 reaction. Phys Chem Chem Phys 2015; 17:20508-14. [PMID: 26086435 DOI: 10.1039/c5cp02243f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction between the allyl radical (C3H5˙) and acetylene (C2H2) in a heated microtubular reactor has been studied at the VUV beamline of the Swiss Light Source. The reaction products are sampled from the reactor and identified by their photoion mass-selected threshold photoelectron spectra (ms-TPES) by means of imaging photoelectron photoion coincidence spectroscopy. Cyclopentadiene is identified as the sole reaction product by comparison of the measured photoelectron spectrum with that of cyclopentadiene. With the help of quantum-chemical computations of the C5H7 potential energy surface, the C2H2 + C3H5˙ association reaction is confirmed to be the rate determining step, after which H-elimination to form C5H6 is prompt in the absence of re-thermalization at low pressures. The formation of cyclopentadiene as the sole product from the allyl + acetylene reaction offers a direct path to the formation of cyclic hydrocarbons under combustion relevant conditions. Subsequent reactions of cyclopentadiene may lead to the formation of the smallest polycyclic aromatic molecule, naphthalene.
Collapse
Affiliation(s)
- Jordy Bouwman
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, NL-6525 ED Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Somers KP, Simmie JM, Metcalfe WK, Curran HJ. The pyrolysis of 2-methylfuran: a quantum chemical, statistical rate theory and kinetic modelling study. Phys Chem Chem Phys 2014; 16:5349-67. [PMID: 24496403 DOI: 10.1039/c3cp54915a] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the rapidly growing interest in the use of biomass derived furanic compounds as potential platform chemicals and fossil fuel replacements, there is a simultaneous need to understand the pyrolysis and combustion properties of such molecules. To this end, the potential energy surfaces for the pyrolysis relevant reactions of the biofuel candidate 2-methylfuran have been characterized using quantum chemical methods (CBS-QB3, CBS-APNO and G3). Canonical transition state theory is employed to determine the high-pressure limiting kinetics, k(T), of elementary reactions. Rice-Ramsperger-Kassel-Marcus theory with an energy grained master equation is used to compute pressure-dependent rate constants, k(T,p), and product branching fractions for the multiple-well, multiple-channel reaction pathways which typify the pyrolysis reactions of the title species. The unimolecular decomposition of 2-methylfuran is shown to proceed via hydrogen atom transfer reactions through singlet carbene intermediates which readily undergo ring opening to form collisionally stabilised acyclic C5H6O isomers before further decomposition to C1-C4 species. Rate constants for abstraction by the hydrogen atom and methyl radical are reported, with abstraction from the alkyl side chain calculated to dominate. The fate of the primary abstraction product, 2-furanylmethyl radical, is shown to be thermal decomposition to the n-butadienyl radical and carbon monoxide through a series of ring opening and hydrogen atom transfer reactions. The dominant bimolecular products of hydrogen atom addition reactions are found to be furan and methyl radical, 1-butene-1-yl radical and carbon monoxide and vinyl ketene and methyl radical. A kinetic mechanism is assembled with computer simulations in good agreement with shock tube speciation profiles taken from the literature. The kinetic mechanism developed herein can be used in future chemical kinetic modelling studies on the pyrolysis and oxidation of 2-methylfuran, or the larger molecular structures for which it is a known pyrolysis/combustion intermediate (e.g. cellulose, coals, 2,5-dimethylfuran).
Collapse
Affiliation(s)
- Kieran P Somers
- Combustion Chemistry Centre, National University of Ireland, Galway, Republic of Ireland.
| | | | | | | |
Collapse
|
19
|
Kaiser RI, Dangi BB, Yang T, Parker DSN, Mebel AM. Reaction dynamics of the 4-methylphenyl radical (p-tolyl) with 1,2-butadiene (1-methylallene): are methyl groups purely spectators? J Phys Chem A 2014; 118:6181-90. [PMID: 25084134 DOI: 10.1021/jp505868q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of the 4-tolyl radical (C6H4CH3) and of the D7-4-tolyl radical (C6D4CD3) with 1,2-butadiene (C4H6) have been probed in crossed molecular beams under single collision conditions at a collision energy of about 54 kJ mol(-1) and studied theoretically using ab initio G3(MP2,CC)//B3LYP/6-311G** and statistical RRKM calculations. The results show that the reaction proceeds via indirect scattering dynamics through the formation of a van-der-Waals complex followed by the addition of the radical center of the 4-tolyl radical to the C1 or C3 carbon atoms of 1,2-butadiene. The collision complexes then isomerize by migration of the tolyl group from the C1 (C3) to the C2 carbon atom of the 1,2-butadiene moiety. The resulting intermediate undergoes unimolecular decomposition via elimination of a hydrogen atom from the methyl group of the 1,2-butadiene moiety through a rather loose exit transition state leading to 2-para-tolyl-1,3-butadiene (p4), which likely presents the major reaction product. Our observation combined with theoretical calculations suggest that one methyl group (at the phenyl group) acts as a spectator in the reaction, whereas the other one (at the allene moiety) is actively engaged in the underlying chemical dynamics. On the contrary to the reaction of the phenyl radical with allene, which leads to the formation of indene, the substitution of a hydrogen atom by a methyl group in allene essentially eliminates the formation of bicyclic PAHs such as substituted indenes in the 4-tolyl plus 1,2-butadiene reaction.
Collapse
Affiliation(s)
- Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | | | | | | | | |
Collapse
|
20
|
An experimental and theoretical investigation of the formation of C7H7 isomers in the bimolecular reaction of dicarbon molecules with 1,3-pentadiene. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.05.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
da Silva G. Reaction of Benzene with Atomic Carbon: Pathways to Fulvenallene and the Fulvenallenyl Radical in Extraterrestrial Atmospheres and the Interstellar Medium. J Phys Chem A 2014; 118:3967-72. [DOI: 10.1021/jp503431a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel da Silva
- Department
of Chemical and
Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
22
|
Dangi BB, Parker DSN, Yang T, Kaiser RI, Mebel AM. Gas-Phase Synthesis of the Benzyl Radical (C 6H 5CH 2). Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Dangi BB, Parker DSN, Yang T, Kaiser RI, Mebel AM. Gas-Phase Synthesis of the Benzyl Radical (C6H5CH2). Angew Chem Int Ed Engl 2014; 53:4608-13. [DOI: 10.1002/anie.201310612] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/25/2014] [Indexed: 11/10/2022]
|
24
|
Trogolo D, Maranzana A, Ghigo G, Tonachini G. First Ring Formation by Radical Addition of Propargyl to But-1-ene-3-yne in Combustion. Theoretical Study of the C7H7 Radical System. J Phys Chem A 2014; 118:427-40. [DOI: 10.1021/jp4082905] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniela Trogolo
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| | - Andrea Maranzana
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| | - Giovanni Ghigo
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| | - Glauco Tonachini
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| |
Collapse
|
25
|
Dangi BB, Yang T, Kaiser RI, Mebel AM. Reaction dynamics of the 4-methylphenyl radical (C6H4CH3; p-tolyl) with isoprene (C5H8) – formation of dimethyldihydronaphthalenes. Phys Chem Chem Phys 2014; 16:16805-14. [DOI: 10.1039/c4cp01056f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction dynamics and energetics of 4-methylphenyl radical with isoprene are reported under single collision condition at collision energy of 58 kJ mol−1 by exploiting the crossed molecular beam technique and electronic structure calculations.
Collapse
Affiliation(s)
- Beni B. Dangi
- Department of Chemistry
- University of Hawai'i at Manoa
- Honolulu, USA
| | - Tao Yang
- Department of Chemistry
- University of Hawai'i at Manoa
- Honolulu, USA
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawai'i at Manoa
- Honolulu, USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami, USA
| |
Collapse
|
26
|
|
27
|
Matsugi A, Miyoshi A. Reactions of o-benzyne with propargyl and benzyl radicals: potential sources of polycyclic aromatic hydrocarbons in combustion. Phys Chem Chem Phys 2012; 14:9722-8. [PMID: 22678346 DOI: 10.1039/c2cp41002h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics and mechanisms of the reactions of o-benzyne with propargyl and benzyl radicals have been investigated computationally. The possible reaction pathways have been explored by quantum chemical calculations at the M06-2X/6-311+G(3df,2p)//B3LYP/6-311G(d,p) level and the mechanisms have been investigated by the Rice-Ramsperger-Kassel-Marcus theory/master-equation calculations. It was found that the o-benzyne associates with the propargyl and benzyl radicals without pronounced barriers and the activated adducts easily isomerize to five-membered ring species. Indenyl radical and fluorene + H were predicted to be dominantly produced by the reactions of o-benzyne with propargyl and benzyl radicals, respectively, with the rate constants close to the high-pressure limits at temperatures below 2000 K. The related reactions on the two potential energy surfaces, namely, the reaction between fulvenallenyl radical and acetylene and the decomposition reactions of indenyl and α-phenylbenzyl radicals were also investigated. The high reactivity of o-benzyne toward the resonance stabilized radicals suggested a potential role of o-benzyne as a precursor of polycyclic aromatic hydrocarbons in combustion.
Collapse
Affiliation(s)
- Akira Matsugi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
28
|
Cavallotti C, Polino D, Frassoldati A, Ranzi E. Analysis of Some Reaction Pathways Active during Cyclopentadiene Pyrolysis. J Phys Chem A 2012; 116:3313-24. [DOI: 10.1021/jp212151p] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Carlo Cavallotti
- Dipartimento di Chimica, Materiali e Ingegneria
chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Daniela Polino
- Dipartimento di Chimica, Materiali e Ingegneria
chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Alessio Frassoldati
- Dipartimento di Chimica, Materiali e Ingegneria
chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Eliseo Ranzi
- Dipartimento di Chimica, Materiali e Ingegneria
chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
29
|
da Silva G, Bozzelli JW. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study. Phys Chem Chem Phys 2012; 14:16143-54. [DOI: 10.1039/c2cp42635h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
da Silva G, Trevitt AJ, Steinbauer M, Hemberger P. Pyrolysis of fulvenallene (C7H6) and fulvenallenyl (C7H5): Theoretical kinetics and experimental product detection. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
da Silva G, Trevitt AJ. Chemically activated reactions on the C7H5 energy surface: propargyl + diacetylene, i-C5H3 + acetylene, and n-C5H3 + acetylene. Phys Chem Chem Phys 2011; 13:8940-52. [DOI: 10.1039/c1cp20112c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Song Y, Zheng X, Lucas M, Zhang J. Ultraviolet photodissociation dynamics of the benzyl radical. Phys Chem Chem Phys 2011; 13:8296-305. [DOI: 10.1039/c1cp20310j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|