1
|
Lien CY, Boyn JN, Anferov SW, Mazziotti DA, Anderson JS. Origin of Weak Magnetic Coupling in a Dimanganese(II) Complex Bridged by the Tetrathiafulvalene-Tetrathiolate Radical. Inorg Chem 2023; 62:19488-19497. [PMID: 37967380 DOI: 10.1021/acs.inorgchem.3c02534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Magnetic exchange coupling (J) between different spin centers plays a crucial role in molecule-based magnetic materials. Direct exchange coupling between an organic radical and a metal is frequently stronger than superexchange through diamagnetic ligands, and the strategy of using organic radicals to engender desirable magnetic properties has been an area of active investigation. Despite significant advances and exciting bulk properties, the magnitude of J for radical linkers bridging paramagnetic centers is still difficult to rationally predict. It is thus important to elucidate the features of organic radicals that govern this parameter. Here, we measure J for the tetrathiafulvalene-tetrathiolate radical (TTFtt3-•) in a dinuclear Mn(II) complex. Magnetometry studies show that the antiferromagnetic coupling in this complex is much weaker than that in related Mn(II)-radical compounds, in contrast to what might be expected for the S-based chelating donor atoms of TTFtt. Experimental and computational analyses suggest that this small J coupling may be attributed to poor overlap between Mn- and TTFtt-based magnetic orbitals coupled with insignificant spin density on the coordinating S-atoms. These factors override any expected increase in J from the comparatively strong S-donors. This work elucidates the magnetic coupling properties of the TTFtt3-• radical for the first time and also demonstrates how multiple competing factors must be considered in rationally designing organic radical ligands for molecular-based magnetic compounds.
Collapse
Affiliation(s)
- Chen-Yu Lien
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sophie W Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Fitzhugh HC, Furness JW, Pederson MR, Peralta JE, Sun J. Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes. J Chem Theory Comput 2023; 19:5760-5772. [PMID: 37582098 PMCID: PMC10500985 DOI: 10.1021/acs.jctc.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 08/17/2023]
Abstract
Multicenter transition-metal complexes (MCTMs) with magnetically interacting ions have been proposed as components for information-processing devices and storage units. For any practical application of MCTMs as magnetic units, it is crucial to characterize their magnetic behavior, and in particular, the isotropic magnetic exchange coupling, J, between its magnetic centers. Due to the large size of typical MCTMs, density functional theory is the only practical electronic structure method for evaluating the J coupling. Here, we assess the accuracy of different density functional approximations for predicting the magnetic couplings of eight dinuclear transition-metal complexes, including five dimanganese, two dicopper, and one divanadium with known reliable experimental J couplings spanning from ferromagnetic to strong antiferromagnetic. The density functionals considered include global hybrid functionals which mix semilocal density functional approximations and exact exchange with a fixed admixing parameter, six local hybrid functionals where the admixing parameters are extended to be spatially dependent, the SCAN and r2SCAN meta-generalized gradient approximations (GGAs), and two widely used GGAs. We found that global hybrids tested in this work have a tendency to over-correct the error in magnetic coupling parameters from the Perdew-Burke-Ernzerhof (PBE) GGA as seen for manganese complexes. The performance of local hybrid density functionals shows no improvement in terms of bias and is scattered without a clear trend, suggesting that more efforts are needed for the extension from global to local hybrid density functionals for this particular property. The SCAN and r2SCAN meta-GGAs are found to perform as well as benchmark global hybrids on most tested complexes. We further analyze the charge density redistribution of meta-GGAs as well as global and local hybrid density functionals with respect to that of PBE, in connection to the self-interaction error or delocalization error.
Collapse
Affiliation(s)
- Henry C. Fitzhugh
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - James W. Furness
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Mark R. Pederson
- Department
of Physics, The University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Juan E. Peralta
- Department
of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Jianwei Sun
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
3
|
Abstract
For single-molecule toroics (SMTs) based on noncollinear Ising spins, intramolecular magnetic dipole–dipole coupling favours a head-to-tail vortex arrangement of the semi-classical magnetic moments associated with a toroidal ground state. However, to what extent does this effect survive beyond the semi-classical Ising limit? Here, we theoretically investigate the role of dipolar interactions in stabilising ground-state toroidal moments in quantum Heisenberg rings with and without on-site magnetic anisotropy. For the prototypical triangular SMT with strong on-site magnetic anisotropy, we illustrate that, together with noncollinear exchange, intramolecular magnetic dipole–dipole coupling serves to preserve ground-state toroidicity. In addition, we investigate the effect on quantum tunnelling of the toroidal moment in Kramers and non-Kramers systems. In the weak anisotropy limit, we find that, within some critical ion–ion distances, intramolecular magnetic dipole–dipole interactions, diagonalised over the entire Hilbert space of the quantum system, recover ground-state toroidicity in ferromagnetic and antiferromagnetic odd-membered rings with up to seven sites, and are further stabilised by Dzyaloshinskii–Moriya coupling.
Collapse
|
4
|
Gutsev GL, Bozhenko KV, Gutsev LG, Utenyshev AN, Aldoshin SM. Hydrogenation of 3d-metal oxide clusters: Effects on the structure and magnetic properties. J Comput Chem 2019; 40:562-571. [PMID: 30549078 DOI: 10.1002/jcc.25739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 11/08/2022]
Abstract
The geometrical structures and properties of the M8 O12 , M8 O12 H8 , and M8 O12 H12 clusters are explored using density functional theory with the generalized gradient approximation for all 3d-metals M from Sc to Zn. It is found that the geometries and total spin magnetic moments of the clusters depended strongly on the 3d-atom type and the hydrogenation extent. More than the half of all of the 30 clusters had singlet lowest total energy states, which could be described as either nonmagnetic or antiferromagnetic. Hydrogenation increases the total spin magnetic moments of the M8 O12 H12 clusters when MMnNi, which become larger by four Bohr magneton than those of the corresponding unary clusters M8 . Hydrogenation substantially affects such properties as polarizability, forbidden band gaps, and dipole moments. Collective superexchange where the local total spin magnetic moments of two atom squads are coupled antiparallel was observed in antiferromagnetic singlet states of Fe8 O12 H8 and Co8 O12 H8 , whereas the lowest total energy states of their neighbors Mn8 O12 H8 and Ni8 O12 H8 are ferrimagnetic and ferromagnetic, respectively. Hydrogenation leads to a decrease in the average binding energy per atom when moving across the 3d-metal atom series. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- G L Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida, 32307
| | - K V Bozhenko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia.,Рeoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation
| | - L G Gutsev
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, 23284
| | - A N Utenyshev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| | - S M Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| |
Collapse
|
5
|
Gutsev GL, Bozhenko KV, Gutsev LG, Utenyshev AN, Aldoshin SM. Dependence of Properties and Exchange Coupling Constants on the Charge in the Mn2On and Fe2On Series. J Phys Chem A 2018; 122:5644-5655. [DOI: 10.1021/acs.jpca.8b03496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- G. L. Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - K. V. Bozhenko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
- Department of Physical and Colloid Chemistry, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - L. G. Gutsev
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - A. N. Utenyshev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| | - S. M. Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| |
Collapse
|
6
|
Koohzad S, Golchoubian H, Jagličić Z. Structural, solvatochromism and magnetic properties of two halogen bridged dinuclear copper (II) complexes: A density functional study. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Sadeghi Googheri M, Abolhassani MR, Mirzaei M. Influence of ligand-bridged substitution on the exchange coupling constant of chromium-wheels host complexes: a density functional theory study. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1426128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Mahmoud Mirzaei
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Gutsev GL, Bozhenko KV, Gutsev LG, Utenyshev AN, Aldoshin SM. Transitions from Stable to Metastable States in the Cr2On and Cr2On– Series, n = 1–14. J Phys Chem A 2017; 121:845-854. [DOI: 10.1021/acs.jpca.6b11036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. L. Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - K. V. Bozhenko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
- Department
of Physical and Colloid Chemistry, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - L. G. Gutsev
- Department
of Chemistry and Biochemistry, Florida State University, Tallahassee 32306, United States
| | - A. N. Utenyshev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| | - S. M. Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| |
Collapse
|
9
|
Yang H, Sun XM, Ren XM. Syntheses, crystal structures and magnetic properties of two halogen bridged dinuclear copper(II) complexes [(4,4′-diethylester-2,2′-biquinoline)2Cu2(μ-X)2X2] (X−=Cl−, Br−). Polyhedron 2014. [DOI: 10.1016/j.poly.2014.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Morsing TJ, Sauer SP, Weihe H, Bendix J, Døssing A. Magnetic interactions in oxide-bridged dichromium(III) complexes. Computational determination of the importance of non-bridging ligands. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2012.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Ivanova A, Romanova J, Tadjer A, Baumgarten M. Magnetostructural correlation for rational design of Mn(II) hybrid-spin complexes. J Phys Chem A 2013; 117:670-8. [PMID: 23256643 DOI: 10.1021/jp312258j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The magnetic properties of a series of manganese(II) diacetylacetonate and dihexafluoroacetylacetonate hybrid-spin complexes with neutral pyridine-based organic radicals were characterized theoretically by DFT calculations. Three stable radicals, in which a radical group is bound in either para or meta position with respect to the pyridine nitrogen atom, were considered. The correct stable structures and multiplets of the complexes were obtained by full geometry optimization starting from an ideal structure. A total of three important geometry descriptors of the complexes were monitored and related to their magnetic characteristics. These structural parameters are (i) the torsion angle governing the conjugation of the organic radical m-PyNO (anti versus gauche), (ii) the coordination geometry of the acetyl acetonate ligands around the metal ion (square versus rhombic), and (iii) the relative orientation of the organic radical with respect to the acetyl acetonate plane (parallel versus perpendicular). It was found that the magnetic properties are not sensitive to the orientation of the radicals with respect to the equatorial plane but do depend on the conformation of the organic radicals. Even a spin switch between the ferromagnetic (S = (7)/(2)) and antiferromagnetic (S = (3)/(2)) ground state was found to be feasible for one of the complexes upon variation of the organic radical geometry, namely, the dihedral angle between the organic radical moiety and the pyridine ring. The pattern of molecular orbital overlap was determined to be the key factor governing the exchange coupling in the modeled systems. Bonding π-type overlap provides antiferromagnetic coupling in all complexes of the para radicals. In the meta analogues, the spins are coupled through the σ orbitals. A low-spin ground state occurs whenever a continuous σ-overlap pathway is present in the complex. Ferromagnetic interaction requires σ-π orthogonality of the pyridine atomic orbitals and/or π-antibonding Mn-pyridine natural orbital overlap. Using an estimate of the donor-acceptor energy stabilization, the affinity of a given Mn(II) d-orbital to mix with the sp(2) orbital from pyridine can be predicted.
Collapse
Affiliation(s)
- Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria.
| | | | | | | |
Collapse
|
12
|
Phillips JJ, Peralta JE. Magnetic Exchange Couplings from Semilocal Functionals Evaluated Nonself-Consistently on Hybrid Densities: Insights on Relative Importance of Exchange, Correlation, and Delocalization. J Chem Theory Comput 2012; 8:3147-58. [DOI: 10.1021/ct3004904] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jordan J. Phillips
- Science of Advanced Materials, Central Michigan University, Mt. Pleasant, Michigan
48859, United States
| | - Juan E. Peralta
- Department
of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| |
Collapse
|
13
|
Pei WB, Wu JS, Ren XM, Tian ZF, Xie J. Observation of metal ion dependent packing structures and magnetic behaviors of metal-bis-1, 2-dithiolene complexes. Dalton Trans 2012; 41:2667-76. [PMID: 22237662 DOI: 10.1039/c1dt11477h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The crystal structures and magnetic properties were investigated experimentally and theoretically for two S = ½ spin chain complexes, which consist of [M(mnt)(2)](-) (M = Pt for 1 or Pd for 2) with 1-(4'-bromo-2'-flurobenzyl)-4-aminopyridinium (1-BrFBz-4-NH(2)Py(+)). The 1-BrFBz-4-NH(2)Py(+) cations exhibit different molecular conformations and arrangements in 1 and 2; the [M(mnt)(2)](-) anions form regular stacks in 1, whereas they form irregular stacks in 2. In addition, the intermolecular interactions between the [M(mnt)(2)](-) anions and cations are also different from each other in the crystals of 1 and 2. Complex 1 shows the magnetic characteristics of a low-dimensional antiferromagnetic coupling spin system with a spin-Peierls-type transition around 7 K, and complex 2 exhibits diamagnetism over the temperature range of 5-300 K. Theoretical analyses, based on the calculations for the charge density distributions of [Pt(mnt)(2)](-) and [Pd(mnt)(2)](-) anions and the magnetic exchange constants within the anion spin chains, addressed the diverse molecular alignments in the crystals of 1 and 2 and distinct magnetic behaviors between 1 and 2.
Collapse
Affiliation(s)
- Wen-Bo Pei
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Science, Nanjing University of Technology, Nanjing, P R China
| | | | | | | | | |
Collapse
|
14
|
Phillips JJ, Peralta JE. Magnetic exchange couplings from constrained density functional theory: An efficient approach utilizing analytic derivatives. J Chem Phys 2011; 135:184108. [DOI: 10.1063/1.3660351] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
15
|
Phillips JJ, Peralta JE, Janesko BG. Magnetic exchange couplings evaluated with Rung 3.5 density functionals. J Chem Phys 2011; 134:214101. [DOI: 10.1063/1.3596070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
16
|
Mulvey RE, Armstrong DR, Conway B, Crosbie E, Kennedy AR, Robertson SD. Structurally Powered Synergic 2,2,6,6-Tetramethylpiperidine Bimetallics: New Reflections through Lithium-Mediated Ortho Aluminations. Inorg Chem 2011; 50:12241-51. [DOI: 10.1021/ic200562h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Robert E. Mulvey
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| | - David R. Armstrong
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Ben Conway
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Elaine Crosbie
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Alan R. Kennedy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Stuart D. Robertson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| |
Collapse
|