1
|
Moreno-Naranjo JM, Furlan F, Wang J, Ryan STJ, Matulaitis T, Xu Z, Zhang Q, Minion L, Di Girolamo M, Jávorfi T, Siligardi G, Wade J, Gasparini N, Zysman-Colman E, Fuchter MJ. Enhancing Circularly Polarized Electroluminescence through Energy Transfer within a Chiral Polymer Host. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402194. [PMID: 38865650 DOI: 10.1002/adma.202402194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Organic light-emitting diodes (OLEDs) that are able to emit high levels of circularly polarized (CP) light hold significant promise in numerous future technologies. Such devices require chiral emissive materials to enable CP electroluminescence. However, the vast majority of current OLED emitter classes, including the state-of-the-art triplet-harvesting thermally activated delayed fluorescence (TADF) materials, produce very low levels of CP electroluminescence. Here a host-guest strategy that allows for energy transfer between a chiral polymer host and a representative chiral TADF emitter is showcased. Such a mechanism results in a large amplification of the circular polarization of the emitter. As such, this study presents a promising avenue to further boost the performance of circularly polarized organic light-emitting diode devices, enabling their further development and eventual commercialization.
Collapse
Affiliation(s)
- Juan Manuel Moreno-Naranjo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Francesco Furlan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Seán Timothy James Ryan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Zhiyu Xu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Qianyi Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Louis Minion
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Marta Di Girolamo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Tamás Jávorfi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Giuliano Siligardi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jessica Wade
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Nicola Gasparini
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Matthew John Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Avetisov SE, Bubnova IA, Novikov IA, Antonov AA, Siplivyi VI. Experimental study on the mechanical strain of corneal collagen. J Biomech 2013; 46:1648-54. [PMID: 23680349 DOI: 10.1016/j.jbiomech.2013.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2012] [Revised: 03/09/2013] [Accepted: 04/14/2013] [Indexed: 11/16/2022]
Abstract
Currently, investigations of biomechanical properties of the fibrous tunic are becoming even more topical, especially for diagnosis of corneal ectatic disease, as well as correct interpretation of intraocular pressure (IOP) parameters, particularly in patients with prior surgery on cornea. The study principle is based on the ability of substances to change optical anisotropy depending on mechanical strain applied to them. An experimental set-up was constructed which allows assessment of polarization degree of light which is emitted during luminescence of strained collagen. The study was performed on 18 corneoscleral discs of chinchilla rabbit eyes at 15 and 50mm Hg pressure, among them in 6 cases before and after making radial incisions, and in 6 cases before and after conducting the mechanical cornea abrasions that were asymmetrical by depth until reaching the local zone of iatrogenic keratectasia. Corneal collagen mechanical strain mappings were formed on 3 experimental models (intact cornea, cornea post radial keratotomy and keratectasia) under intra-chamber pressure of 15 and 50mm Hg. Corneal collagen mechanical strain is evenly allocated in the intact cornea. After radial keratotomy the main mechanical loading was concentrated over the middle part of corneal periphery, particularly in the bottom of keratotomic incisions. The increased intra-chamber pressure made the strain rise in those models. Upon cornea abrasion the main straining is distributed within the thinning zone, and the increase of intra-chamber pressure only increases the load over residual stroma. A new principle of corneal biomechanical properties investigation based on assessment of degree of light polarization emitted during luminescence of strained collagen, has been proposed and experimentally tested.
Collapse
|