1
|
Kuleta P, Pietras R, Andrys-Olek J, Wójcik-Augustyn A, Osyczka A. Probing molecular interactions of semiquinone radicals at quinone reduction sites of cytochrome bc1 by X-band HYSCORE EPR spectroscopy and quantum mechanical calculations. Phys Chem Chem Phys 2023; 25:21935-21943. [PMID: 37551546 DOI: 10.1039/d3cp02433d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Quinone redox reactions involve a semiquinone (SQ) intermediate state. The catalytic sites in enzymes stabilize the SQ state via various molecular interactions, such as hydrogen bonding to oxygens of the two carbonyls of the benzoquinone ring. To understand how these interactions contribute to SQ stabilization, we examined SQ in the quinone reduction site (Qi) of cytochrome bc1 using electron paramagnetic resonance (ESEEM, HYSCORE) at the X-band and quantum mechanical (QM) calculations. We compared native enzyme (WT) with a H217R mutant (replacement of histidine that interacts with one carbonyl of the occupant of Qi to arginine) in which the SQ stability has previously been shown to markedly increase. The 14N region of the HYSCORE 2D spectrum for SQi in WT had a shape typical of histidine residue, while in H217R, the spectrum shape changed significantly and appeared similar to the pattern described for SQ liganded natively by arginine in cytochrome bo3. Parametrization of hyperfine and quadrupolar interactions of SQi with surrounding magnetic nuclei (1H, 14N) allowed us to assign specific nitrogens of H217 or R217 as ligands of SQi in WT and H217R, respectively. This was further substantiated by qualitative agreement between the experimental (EPR-derived) and theoretical (QM-derived) parameters. The proton (1H) region of the HYSCORE spectrum in both WT and H217R was very similar and indicative of interactions with two protons, which in view of the QM calculations, were identified as directly involved in the formation of a H-bond with the two carbonyl oxygens of SQ (interaction of H217 or R217 with O4 and D252 with O1). In view of these assignments, we explain how different SQ ligands effectively influence SQ stability. We also propose that the characteristic X-band HYSCORE pattern and parameters of H217R are highly specific to the interaction of SQ with the nitrogen of arginine. These features can thus be considered as potential markers of the interaction of arginine with SQ in other proteins.
Collapse
Affiliation(s)
- Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| | - Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| | - Justyna Andrys-Olek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| | - Anna Wójcik-Augustyn
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| |
Collapse
|
2
|
Van Hoof M, Bynens L, Daelemans B, González MCR, Van Meervelt L, De Feyter S, Dehaen W. Octahydropyrimido[4,5- g]quinazoline-5,10-diones: their multicomponent synthesis, self-assembly on graphite and electrochemistry. Chem Commun (Camb) 2022; 58:7686-7689. [PMID: 35730551 DOI: 10.1039/d2cc02070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green multicomponent synthesis of previously unreported octahydropyrimido[4,5-g]quinazoline-5,6-diones was developed from simple building blocks. These highly symmetrical compounds show strong propensity to self-assembled molecular network (SAMN) formation on highly oriented pyrolytic graphite. The SAMN type is easily tunable by changing molecular characteristics. The redox behavior was studied by cyclic voltammetery.
Collapse
Affiliation(s)
- Max Van Hoof
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Lize Bynens
- Hasselt University, Institute for Materials Research (IMO), Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Brent Daelemans
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
3
|
Seif Eddine M, Biaso F, Arias‐Cartin R, Pilet E, Rendon J, Lyubenova S, Seduk F, Guigliarelli B, Magalon A, Grimaldi S. Probing the Menasemiquinone Binding Mode to Nitrate Reductase A by Selective2H and15N Labeling, HYSCORE Spectroscopy, and DFT Modeling. Chemphyschem 2017; 18:2704-2714. [DOI: 10.1002/cphc.201700571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Eric Pilet
- Aix Marseille University, CNRS, BIP Marseille France
- Faculté de Biologie, University Pierre et Marie Curie Paris France
| | - Julia Rendon
- Aix Marseille University, CNRS, BIP Marseille France
| | | | - Farida Seduk
- Aix Marseille University, CNRS, LCB Marseille France
| | | | - Axel Magalon
- Aix Marseille University, CNRS, LCB Marseille France
| | | |
Collapse
|
4
|
Gamboa-Valero N, Astudillo PD, González-Fuentes MA, Leyva MA, Rosales-Hoz MDJ, González FJ. Hydrogen bonding complexes in the quinone-hydroquinone system and the transition to a reversible two-electron transfer mechanism. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Ashizawa R, Noguchi T. Effects of hydrogen bonding interactions on the redox potential and molecular vibrations of plastoquinone as studied using density functional theory calculations. Phys Chem Chem Phys 2014; 16:11864-76. [DOI: 10.1039/c3cp54742f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Coates CS, Ziegler J, Manz K, Good J, Kang B, Milikisiyants S, Chatterjee R, Hao S, Golbeck JH, Lakshmi KV. The structure and function of quinones in biological solar energy transduction: a cyclic voltammetry, EPR, and hyperfine sub-level correlation (HYSCORE) spectroscopy study of model naphthoquinones. J Phys Chem B 2013; 117:7210-20. [PMID: 23676117 DOI: 10.1021/jp401024p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quinones function as electron transport cofactors in photosynthesis and cellular respiration. The versatility and functional diversity of quinones is primarily due to the diverse midpoint potentials that are tuned by the substituent effects and interactions with surrounding amino acid residues in the binding site in the protein. In the present study, a library of substituted 1,4-naphthoquinones are analyzed by cyclic voltammetry in both protic and aprotic solvents to determine effects of substituent groups and hydrogen bonds on the midpoint potential. We use continuous-wave electron paramagnetic resonance (EPR) spectroscopy to determine the influence of substituent groups on the electronic properties of the 1,4-naphthoquinone models in an aprotic solvent. The results establish a correlation between the presence of substituent group(s) and the modification of electronic properties and a corresponding shift in the midpoint potential of the naphthoquinone models. Further, we use pulsed EPR spectroscopy to determine the effect of substituent groups on the strength and planarity of the hydrogen bonds of naphthoquinone models in a protic solvent. This study provides support for the tuning of the electronic properties of quinone cofactors by the influence of substituent groups and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Christopher S Coates
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ganesh K, Satheshkumar A, Balraj C, Elango KP. Substituent effect on the electron acceptor property of 1,4-benzoquinone towards the formation of molecular complex with sulfamethoxazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 107:156-166. [PMID: 23416920 DOI: 10.1016/j.saa.2013.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
UV-Vis, (1)H NMR, FT-IR, LC-MS and fluorescence spectral techniques were employed to investigate the mechanism of interaction of sulfamethoxazole with varying number of methoxy/chloro substituted 1,4-benzoquinones (MQ1-4) and to characterize the reaction products. The interactions of MQ1-4 with sulfamethoxazole (SULF) were found to proceed through the formation of a donor-acceptor complex, containing radical anion and its conversion to the product. Fluorescence quenching studies showed that the interaction between the donor and the acceptors are spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The results of the correlation of experimentally measured binding constants with electrochemical data and ab initio DFT calculations supported these observations.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India
| | | | | | | |
Collapse
|
8
|
Ganesh K, Balraj C, Satheshkumar A, Elango K. Spectroscopic studies on the formation of molecular complexes of sulfamethoxazole with novel 2,3,5-trichloro-6-alkoxy-1,4-benzoquinones. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.09.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Dikanov SA. Resolving protein-semiquinone interactions by two-dimensional ESEEM spectroscopy. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S. A. Dikanov
- University of Illinois at Urbana-Champaign, Department of Veterinary Clinical Medicine 190 MSB, 506 S. Mathews Ave., Urbana IL 61801 USA
| |
Collapse
|
10
|
Flores M, Okamura MY, Niklas J, Pandelia ME, Lubitz W. Pulse Q-band EPR and ENDOR spectroscopies of the photochemically generated monoprotonated benzosemiquinone radical in frozen alcoholic solution. J Phys Chem B 2012; 116:8890-900. [PMID: 22731760 DOI: 10.1021/jp304555u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quinones are essential cofactors in many physiological processes, among them proton-coupled electron transfer (PCET) in photosynthesis and respiration. A key intermediate in PCET is the monoprotonated semiquinone radical. In this work we produced the monoprotonated benzosemiquinone (BQH(•)) by UV illumination of BQ dissolved in 2-propanol at cryogenic temperatures and investigated the electronic and geometric structures of BQH(•) in the solid state (80 K) using EPR and ENDOR techniques at 34 GHz. The g-tensor of BQH(•) was found to be similar to that of the anionic semiquinone species (BQ(•-)) in frozen solution. The peaks present in the ENDOR spectrum of BQH(•) were identified and assigned by (1)H/(2)H substitutions. The experiments reconfirmed that the hydroxyl proton (O-H) on BQH(•), which is abstracted from a solvent molecule, mainly originates from the central CH group of 2-propanol. They also showed that the protonation has a strong impact on the electron spin distribution over the quinone. This is reflected in the hyperfine couplings (hfc's) of the ring protons, which dramatically changed with respect to those typically observed for BQ(•-). The hfc tensor of the O-H proton was determined by a detailed orientation-selection ENDOR study and found to be rhombic, resembling those of protons covalently bound to carbon atoms in a π-system (i.e., α-protons). It was found that the O-H bond lies in the quinone plane and is oriented along the direction of the quinone oxygen lone pair orbital. DFT calculations were performed on different structures of BQH(•) coordinated by four, three, or zero 2-propanol molecules. The O-H bond length was found to be around 1.0 Å, typical for a single covalent O-H bond. Good agreement between experimental and DFT results were found. This study provides a detailed picture of the electronic and geometric structures of BQH(•) and should be applicable to other naturally occurring quinones.
Collapse
Affiliation(s)
- Marco Flores
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, D-45470, Germany.
| | | | | | | | | |
Collapse
|
11
|
Ganesh K, Balraj C, Satheshkumar A, Elango KP. Spectroscopic investigation on the mechanism of formation of molecular complexes of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 92:46-55. [PMID: 22402578 DOI: 10.1016/j.saa.2012.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/03/2012] [Accepted: 02/09/2012] [Indexed: 05/31/2023]
Abstract
UV-vis, (1)H NMR, FT-IR, mass and fluorescence spectral techniques were employed to investigate the mechanism of interaction of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and to characterize the reaction products. The interaction of DDQ with trimethoprim (TMP) and albenadazole (ALB) were found to proceed through the formation of donor-acceptor complex, containing DDQ radical anion and its conversion to the product. Fluorescence quenching studies indicated that the interaction between the donors and the acceptor are spontaneous and the interaction of TMP-DDQ (binding constant=2.9×10(5)) is found to be stronger than that the ALB-DDQ (binding constant=3×10(3)) system. Also, the binding constant increased with an increase in polarity of the medium indicating the involvement of radical anion as intermediate.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram, India
| | | | | | | |
Collapse
|
12
|
Chatterjee R, Coates CS, Milikisiyants S, Poluektov OG, Lakshmi KV. Structure and Function of Quinones in Biological Solar Energy Transduction: A High-Frequency D-Band EPR Spectroscopy Study of Model Benzoquinones. J Phys Chem B 2011; 116:676-82. [DOI: 10.1021/jp210156a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Christopher S. Coates
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
13
|
Milikisiyants S, Chatterjee R, Lakshmi KV. Two-Dimensional 1H HYSCORE Spectroscopy of Dimanganese Di-μ-oxo Mimics of the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2011; 115:12220-9. [DOI: 10.1021/jp205629g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
14
|
Srinivasan N, Chatterjee R, Milikisiyants S, Golbeck JH, Lakshmi KV. Effect of Hydrogen Bond Strength on the Redox Properties of Phylloquinones: A Two-Dimensional Hyperfine Sublevel Correlation Spectroscopy Study of Photosystem I. Biochemistry 2011; 50:3495-501. [DOI: 10.1021/bi102056q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nithya Srinivasan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
15
|
Chatterjee R, Milikisiyants S, Coates CS, Lakshmi KV. High-Resolution Two-Dimensional 1H and 14N Hyperfine Sublevel Correlation Spectroscopy of the Primary Quinone of Photosystem II. Biochemistry 2010; 50:491-501. [DOI: 10.1021/bi101883y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Christopher S. Coates
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
16
|
Truflandier LA, Boucher F, Payen C, Hajjar R, Millot Y, Bonhomme C, Steunou N. DFT-NMR Investigation and 51V 3QMAS Experiments for Probing Surface OH Ligands and the Hydrogen-Bond Network in a Polyoxovanadate Cluster: The Case of Cs4[H2V10O28]·4H2O. J Am Chem Soc 2010; 132:4653-68. [DOI: 10.1021/ja908973y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lionel A. Truflandier
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Florent Boucher
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Christophe Payen
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Redouane Hajjar
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Yannick Millot
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Christian Bonhomme
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Nathalie Steunou
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|