1
|
Sarkar R, Singh RK, Roy S. Hierarchical Hydration Dynamics of RNA with Nano-Water-Pool at Its Core. J Phys Chem B 2023; 127:6903-6919. [PMID: 37506269 DOI: 10.1021/acs.jpcb.3c03553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Many functional RNAs fold into a compact, roughly globular shape by minimizing the electrostatic repulsion between their negatively charged phosphodiester backbone. The fold of such close, compact RNA architecture is often so designed that its outer surface and complex core both are predominately populated by phosphate groups loosely sequestering bases in the intermediate layers. A number of helical junctions maintain the RNA core and its nano-water-pool. While the folding of RNA is manifested by its counterion environment composed of mixed mono- and divalent salts, the concerted role of ion and water in maintaining an RNA fold is yet to be explored. In this work, detailed atomistic simulations of SAM-I and Add Adenine riboswitch aptamers, and subgenomic flavivirus RNA (sfRNA) have been performed in a physiological mixed mono- and divalent salt environment. All three RNA systems have compact folds with a core diameter of range 1-1.7 nm. The spatiotemporal heterogeneity of RNA hydration was probed in a layer-wise manner by distinguishing the core, the intermediate, and the outer layers. The layer-wise decomposition of hydrogen bonds and collective single-particle reorientational dynamics reveal a nonmonotonic relaxation pattern with the slowest relaxation observed at the intermediate layers that involves functionally important tertiary motifs. The slowness of this intermediate layer is attributed to two types of long-resident water molecules: (i) water from ion-hydration layers and (ii) structurally trapped water (distant from ions). The relaxation kinetics of the core and the surface water essentially exposed to the phosphate groups show well-separated time scales from the intermediate layers. In the slow intermediate layers, site-specific ions and water control the functional dynamics of important RNA motifs like kink-turn, observed in different structure-probing experiments. Most interestingly, we find that as the size of the RNA core increases (SAM1 core < sfRNAcore < Add adenine core), its hydration tends to show faster relaxation. The hierarchical hydration and the layer-wise base-phosphate composition uniquely portray the globular RNA to act like a soft vesicle with a quasi-dynamic nano-water-pool at its core.
Collapse
Affiliation(s)
- Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Rishabh K Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
2
|
From structure and dynamics to biomolecular functions: The ubiquitous role of solvent in biology. Curr Opin Struct Biol 2022; 77:102462. [PMID: 36150344 DOI: 10.1016/j.sbi.2022.102462] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Biological activity requires a solvent that can provide a suitable environment, which satisfies the twin need for stability and the ability to change. Among all the solvents water plays the most important role. We review, analyze, and comment on recent works on the structure and dynamics of water around biomolecules and their role in specific biological functions. While studies in the past have focused on understanding the biomolecule-water interactions through a hydration layer; recently the attention has shifted towards understanding functions at a molecular level. Such a microscopic understanding clearly requires elucidation of detailed dynamical processes where solvent molecules play an important role. Finally, we comment on the advances made in understanding the role of water inside a biological cell.
Collapse
|
3
|
Netz PA. Molecular dynamics simulations of structural and dynamical aspects of DNA hydration water. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:164002. [PMID: 35114661 DOI: 10.1088/1361-648x/ac5198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Water is a remarkable liquid, both because of it is intriguing but also because of its importance. Water plays a key role on the structure and function of biological molecules, but on the other hand also the structure and dynamics of water are deeply influenced by its interactions with biological molecules, specially at low temperatures, where water's anomalies are enhanced. Here we present extensive molecular dynamics simulations of water hydrating a oligonucleotide down to very low temperatures (supercooled water), comparing four water models and analyzing the water structure and dynamics in different domains: water in the minor groove, water in the major groove and bulk water. We found that the water in the grooves is slowed down by the interactions with the nucleic acid and a hints of a dynamic transition regarding translational and orientational dynamics were found, specially for the water models TIP4P/2005 and TIP4P-Ew, which also showed the closest agreement with available experimental data. The behavior of water in such extreme conditions is relevant for the study of cryopreservation of biological tissues.
Collapse
Affiliation(s)
- Paulo A Netz
- Departamento de Físico-Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| |
Collapse
|
4
|
Mardt A, Gorriz RF, Ferraro F, Ulrich P, Zahran M, Imhof P. Effect of a U:G mispair on the water around DNA. Biophys Chem 2022; 283:106779. [DOI: 10.1016/j.bpc.2022.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
|
5
|
Rajasekaran M, Ayappa G. Influence of the extent of hydrophobicity on water organization and dynamics on 2D graphene oxide surfaces. Phys Chem Chem Phys 2022; 24:14909-14923. [DOI: 10.1039/d1cp03962h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene oxide (GO) nanomaterials are being extensively explored for a wide spectrum of applications, ranging from water desalination to fuel cell applications due to their tunable mechanical, thermal, and electrical...
Collapse
|
6
|
Parui S, Jana B. Cold denaturation induced helix-to-helix transition and its implication to activity of helical antifreeze protein. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Sarkar S, Maity A, Chakrabarti R. Microscopic structural features of water in aqueous-reline mixtures of varying compositions. Phys Chem Chem Phys 2021; 23:3779-3793. [PMID: 33532810 DOI: 10.1039/d0cp05341d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reline, a mixture of urea and choline chloride in a 2 : 1 molar ratio, is one of the most frequently used deep eutectic solvents. Pure reline and its aqueous solution have large scale industrial use. Owing to the presence of active hydrogen bond formation sites, urea and choline cations can disrupt the hydrogen-bonded network in water. However, a quantitative understanding of the microscopic structural features of water in the presence of reline is still lacking. We carry out extensive all-atom molecular dynamics simulations to elucidate the effect of the gradual addition of co-solvents on the microscopic arrangements of water molecules. We consider four aqueous solutions of reline, between 26.3 and 91.4 wt%. A disruption of the local hydrogen-bonded structure in water is observed upon inclusion of urea and choline chloride. The extent of deviation of the water structure from tetrahedrality is quantified using the tetrahedral order parameter (qtet). Our analyses show a monotonic increase in the structural disorder as the co-solvents are added. Increase in the qtet values are observed when highly electro-negative hetero-atoms like nitrogen, oxygen of urea and choline cations are counted as partners of the central water molecules. Further insights are drawn from the characterization of the hydrogen-bonded network in water and we observe the gradual rupturing of water-water hydrogen bonds and their subsequent replacement by the water-urea hydrogen bonds. A negligible contribution from the hydrogen bonds between water and bulky choline cations has also been found. Considering all the constituents as the hydrogen bond partners we calculate the possibility of a successful hydrogen bond formation with a central water molecule. This gives a clear picture of the underlying mechanism of water replacement by urea.
Collapse
Affiliation(s)
- Soham Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | | | |
Collapse
|
8
|
Ghosh A, Ghosh S, Ghosh G, Patra A. Implications of relaxation dynamics of collapsed conjugated polymeric nanoparticles for light-harvesting applications. Phys Chem Chem Phys 2021; 23:14549-14563. [DOI: 10.1039/d1cp01618k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanism of the formation of nanoparticles (collapsed state) from the extended state of polymers and their ultrafast excited state relaxation dynamics are illustrated.
Collapse
Affiliation(s)
- Arnab Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Srijon Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Goutam Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Amitava Patra
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
- Institute of Nano Science and Technology
| |
Collapse
|
9
|
Baksi A, Rajbangshi J, Biswas R. Water in biodegradable glucose–water–urea deep eutectic solvent: modifications of structure and dynamics in a crowded environment. Phys Chem Chem Phys 2021; 23:12191-12203. [DOI: 10.1039/d1cp00734c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations have been performed on a highly viscous (η ∼ 255 cP) naturally abundant deep eutectic solvent (NADES) composed of glucose, urea and water in a weight ratio of 6 : 4 : 1 at 328 K.
Collapse
Affiliation(s)
- Atanu Baksi
- Department of Chemical, Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Juriti Rajbangshi
- Department of Chemical, Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| |
Collapse
|
10
|
Hadži S, Lah J. Origin of heat capacity increment in DNA folding: The hydration effect. Biochim Biophys Acta Gen Subj 2020; 1865:129774. [PMID: 33164852 DOI: 10.1016/j.bbagen.2020.129774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Understanding DNA folding thermodynamics is crucial for prediction of DNA thermal stability. It is now well established that DNA folding is accompanied by a decrease of the heat capacity ∆cp, F, however its molecular origin is not understood. In analogy to protein folding it has been assumed that this is due to dehydration of DNA constituents, however no evidence exists to support this conclusion. METHODS Here we analyze partial molar heat capacity of nucleic bases and nucleosides in aqueous solutions obtained from calorimetric experiments and calculate the hydration heat capacity contribution ∆cphyd. RESULTS We present hydration heat capacity contributions of DNA constituents and show that they correlate with the solvent accessible surface area. The average contribution for nucleic base dehydration is +0.56 J mol-1 K-1 Å-2 and can be used to estimate the ∆cp, F contribution for DNA folding. CONCLUSIONS We show that dehydration is one of the major sources contributing to the observed ∆cp, F increment in DNA folding. Other possible sources contributing to the overall ∆cp, F should be significant but appear to compensate each other to high degree. The calculated ∆cphyd for duplexes and noncanonical DNA structures agree excellently with the overall experimental ∆cp, F values. By contrast, empirical parametrizations developed for proteins result in poor ∆cphyd predictions and should not be applied to DNA folding. GENERAL SIGNIFICANCE Heat capacity is one of the main thermodynamic quantities that strongly affects thermal stability of macromolecules. At the molecular level the heat capacity in DNA folding stems from removal of water from nucleobases.
Collapse
Affiliation(s)
- S Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - J Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
11
|
Parui S, Jana B. Factors Promoting the Formation of Clathrate-Like Ordering of Water in Biomolecular Structure at Ambient Temperature and Pressure. J Phys Chem B 2019; 123:811-824. [PMID: 30605607 DOI: 10.1021/acs.jpcb.8b11172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clathrate hydrate forms when a hydrophobic molecule is entrapped inside a water cage or cavity. Although biomolecular structures also have hydrophobic patches, clathrate-like water is found in only a limited number of biomolecules. Also, while clathrate hydrates form at low temperature and moderately higher pressure, clathrate-like water is observed in biomolecular structure at ambient temperature and pressure. These indicate presence of other factors along with hydrophobic environment behind the formation of clathrate-like water in biomolecules. In the current study, we presented a systematic approach to explore the factors behind the formation of clathrate-like water in biomolecules by means of molecular dynamics simulation of a model protein, maxi, which is a naturally occurring nanopore and has clathrate-like water inside the pore. Removal of either confinement or hydrophobic environment results in the disappearance of clathrate-like water ordering, indicating a coupled role of these two factors. Apart from these two factors, clathrate-like water ordering also requires anchoring groups that can stabilize the clathrate-like water through hydrogen bonding. Our results uncover crucial factors for the stabilization of clathrate-like ordering in biomolecular structure which can be used for the development of new biomolecular structure promoting clathrate formation.
Collapse
Affiliation(s)
- Sridip Parui
- School of Chemical Sciences , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Biman Jana
- School of Chemical Sciences , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
12
|
Parui S, Jana B. Molecular Insights into the Unusual Structure of an Antifreeze Protein with a Hydrated Core. J Phys Chem B 2018; 122:9827-9839. [PMID: 30286600 DOI: 10.1021/acs.jpcb.8b05350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The primary driving force for protein folding is the formation of a well-packed, anhydrous core. However, recently, the crystal structure of an antifreeze protein, maxi, has been resolved where the core of the protein is filled with water, which apparently contradicts the existing notion of protein folding. Here, we have performed standard molecular dynamics (MD) simulation, replica exchange MD (REMD) simulation, and umbrella sampling using TIP4P water at various temperatures (300, 260, and 240 K) to explore the origin of this unusual structural feature. It is evident from standard MD and REMD simulations that the protein is found to be stable at 240 K in its unusual state. The core of protein has two layers of semi-clathrate water separating the methyl groups of alanine residues from different helical strands. However, with increasing temperature (260 and 300 K), the stability decreases as the core becomes dehydrated, and methyl groups of alanine are tightly packed driven by hydrophobic interactions. Calculation of the potential of mean force by an umbrella sampling technique between a pair of model hydrophobes resembling maxi protein at 240 K shows the stabilization of second solvent-separated minima (SSM), which provides a thermodynamic rationale of the unusual structural feature in terms of weakening of the hydrophobic interaction. Because the stabilization of SSMs is implicated for cold denaturation, it suggests that the maxi protein is so designed by nature where the cold denatured-like state becomes the biologically active form as it works near or below the freezing point of water.
Collapse
Affiliation(s)
- Sridip Parui
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Biman Jana
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
13
|
|
14
|
Chakraborty S, Jana B. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein. J Phys Chem B 2018; 122:3056-3067. [PMID: 29510055 DOI: 10.1021/acs.jpcb.8b00548] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ice recognition by antifreeze proteins (AFPs) is a subject of topical interest. Among several classes of AFPs, insect AFPs are hyperactive presumably due to their ability to adsorb on basal plane. However, the origin of the basal plane binding specificity is not clearly known. Present work aims to provide atomistic insight into the origin of basal plane recognition by an insect antifreeze protein. Free energy calculations reveal that the order of binding affinity of the AFP toward different ice planes is basal plane > prism plane > pyramidal plane. Critical insight reveals that the observed plane specificity is strongly correlated with the number and their instantaneous fluctuations of clathrate water forming hydrogen bonds with both ice binding surface (IBS) of AFP and ice surface, thus anchoring AFP to the ice surface. On basal plane, anchored clathrate water array is highly stable due to exact match in the periodicity of oxygen atom repeat distances of the ice surface and the threonine repeat distances at the IBS. The stability of anchored clathrate water array progressively decreases upon prism and pyramidal plane adsorption due to mismatch between the threonine ladder and oxygen atom repeat distance. Further analysis reveals that hydration around the methyl side-chains of threonine residues becomes highly significant at low temperature which stabilizes the anchored clathrate water array and dual hydrogen-bonding is a consequence of this stability. Structural insight gained from this study paves the way for rational designing of highly potent antifreeze-mimetic with potential industrial applications.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Biman Jana
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
15
|
Biswas R, Bagchi B. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:013001. [PMID: 29205175 DOI: 10.1088/1361-648x/aa9b1d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the same due to interaction with the surfaces.
Collapse
|
16
|
Parui S, Jana B. Pairwise Hydrophobicity at Low Temperature: Appearance of a Stable Second Solvent-Separated Minimum with Possible Implication in Cold Denaturation. J Phys Chem B 2017; 121:7016-7026. [DOI: 10.1021/acs.jpcb.7b02676] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sridip Parui
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
17
|
Paul S, Ahmed T, Samanta A. Influence of Divalent Counterions on the Dynamics in DNA as Probed by Using a Minor-Groove Binder. Chemphyschem 2017; 18:2058-2064. [DOI: 10.1002/cphc.201700251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sneha Paul
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| | - Tasnim Ahmed
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| | - Anunay Samanta
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| |
Collapse
|
18
|
Abstract
The energetics of B-DNA bending toward the major and minor grooves were quantified by free energy simulations at four different KCl concentrations. Increased [KCl] led to more flexible DNA, with persistence lengths that agreed well with experimental values. At all salt concentrations, major groove bending was preferred, although preferences for major and minor groove bending were similar for the A-tract containing sequence. Since the phosphate repulsions and DNA internal energy favored minor groove bending, the preference for major groove bending was thought to originate from differences in solvation. Water in the minor groove was tighter bound than water in the major groove, and harder to displace than major groove water, which favored the compression of the major groove upon bending. Higher [KCl] decreased the persistence length for both major and minor groove bending but did not greatly affect the free energy spacing between the minor and major groove bending curves. For sequences without A-tracts, salt affected major and minor bending to nearly the same degree, and did not change the preference for major groove bending. For the A-tract containing sequence, an increase in salt concentration decreased the already small energetic difference between major and minor groove bending. Since salts did not significantly affect the relative differences in bending energetics and hydration, it is likely that the increased bending flexibilities upon salt increase are simply due to screening.
Collapse
Affiliation(s)
- Ning Ma
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue CHE 205, Tampa, Florida 33620, United States
| |
Collapse
|
19
|
Chakraborty S, Jana B. Conformational and hydration properties modulate ice recognition by type I antifreeze protein and its mutants. Phys Chem Chem Phys 2017; 19:11678-11689. [DOI: 10.1039/c7cp00221a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutation of wfAFP changes the intrinsic dynamics in such a way that it significantly influences water mediated AFP adsorption on ice.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Biman Jana
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|
20
|
Nakano M, Tateishi-Karimata H, Tanaka S, Tama F, Miyashita O, Nakano SI, Sugimoto N. Local thermodynamics of the water molecules around single- and double-stranded DNA studied by grid inhomogeneous solvation theory. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Abstract
DNA bending is critical for DNA packaging, recognition, and repair, and occurs toward either the major or the minor groove. The anisotropy of B-DNA groove bending was quantified for eight DNA sequences by free energy simulations employing a novel reaction coordinate. The simulations show that bending toward the major groove is preferred for non-A-tracts while the A-tract has a high tendency of bending toward the minor groove. Persistence lengths were generally larger for bending toward the minor groove, which is thought to originate from differences in groove hydration. While this difference in stiffness is one of the factors determining the overall preference of bending direction, the dominant contribution is shown to be a free energy offset between major and minor groove bending. The data suggests that, for the A-tract, this offset is largely determined by inherent structural properties, while differences in groove hydration play a large role for non-A-tracts. By quantifying the energetics of DNA groove bending and rationalizing the origins of the anisotropy, the calculations provide important new insights into a key biological process.
Collapse
Affiliation(s)
- Ning Ma
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| |
Collapse
|
22
|
Wagner D, Rinnenthal J, Narberhaus F, Schwalbe H. Mechanistic insights into temperature-dependent regulation of the simple cyanobacterial hsp17 RNA thermometer at base-pair resolution. Nucleic Acids Res 2015; 43:5572-85. [PMID: 25940621 PMCID: PMC4477652 DOI: 10.1093/nar/gkv414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/08/2015] [Indexed: 12/16/2022] Open
Abstract
The cyanobacterial hsp17 ribonucleicacid thermometer (RNAT) is one of the smallest naturally occurring RNAT. It forms a single hairpin with an internal 1×3-bulge separating the start codon in stem I from the ribosome binding site (RBS) in stem II. We investigated the temperature-dependent regulation of hsp17 by mapping individual base-pair stabilities from solvent exchange nuclear magnetic resonance (NMR) spectroscopy. The wild-type RNAT was found to be stabilized by two critical CG base pairs (C14-G27 and C13-G28). Replacing the internal 1×3 bulge by a stable CG base pair in hsp17rep significantly increased the global stability and unfolding cooperativity as evidenced by circular dichroism spectroscopy. From the NMR analysis, remote stabilization and non-nearest neighbour effects exist at the base-pair level, in particular for nucleotide G28 (five nucleotides apart from the side of mutation). Individual base-pair stabilities are coupled to the stability of the entire thermometer within both the natural and the stabilized RNATs by enthalpy–entropy compensation presumably mediated by the hydration shell. At the melting point the Gibbs energies of the individual nucleobases are equalized suggesting a consecutive zipper-type unfolding mechanism of the RBS leading to a dimmer-like function of hsp17 and switch-like regulation behaviour of hsp17rep. The data show how minor changes in the nucleotide sequence not only offset the melting temperature but also alter the mode of temperature sensing. The cyanobacterial thermosensor demonstrates the remarkable adjustment of natural RNATs to execute precise temperature control.
Collapse
Affiliation(s)
- Dominic Wagner
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7, D-60438 Frankfurt/Main, Germany
| | - Jörg Rinnenthal
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7, D-60438 Frankfurt/Main, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
23
|
Shanak S, Helms V. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations. J Chem Phys 2014; 141:22D512. [PMID: 25494783 DOI: 10.1063/1.4897525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.
Collapse
Affiliation(s)
- Siba Shanak
- Zentrum für Bioinformatik, Universität des Saarlandes, P.O. Box 15 11 50, 66123 Saarbrücken, Germany
| | - Volkhard Helms
- Zentrum für Bioinformatik, Universität des Saarlandes, P.O. Box 15 11 50, 66123 Saarbrücken, Germany
| |
Collapse
|
24
|
Bagchi B. Anomalous power law decay in solvation dynamics of DNA: a mode coupling theory analysis of ion contribution. Mol Phys 2014. [DOI: 10.1080/00268976.2014.904943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Galamba N. Water Tetrahedrons, Hydrogen-Bond Dynamics, and the Orientational Mobility of Water around Hydrophobic Solutes. J Phys Chem B 2014; 118:4169-76. [DOI: 10.1021/jp500067a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. Galamba
- Grupo de Física-Matemática da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
| |
Collapse
|
26
|
On the cooperative formation of non-hydrogen-bonded water at molecular hydrophobic interfaces. Nat Chem 2013; 5:796-802. [DOI: 10.1038/nchem.1716] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022]
|
27
|
Paciaroni A, Orecchini A, Goracci G, Cornicchi E, Petrillo C, Sacchetti F. Glassy Character of DNA Hydration Water. J Phys Chem B 2013; 117:2026-31. [DOI: 10.1021/jp3105437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Paciaroni
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| | - Andrea Orecchini
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
- Institut Laue Langevin, 6 rue J. Horowitz F-38042 Grenoble, France
| | - Guido Goracci
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
| | - Elena Cornicchi
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
| | - Caterina Petrillo
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| | - Francesco Sacchetti
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| |
Collapse
|
28
|
Wei D, Wilson WD, Neidle S. Small-molecule binding to the DNA minor groove is mediated by a conserved water cluster. J Am Chem Soc 2013; 135:1369-77. [PMID: 23276263 DOI: 10.1021/ja308952y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-resolution crystal structures of the DNA duplex sequence d(CGCGAATTCGCG)(2) complexed with three minor-groove ligands are reported. A highly conserved cluster of 11 linked water molecules has been found in the native and all 3 ligand-bound structures, positioned at the boundary of the A/T and G/C regions where the minor groove widens. This cluster appears to play a key structural role in stabilizing noncovalently binding small molecules in the AT region of the B-DNA minor groove. The cluster extends from the backbone phosphate groups along the mouth of the groove and links to DNA and ligands by a network of hydrogen bonds that help to maintain the ligands in position. This arrangement of water molecules is distinct from, but linked by, hydrogen bonding to the well-established spine of hydration, which is displaced by bound ligands. Features of the water cluster and observed differences in binding modes help to explain the measured binding affinities and thermodynamic characteristics of these ligands on binding to AT sites in DNA.
Collapse
Affiliation(s)
- DengGuo Wei
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | | | |
Collapse
|
29
|
Zhu X, Schatz GC. Molecular dynamics study of the role of the spine of hydration in DNA A-tracts in determining nucleosome occupancy. J Phys Chem B 2012; 116:13672-81. [PMID: 23102092 PMCID: PMC3508256 DOI: 10.1021/jp3084887] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A-tracts in DNA are generally associated with reduced nucleosome occupancy relative to other sequences, such that the longer the A-tract, the less likely that nucleosomes are found. In this paper, we use molecular dynamics methods to study the structural properties of A-tracts, and in particular the role that the spine of hydration in A-tracts plays in allowing DNA to distort to the highly bent structure needed to form nucleosomes. This study includes a careful assessment of the ability of the Amber (parmbsc0), CHARMM27, and BMS force fields to describe these structural waters for the AAATTT sequence (here capped with CGC and GCG), including comparisons with X-ray results. All three force fields show a spine of hydration, but BMS and Amber show better correlation with measured properties, such as in narrowing of the minor groove width associated with the A-tract. We have used Amber to study the spine properties for several 6 and 14 base-pair A-tracts (all capped with CGC and GCG). These calculations show that the structural waters are tightly bound for "pure" A-tracts that allow for A-water-T links, and for AT steps that allow for a T-water-T link, but other sequences disfavor structural water, especially those that lead to A-water-A, G-water-G, and C-water-A structures. In addition, we show that pure A-tracts favor roll values close to the Watson-Crick value for linear DNA, while A-tract sequences containing embedded T's, C's, or G's that are less favorable to structural water are more flexible. This implies the essential role of the spine of hydration in disfavoring nucleosome formation.
Collapse
Affiliation(s)
- Xiao Zhu
- Texas Advanced Computing Center, Austin, Texas 78758-4497, USA
| | | |
Collapse
|
30
|
Jamadagni SN, Godawat R, Garde S. Hydrophobicity of proteins and interfaces: insights from density fluctuations. Annu Rev Chem Biomol Eng 2012; 2:147-71. [PMID: 22432614 DOI: 10.1146/annurev-chembioeng-061010-114156] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macroscopic characterizations of hydrophobicity (e.g., contact angle measurements) do not extend to the surfaces of proteins and nanoparticles. Molecular measures of hydrophobicity of such surfaces need to account for the behavior of hydration water. Theory and state-of-the-art simulations suggest that water density fluctuations provide such a measure; fluctuations are enhanced near hydrophobic surfaces and quenched with increasing surface hydrophilicity. Fluctuations affect conformational equilibria and dynamics of molecules at interfaces. Enhanced fluctuations are reflected in enhanced cavity formation, more favorable binding of hydrophobic solutes, increased compressibility of hydration water, and enhanced water-water correlations at hydrophobic surfaces. These density fluctuation-based measures can be used to develop practical methods to map the hydrophobicity/philicity of heterogeneous surfaces including those of proteins. They highlight that the hydrophobicity of a group is context dependent and is significantly affected by its environment (e.g., chemistry and topography) and especially by confinement. The ability to include information about hydration water in mapping hydrophobicity is expected to significantly impact our understanding of protein-protein interactions as well as improve drug design and discovery methods and bioseparation processes.
Collapse
Affiliation(s)
- Sumanth N Jamadagni
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | | | |
Collapse
|
31
|
Bagchi B. From anomalies in neat liquid to structure, dynamics and function in the biological world. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2011.12.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Roy S, Bagchi B. Free Energy Barriers for Escape of Water Molecules from Protein Hydration Layer. J Phys Chem B 2012; 116:2958-68. [DOI: 10.1021/jp209437j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Susmita Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
33
|
Sinha SK, Bandyopadhyay S. Dynamic properties of water around a protein-DNA complex from molecular dynamics simulations. J Chem Phys 2012; 135:135101. [PMID: 21992339 DOI: 10.1063/1.3634004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Formation of protein-DNA complex is an important step in regulation of genes in living organisms. One important issue in this problem is the role played by water in mediating the protein-DNA interactions. In this work, we have carried out atomistic molecular dynamics simulations to explore the heterogeneous dynamics of water molecules present in different regions around a complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. It is demonstrated that such heterogeneous water motions around the complex are correlated with the relaxation time scales of hydrogen bonds formed by those water molecules with the protein and DNA. The calculations reveal the existence of a fraction of extraordinarily restricted water molecules forming a highly rigid thin layer in between the binding motifs of the protein and DNA. It is further proved that higher rigidity of water layers around the complex originates from more frequent reformations of broken water-water hydrogen bonds. Importantly, it is found that the formation of the complex affects the transverse and longitudinal degrees of freedom of surrounding water molecules in a nonuniform manner.
Collapse
Affiliation(s)
- Sudipta Kumar Sinha
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India
| | | |
Collapse
|
34
|
Tesar SL, Leveritt JM, Kurnosov AA, Burin AL. Temperature dependence for the rate of hole transfer in DNA: Nonadiabatic regime. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Lai PK, Hsieh CM, Lin ST. Rapid determination of entropy and free energy of mixtures from molecular dynamics simulations with the two-phase thermodynamic model. Phys Chem Chem Phys 2012; 14:15206-13. [DOI: 10.1039/c2cp42011b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Furse KE, Corcelli SA. Effects of an unnatural base pair replacement on the structure and dynamics of DNA and neighboring water and ions. J Phys Chem B 2011; 114:9934-45. [PMID: 20614919 DOI: 10.1021/jp105761b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Incorporating small molecule probes into biomolecular systems to report on local structure and dynamics is a powerful strategy that underlies a wide variety of experimental techniques, including fluorescence, electron paramagnetic resonance (EPR), and Forster resonance energy transfer (FRET) measurements. When an unnatural probe is inserted into a protein or DNA, the degree to which the presence of the probe has perturbed the local structure and dynamics it was intended to study is always an important concern. Here, molecular dynamics (MD) simulations are used to systematically study the effect of replacing a DNA base pair with a fluorescent probe, coumarin 102 deoxyriboside, at six unique sites along an A-tract DNA dodecamer. While the overall structure of the DNA oligonucleotide remains intact, replacement of A*T base pairs leads to widespread structural and dynamic perturbations up to four base pairs away from the probe site, including widening of the minor groove and increased DNA flexibility. New DNA conformations, not observed in the native sequence, are sometimes found in the vicinity of the probe and its partner abasic site analog. Strong correlations are demonstrated between DNA surface topology and water mobility.
Collapse
Affiliation(s)
- K E Furse
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
37
|
Biswas R, Bagchi B. A kinetic Ising model study of dynamical correlations in confined fluids: Emergence of both fast and slow time scales. J Chem Phys 2010; 133:084509. [DOI: 10.1063/1.3474948] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Pal N, Verma SD, Sen S. Probe Position Dependence of DNA Dynamics: Comparison of the Time-Resolved Stokes Shift of Groove-Bound to Base-Stacked Probes. J Am Chem Soc 2010; 132:9277-9. [DOI: 10.1021/ja103387t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nibedita Pal
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sachin Dev Verma
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|