1
|
Naseem-Khan S, Lagardère L, Narth C, Cisneros GA, Ren P, Gresh N, Piquemal JP. Development of the Quantum-Inspired SIBFA Many-Body Polarizable Force Field: Enabling Condensed-Phase Molecular Dynamics Simulations. J Chem Theory Comput 2022; 18:3607-3621. [PMID: 35575306 PMCID: PMC10851344 DOI: 10.1021/acs.jctc.2c00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the extension of the Sum of Interactions Between Fragments Ab initio Computed (SIBFA) many-body polarizable force field to condensed-phase molecular dynamics (MD) simulations. The quantum-inspired SIBFA procedure is grounded on simplified integrals obtained from localized molecular orbital theory and achieves full separability of its intermolecular potential. It embodies long-range multipolar electrostatics (up to quadrupole) coupled to a short-range penetration correction (up to charge-quadrupole), exchange repulsion, many-body polarization, many-body charge transfer/delocalization, exchange dispersion, and dispersion (up to C10). This enables the reproduction of all energy contributions of ab initio symmetry-adapted perturbation theory (SAPT(DFT)) gas-phase reference computations. The SIBFA approach has been integrated within the Tinker-HP massively parallel MD package. To do so, all SIBFA energy gradients have been derived and the approach has been extended to enable periodic boundary conditions simulations using smooth particle mesh Ewald. This novel implementation also notably includes a computationally tractable simplification of the many-body charge transfer/delocalization contribution. As a proof of concept, we perform a first computational experiment defining a water model fitted on a limited set of SAPT(DFT) data. SIBFA is shown to enable a satisfactory reproduction of both gas-phase energetic contributions and condensed-phase properties highlighting the importance of its physically motivated functional form.
Collapse
Affiliation(s)
- Sehr Naseem-Khan
- LCT, UMR 7616 CNRS, Sorbonne Université, 75005 Paris, France
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Louis Lagardère
- LCT, UMR 7616 CNRS, Sorbonne Université, 75005 Paris, France
- IP2CT, FR 2622, CNRS, Sorbonne Université, 75005 Paris, France
| | | | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nohad Gresh
- LCT, UMR 7616 CNRS, Sorbonne Université, 75005 Paris, France
| | - Jean-Philip Piquemal
- LCT, UMR 7616 CNRS, Sorbonne Université, 75005 Paris, France
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
2
|
Devillers M, Piquemal J, Salmon L, Gresh N. Calibration of the dianionic phosphate group: Validation on the recognition site of the homodimeric enzyme phosphoglucose isomerase. J Comput Chem 2020; 41:839-854. [DOI: 10.1002/jcc.26134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Marion Devillers
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris‐Saclay, Univ Paris‐Sud, UMR 8182 CNRS, rue du Doyen Georges Poitou F‐91405 Orsay France
| | - Jean‐Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS Paris France
- Department of Biomolecular EngineeringThe University of Texas at Austin Texas 78712
| | - Laurent Salmon
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris‐Saclay, Univ Paris‐Sud, UMR 8182 CNRS, rue du Doyen Georges Poitou F‐91405 Orsay France
| | - Nohad Gresh
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS Paris France
| |
Collapse
|
3
|
Abstract
Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.
Collapse
Affiliation(s)
| | - Kenneth M. Merz
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute of Cyber-Enabled Research, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Gresh N, Perahia D, de Courcy B, Foret J, Roux C, El-Khoury L, Piquemal JP, Salmon L. Complexes of a Zn-metalloenzyme binding site with hydroxamate-containing ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown. J Comput Chem 2016; 37:2770-2782. [DOI: 10.1002/jcc.24503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Nohad Gresh
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Chemistry and Biology, Nucleo(s)tides and Immunology for Therapy (CBNIT); UMR 8601 CNRS, UFR Biomédicale; Paris France
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquées (LBPA), UMR 8113; Ecole Normale Supérieure Cachan France
| | - Benoit de Courcy
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Chemistry and Biology, Nucleo(s)tides and Immunology for Therapy (CBNIT); UMR 8601 CNRS, UFR Biomédicale; Paris France
| | - Johanna Foret
- Laboratoire de Chimie Bioorganique et Bioinorganique; Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris-Saclay, Univ Paris-Sud, UMR 8182 CNRS; rue du Doyen Georges Poitou Orsay F-91405 France
| | - Céline Roux
- Laboratoire de Chimie Bioorganique et Bioinorganique; Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris-Saclay, Univ Paris-Sud, UMR 8182 CNRS; rue du Doyen Georges Poitou Orsay F-91405 France
| | - Lea El-Khoury
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Centre d'Analyses et de Recherche; UR EGFEM, LSIM, Faculté de Sciences, Saint Joseph University of Beirut; BP 11-514, Riad El Solh Beirut 1116-2050 Lebanon
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Department of Biomolecular Engineering; The University of Texas at Austin; Texas 78712
| | - Laurent Salmon
- Laboratoire de Chimie Bioorganique et Bioinorganique; Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris-Saclay, Univ Paris-Sud, UMR 8182 CNRS; rue du Doyen Georges Poitou Orsay F-91405 France
| |
Collapse
|
5
|
de Ruyck J, Brysbaert G, Blossey R, Lensink MF. Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem 2016; 9:1-11. [PMID: 27390530 PMCID: PMC4930227 DOI: 10.2147/aabc.s105289] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
New molecular modeling approaches, driven by rapidly improving computational platforms, have allowed many success stories for the use of computer-assisted drug design in the discovery of new mechanism-or structure-based drugs. In this overview, we highlight three aspects of the use of molecular docking. First, we discuss the combination of molecular and quantum mechanics to investigate an unusual enzymatic mechanism of a flavoprotein. Second, we present recent advances in anti-infectious agents' synthesis driven by structural insights. At the end, we focus on larger biological complexes made by protein-protein interactions and discuss their relevance in drug design. This review provides information on how these large systems, even in the presence of the solvent, can be investigated with the outlook of drug discovery.
Collapse
Affiliation(s)
| | | | - Ralf Blossey
- University Lille, CNRS UMR8576 UGSF, Lille, France
| | | |
Collapse
|
6
|
Shi Y, Ren P, Schnieders M, Piquemal JP. Polarizable Force Fields for Biomolecular Modeling. REVIEWS IN COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1002/9781118889886.ch2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Kerns SJ, Agafonov RV, Cho YJ, Pontiggia F, Otten R, Pachov DV, Kutter S, Phung LA, Murphy PN, Thai V, Alber T, Hagan MF, Kern D. The energy landscape of adenylate kinase during catalysis. Nat Struct Mol Biol 2015; 22:124-31. [PMID: 25580578 PMCID: PMC4318763 DOI: 10.1038/nsmb.2941] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/26/2014] [Indexed: 12/17/2022]
Abstract
Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8,000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. Here we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, molecular-dynamics simulations and crystallography of active complexes. We find that the Mg(2+) cofactor activates two distinct molecular events: phosphoryl transfer (>10(5)-fold) and lid opening (10(3)-fold). In contrast, mutation of an essential active site arginine decelerates phosphoryl transfer 10(3)-fold without substantially affecting lid opening. Our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a preorganized active site.
Collapse
Affiliation(s)
- S Jordan Kerns
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Roman V Agafonov
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Young-Jin Cho
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Francesco Pontiggia
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Renee Otten
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Dimitar V Pachov
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Steffen Kutter
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Lien A Phung
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Padraig N Murphy
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Vu Thai
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | | | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, Massachusetts, USA
| | - Dorothee Kern
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
8
|
Dudev T, Devereux M, Meuwly M, Lim C, Piquemal JP, Gresh N. Quantum-chemistry based calibration of the alkali metal cation series (Li+Cs+) for large-scale polarizable molecular mechanics/dynamics simulations. J Comput Chem 2014; 36:285-302. [DOI: 10.1002/jcc.23801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/05/2014] [Accepted: 11/10/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy; University of Sofia; 1164 Sofia Bulgaria
| | - Mike Devereux
- Department of Chemistry; University of Basel; Basel Switzerland
| | - Markus Meuwly
- Department of Chemistry; University of Basel; Basel Switzerland
| | - Carmay Lim
- Institute of Biomedical Sciences; Academia Sinica; Taipei 115 Taiwan
- Department of Chemistry; National Tsing Hua University; Hsinchu 300 Taiwan
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Universités; UPMC, UMR7616 CNRS Paris France
| | - Nohad Gresh
- Chemistry & Biology, Nucleo(s)tides & Immunology for Therapy (CBNIT), CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale; 45 rue des Saints-Pères, 75270 Paris Cedex 06 France
| |
Collapse
|
9
|
Gresh N, El Hage K, Perahia D, Piquemal JP, Berthomieu C, Berthomieu D. Polarizable molecular mechanics studies of Cu(I)/Zn(II) superoxide dismutase: Bimetallic binding site and structured waters. J Comput Chem 2014; 35:2096-106. [DOI: 10.1002/jcc.23724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Nohad Gresh
- Chemistry and Biology, Nucleo(s)tides and Immunology for Therapy (CBNIT); UMR 8601 CNRS, UFR Biomédicale Paris France
| | - Krystel El Hage
- Chemistry and Biology, Nucleo(s)tides and Immunology for Therapy (CBNIT); UMR 8601 CNRS, UFR Biomédicale Paris France
- Unité de Biochimie, Université Saint-Joseph; Beirut Lebanon
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA); UMR 8113, Ecole Normale Supérieure France
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Universités; UPMC, UMR7616 CNRS Paris France
| | - Catherine Berthomieu
- CEA, DSV, IBEB, Laboratoire des Interactions Protéine-Métal; Saint-Paul-lez-Durance France
- CNRS, UMR Biologie Végétale et Microbiologie Environnementale; Saint-Paul-lez-Durance France
| | - Dorothée Berthomieu
- Institut Charles Gerhardt, UMR 5253, CNRS-UM2-UM1-ENSCM; 8 rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| |
Collapse
|
10
|
Chaudret R, Gresh N, Narth C, Lagardère L, Darden TA, Cisneros GA, Piquemal JP. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations. J Phys Chem A 2014; 118:7598-612. [PMID: 24878003 DOI: 10.1021/jp5051657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate as a proof of principle the capabilities of a novel hybrid MM'/MM polarizable force field to integrate short-range quantum effects in molecular mechanics (MM) through the use of Gaussian electrostatics. This lead to a further gain in accuracy in the representation of the first coordination shell of metal ions. It uses advanced electrostatics and couples two point dipole polarizable force fields, namely, the Gaussian electrostatic model (GEM), a model based on density fitting, which uses fitted electronic densities to evaluate nonbonded interactions, and SIBFA (sum of interactions between fragments ab initio computed), which resorts to distributed multipoles. To understand the benefits of the use of Gaussian electrostatics, we evaluate first the accuracy of GEM, which is a pure density-based Gaussian electrostatics model on a test Ca(II)-H2O complex. GEM is shown to further improve the agreement of MM polarization with ab initio reference results. Indeed, GEM introduces nonclassical effects by modeling the short-range quantum behavior of electric fields and therefore enables a straightforward (and selective) inclusion of the sole overlap-dependent exchange-polarization repulsive contribution by means of a Gaussian damping function acting on the GEM fields. The S/G-1 scheme is then introduced. Upon limiting the use of Gaussian electrostatics to metal centers only, it is shown to be able to capture the dominant quantum effects at play on the metal coordination sphere. S/G-1 is able to accurately reproduce ab initio total interaction energies within closed-shell metal complexes regarding each individual contribution including the separate contributions of induction, polarization, and charge-transfer. Applications of the method are provided for various systems including the HIV-1 NCp7-Zn(II) metalloprotein. S/G-1 is then extended to heavy metal complexes. Tested on Hg(II) water complexes, S/G-1 is shown to accurately model polarization up to quadrupolar response level. This opens up the possibility of embodying explicit scalar relativistic effects in molecular mechanics thanks to the direct transferability of ab initio pseudopotentials. Therefore, incorporating GEM-like electron density for a metal cation enable the introduction of nonambiguous short-range quantum effects within any point-dipole based polarizable force field without the need of an extensive parametrization.
Collapse
Affiliation(s)
- Robin Chaudret
- Sorbonne Universités , UPMC, Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Xiang DD, Geng QX, Cong H, Tao Z, Yamato T. Host–guest interaction of hemicucurbiturils with phenazine hydrochloride salt. Supramol Chem 2014. [DOI: 10.1080/10610278.2014.904866] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ding-Ding Xiang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Qing-Xia Geng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502, Japan
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Takehiko Yamato
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502, Japan
| |
Collapse
|
12
|
Cisneros GA, Karttunen M, Ren P, Sagui C. Classical electrostatics for biomolecular simulations. Chem Rev 2014; 114:779-814. [PMID: 23981057 PMCID: PMC3947274 DOI: 10.1021/cr300461d] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Berthelot K, Estevez Y, Deffieux A, Peruch F. Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis. Biochimie 2012; 94:1621-34. [DOI: 10.1016/j.biochi.2012.03.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/27/2012] [Indexed: 11/25/2022]
|
14
|
Gresh N, de Courcy B, Piquemal JP, Foret J, Courtiol-Legourd S, Salmon L. Polarizable Water Networks in Ligand–Metalloprotein Recognition. Impact on the Relative Complexation Energies of Zn-Dependent Phosphomannose Isomerase with d-Mannose 6-Phosphate Surrogates. J Phys Chem B 2011; 115:8304-16. [DOI: 10.1021/jp2024654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nohad Gresh
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601 CNRS, Univ Paris Descartes, UFR Biomédicale, Faculté de Médecine de Paris, F-75006, Paris, France
| | - Benoit de Courcy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601 CNRS, Univ Paris Descartes, UFR Biomédicale, Faculté de Médecine de Paris, F-75006, Paris, France
- Laboratoire de Chimie Théorique, UPMC Univ Paris 06, UMR7616, F-75252, Paris, France
- Laboratoire de Chimie Théorique, CNRS, UMR7616, F-75252, Paris, France
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, UPMC Univ Paris 06, UMR7616, F-75252, Paris, France
- Laboratoire de Chimie Théorique, CNRS, UMR7616, F-75252, Paris, France
| | - Johanna Foret
- Laboratoire de Chimie Bioorganique et Bioinorganique, Univ Paris-Sud, ICMMO, UMR8182, F-91405, Orsay, France
- Laboratoire de Chimie Bioorganique et Bioinorganique, CNRS, ICMMO, UMR8182, F-91405, Orsay, France
| | - Stéphanie Courtiol-Legourd
- Laboratoire de Chimie Bioorganique et Bioinorganique, Univ Paris-Sud, ICMMO, UMR8182, F-91405, Orsay, France
- Laboratoire de Chimie Bioorganique et Bioinorganique, CNRS, ICMMO, UMR8182, F-91405, Orsay, France
| | - Laurent Salmon
- Laboratoire de Chimie Bioorganique et Bioinorganique, Univ Paris-Sud, ICMMO, UMR8182, F-91405, Orsay, France
- Laboratoire de Chimie Bioorganique et Bioinorganique, CNRS, ICMMO, UMR8182, F-91405, Orsay, France
| |
Collapse
|
15
|
Devereux M, van Severen MC, Parisel O, Piquemal JP, Gresh N. Role of Cation Polarization in holo- and hemi-Directed [Pb(H2O)n]2+ Complexes and Development of a Pb2+ Polarizable Force Field. J Chem Theory Comput 2010; 7:138-47. [DOI: 10.1021/ct1004005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mike Devereux
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex06, France; UPMC, Université Paris 06, UMR 7616, Laboratoire de Chimie Théorique, Case Courrier 137, 4 Place Jussieu, F-75005 Paris, France; and CNRS, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005 Paris, France
| | - Marie-Céline van Severen
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex06, France; UPMC, Université Paris 06, UMR 7616, Laboratoire de Chimie Théorique, Case Courrier 137, 4 Place Jussieu, F-75005 Paris, France; and CNRS, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005 Paris, France
| | - Olivier Parisel
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex06, France; UPMC, Université Paris 06, UMR 7616, Laboratoire de Chimie Théorique, Case Courrier 137, 4 Place Jussieu, F-75005 Paris, France; and CNRS, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005 Paris, France
| | - Jean-Philip Piquemal
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex06, France; UPMC, Université Paris 06, UMR 7616, Laboratoire de Chimie Théorique, Case Courrier 137, 4 Place Jussieu, F-75005 Paris, France; and CNRS, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005 Paris, France
| | - Nohad Gresh
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex06, France; UPMC, Université Paris 06, UMR 7616, Laboratoire de Chimie Théorique, Case Courrier 137, 4 Place Jussieu, F-75005 Paris, France; and CNRS, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|