1
|
Bryl K. Fluorescence Resonance Energy Transfer (FRET) as a Spectroscopic Ruler for the Investigation of Protein Induced Lipid Membrane Curvature: Bacteriorhodopsin and Bacteriorhodopsin Analogs in Model Lipid Membranes. APPLIED SPECTROSCOPY 2023; 77:187-199. [PMID: 36229916 DOI: 10.1177/00037028221135645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacteriorhodopsin (bR) is a light-driven proton pump existing in the purple membranes (PM) of Halobacterium salinarum. The effects associated with changes in proton distribution (proton gradient, membrane electric potential) play a key role in ATPase stimulation. However, how the bioenergetic modulus (bR-PM-ATPase) functions remains unclear. One can find indications that hydrophobic matching and the curvature of the lipid membrane may form a functional link between bR and ATPase. To verify whether an interaction between bR and lipids can lead to curvature of the lipid membrane, a spectroscopic ruler, that is, a fluorescence resonance energy transfer (FRET) tool, was used. The distances from fluorescent lipid probes [octadecyl rhodamine B chloride (RhB), 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), 16-(9-anthroyloxy) palmitic acid (16AP), and hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH), to the retinal chromophore of bR incorporated into phospholipid vesicles, were measured. The incorporation of retinal analogues with changed shape and/or altered electronic properties into the binding site of a bR or bR mutant were used to strengthen the feedback between the protein surrounding and chromophore. The experiments were performed with wild-type and D96N-mutated bR carrying retinal or 14-(12-,10-, 13,14-bi-) fluororetinal. As far as it is known, this is the first time that results obtained by the FRET method show that bR can induce a change in lipid structure interpreted as hydrophobically induced curving of the lipid membrane. Evidence was provided that the chromophore contributed to this effect. The extent of contribution was dependent on the chromophore structure in close vicinity to the place of its link with opsin. The implications of these findings for bR-PM-ATPase module functioning are also discussed.
Collapse
Affiliation(s)
- Krzysztof Bryl
- Department of Physics and Biophysics, 49674University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
2
|
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: molecular aspects and emerging applications. Microb Cell Fact 2020; 19:176. [PMID: 32887610 PMCID: PMC7650269 DOI: 10.1186/s12934-020-01433-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).
Collapse
Affiliation(s)
- Jorge Royes
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France. .,Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France.
| | - Valérie Biou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Christophe Tribet
- Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France.
| |
Collapse
|
3
|
Cogger VC, Roessner U, Warren A, Fraser R, Le Couteur DG. A Sieve-Raft Hypothesis for the regulation of endothelial fenestrations. Comput Struct Biotechnol J 2013; 8:e201308003. [PMID: 24688743 PMCID: PMC3962122 DOI: 10.5936/csbj.201308003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/31/2013] [Accepted: 08/11/2013] [Indexed: 01/13/2023] Open
Affiliation(s)
- Victoria C Cogger
- Centre for Education and Research on Ageing and ANZAC Research Institute, Concord Hospital and University of Sydney, Sydney NSW, Australia ; Charles Perkins Centre, University of Sydney NSW Australia
| | - Ute Roessner
- Metabolomics Australia and Australian Centre for Plant Functional Genomics, The University of Melbourne, 3010 Victoria, Australia
| | - Alessandra Warren
- Centre for Education and Research on Ageing and ANZAC Research Institute, Concord Hospital and University of Sydney, Sydney NSW, Australia ; Charles Perkins Centre, University of Sydney NSW Australia
| | - Robin Fraser
- Christchurch School of Medicine, University of Otago, Christchurch NZ
| | - David G Le Couteur
- Centre for Education and Research on Ageing and ANZAC Research Institute, Concord Hospital and University of Sydney, Sydney NSW, Australia ; Charles Perkins Centre, University of Sydney NSW Australia
| |
Collapse
|
4
|
Du H, Li D, Wang Y, Wang C, Zhang D, Yang YL, Wang C. Determination of the Surface Charge Density and Temperature Dependence of Purple Membrane by Electric Force Microscopy. J Phys Chem B 2013; 117:9895-9. [DOI: 10.1021/jp403075w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Huiwen Du
- National Center for Nanoscience and Technology, Beijing 100190, People’s
Republic of China
- Department of Chemistry, Tsinghua University, Beijing 100084,
China
| | - Denghua Li
- National Center for Nanoscience and Technology, Beijing 100190, People’s
Republic of China
| | - Yibing Wang
- National Center for Nanoscience and Technology, Beijing 100190, People’s
Republic of China
| | - Chenxuan Wang
- National Center for Nanoscience and Technology, Beijing 100190, People’s
Republic of China
- Department of Chemistry, Tsinghua University, Beijing 100084,
China
| | - Dongdong Zhang
- National Center for Nanoscience and Technology, Beijing 100190, People’s
Republic of China
| | - Yan-lian Yang
- National Center for Nanoscience and Technology, Beijing 100190, People’s
Republic of China
| | - Chen Wang
- National Center for Nanoscience and Technology, Beijing 100190, People’s
Republic of China
| |
Collapse
|
5
|
Rhinow D, Chizhik I, Baumann RP, Noll F, Hampp N. Crystallinity of Purple Membranes Comprising the Chloride-Pumping Bacteriorhodopsin Variant D85T and Its Modulation by pH and Salinity. J Phys Chem B 2010; 114:15424-8. [DOI: 10.1021/jp108502p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Rhinow
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany, Philipps-University of Marburg, Department of Chemistry, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Ivan Chizhik
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany, Philipps-University of Marburg, Department of Chemistry, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Roelf-Peter Baumann
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany, Philipps-University of Marburg, Department of Chemistry, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Frank Noll
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany, Philipps-University of Marburg, Department of Chemistry, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Norbert Hampp
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany, Philipps-University of Marburg, Department of Chemistry, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| |
Collapse
|