1
|
Nikolaev D, Mironov VN, Metelkina EM, Shtyrov AA, Mereshchenko AS, Demidov NA, Vyazmin SY, Tennikova TB, Moskalenko SE, Bondarev SA, Zhouravleva GA, Vasin AV, Panov MS, Ryazantsev MN. Rational Design of Far-Red Archaerhodopsin-3-Based Fluorescent Genetically Encoded Voltage Indicators: from Elucidation of the Fluorescence Mechanism in Archers to Novel Red-Shifted Variants. ACS PHYSICAL CHEMISTRY AU 2024; 4:347-362. [PMID: 39069984 PMCID: PMC11274289 DOI: 10.1021/acsphyschemau.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 07/30/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) have found wide applications as molecular tools for visualization of changes in cell membrane potential. Among others, several classes of archaerhodopsin-3-based GEVIs have been developed and have proved themselves promising in various molecular imaging studies. To expand the application range for this type of GEVIs, new variants with absorption band maxima shifted toward the first biological window and enhanced fluorescence signal are required. Here, we integrate computational and experimental strategies to reveal structural factors that distinguish far-red bright archaerhodopsin-3-based GEVIs, Archers, obtained by directed evolution in a previous study (McIsaac et al., PNAS, 2014) and the wild-type archaerhodopsin-3 with an extremely dim fluorescence signal, aiming to use the obtained information in subsequent rational design. We found that the fluorescence can be enhanced by stabilization of a certain conformation of the protein, which, in turn, can be achieved by tuning the pK a value of two titratable residues. These findings were supported further by introducing mutations into wild-type archeorhodopsin-3 and detecting the enhancement of the fluorescence signal. Finally, we came up with a rational design and proposed previously unknown Archers variants with red-shifted absorption bands (λmax up to 640 nm) and potential-dependent bright fluorescence (quantum yield up to 0.97%).
Collapse
Affiliation(s)
- Dmitrii
M. Nikolaev
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
- Institute
of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Vladimir N. Mironov
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Ekaterina M. Metelkina
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Andrey A. Shtyrov
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Andrey S. Mereshchenko
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Nikita A. Demidov
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Sergey Yu. Vyazmin
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Tatiana B. Tennikova
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Svetlana E. Moskalenko
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Vavilov
Institute of General Genetics, St. Petersburg
Branch, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Stanislav A. Bondarev
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Laboratory
of Amyloid Biology, Saint Petersburg State
University, St. Petersburg 199034, Russia
| | - Galina A. Zhouravleva
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Laboratory
of Amyloid Biology, Saint Petersburg State
University, St. Petersburg 199034, Russia
| | - Andrey V. Vasin
- Institute
of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Maxim S. Panov
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
- St.
Petersburg State Chemical Pharmaceutical University, Professor Popov str., 14, lit. A, St. Petersburg 197022, Russia
| | - Mikhail N. Ryazantsev
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| |
Collapse
|
2
|
Taguchi S, Niwa S, Dao HA, Tanaka Y, Takeda R, Fukai S, Hasegawa K, Takeda K. Detailed analysis of distorted retinal and its interaction with surrounding residues in the K intermediate of bacteriorhodopsin. Commun Biol 2023; 6:190. [PMID: 36808185 PMCID: PMC9938236 DOI: 10.1038/s42003-023-04554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
The K intermediate of proton pumping bacteriorhodopsin is the first intermediate generated after isomerization of retinal to the 13-cis form. Although various structures have been reported for the K intermediate until now, these differ from each other, especially in terms of the conformation of the retinal chromophore and its interaction with surrounding residues. We report here an accurate X-ray crystallographic analysis of the K structure. The polyene chain of 13-cis retinal is observed to be S-shaped. The side chain of Lys216, which is covalently bound to retinal via the Schiff-base linkage, interacts with residues, Asp85 and Thr89. In addition, the Nζ-H of the protonated Schiff-base linkage interacts with a residue, Asp212 and a water molecule, W402. Based on quantum chemical calculations for this K structure, we examine the stabilizing factors of distorted conformation of retinal and propose a relaxation manner to the next L intermediate.
Collapse
Affiliation(s)
- Shoun Taguchi
- grid.258799.80000 0004 0372 2033Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku 606-8502 Japan
| | - Satomi Niwa
- grid.258799.80000 0004 0372 2033Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku 606-8502 Japan
| | - Hoang-Anh Dao
- grid.258799.80000 0004 0372 2033Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku 606-8502 Japan
| | - Yoshihiro Tanaka
- grid.258799.80000 0004 0372 2033Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku 606-8502 Japan
| | - Ryota Takeda
- grid.258799.80000 0004 0372 2033Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku 606-8502 Japan
| | - Shuya Fukai
- grid.258799.80000 0004 0372 2033Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku 606-8502 Japan
| | - Kazuya Hasegawa
- grid.410592.b0000 0001 2170 091XStructural Biology Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502, Japan.
| |
Collapse
|
3
|
Koua FHM, Kandori H. Light-induced structural changes during early photo-intermediates of the eubacterial Cl−pump Fulvimarina rhodopsin observed by FTIR difference spectroscopy. RSC Adv 2016. [DOI: 10.1039/c5ra19363j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fulvimarina pelagirhodopsin (FR) is a member of inward eubacterial light-activated Cl−translocating rhodopsins (ClR) that were found recently in marine bacteria.
Collapse
Affiliation(s)
| | - Hideki Kandori
- OptoBioTechnology Research Center
- Nagoya Institute of Technology
- 466-8555 Nagoya
- Japan
- Department of Frontier Materials
| |
Collapse
|
4
|
Wolter T, Elstner M, Fischer S, Smith JC, Bondar AN. Mechanism by which Untwisting of Retinal Leads to Productive Bacteriorhodopsin Photocycle States. J Phys Chem B 2014; 119:2229-40. [DOI: 10.1021/jp505818r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tino Wolter
- Institute of Physical
Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical
Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Stefan Fischer
- IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | - Jeremy C. Smith
- Center for
Molecular
Biophysics, University of Tenessee, Oak Ridge National Laboratory, PO BOX 2008 MS6164, Oak Ridge, Tennessee 37831-6164, United States
| | - Ana-Nicoleta Bondar
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
5
|
Dioumaev AK, Petrovskaya LE, Wang JM, Balashov SP, Dolgikh DA, Kirpichnikov MP, Lanyi JK. Photocycle of Exiguobacterium sibiricum rhodopsin characterized by low-temperature trapping in the IR and time-resolved studies in the visible. J Phys Chem B 2013; 117:7235-53. [PMID: 23718558 DOI: 10.1021/jp402430w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photocycle of the retinal protein from Exiguobacterium sibiricum, which differs from bacteriorhodopsin in both its primary donor and acceptor, is characterized by visible and infrared spectroscopy. At pH above pKa ~6.5, we find a bacteriorhodopsin-like photocycle, which originates from excitation of the all-trans retinal chromophore with K-, L-, M-, and N-like intermediates. At pH below pKa ~6.5, the M state, which reflects Schiff base deprotonation during proton pumping, is not accumulated. However, using the infrared band at ~1760 cm(-1) as a marker for transient protonation of the primary acceptor, we find that Schiff base deprotonation must have occurred at pH not only above but also below the pKa ~6.5. Thus, the M state is formed but not accumulated for kinetic reasons. Further, chromophore reisomerization from the 13-cis to the all-trans conformation occurs very late in the photocycle. The strongly red-shifted states that dominate the second half of the cycle are produced before the reisomerization step, and by this criterion, they are not O-like but rather N-like states. The assignment of photocycle intermediates enables reevaluation of the photocycle; its specific features are discussed in relation to the general mechanism of proton transport in retinal proteins.
Collapse
Affiliation(s)
- Andrei K Dioumaev
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Scholz F, Bamberg E, Bamann C, Wachtveitl J. Tuning the primary reaction of channelrhodopsin-2 by imidazole, pH, and site-specific mutations. Biophys J 2012; 102:2649-57. [PMID: 22713581 DOI: 10.1016/j.bpj.2012.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/12/2012] [Accepted: 04/19/2012] [Indexed: 01/11/2023] Open
Abstract
Femtosecond time-resolved absorption measurements were performed to investigate the influence of the pH, imidazole concentration, and point mutations on the isomerization process of Channelrhodopsin-2. Apart from the typical spectral characteristics of retinal isomerization, an additional absorption feature rises for the wild-type (wt) on a timescale from tens of ps to 1 ns within the spectral range of the photoproduct and is attributed to an equilibration between different K-intermediates. Remarkably, this absorption feature vanishes upon addition of imidazole or lowering the pH. In the latter case, the isomerization is dramatically slowed down, due to protonation of negatively charged amino acids within the retinal binding pocket, e.g., E123 and D253. Moreover, we investigated the influence of several point mutations within the retinal binding pocket E123T, E123D, C128T, and D156C. For E123T, the isomerization is retarded compared to wt and E123D, indicating that a negatively charged residue at this position functions as an effective catalyst in the isomerization process. In the case of the C128T mutant, all primary processes are slightly accelerated compared to the wt, whereas the isomerization dynamics for the D156C mutant is similar to wt after addition of imidazole.
Collapse
Affiliation(s)
- Frank Scholz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
7
|
Hashimoto K, Choi AR, Furutani Y, Jung KH, Kandori H. Low-Temperature FTIR Study of Gloeobacter Rhodopsin: Presence of Strongly Hydrogen-Bonded Water and Long-Range Structural Protein Perturbation upon Retinal Photoisomerization. Biochemistry 2010; 49:3343-50. [DOI: 10.1021/bi100184k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyohei Hashimoto
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ah Reum Choi
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Korea
| | - Yuji Furutani
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kwang-Hwan Jung
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Korea
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|