1
|
Xia P, Cao Y, Zhao Q, Li H. Energy gap of conformational transition related with temperature for the NACore of α-synuclein. Phys Chem Chem Phys 2024; 26:23062-23072. [PMID: 39175373 DOI: 10.1039/d4cp02131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Pathological aggregation of α-synuclein (α-syn) into amyloid fibrils is a major feature of Parkinson's disease (PD). The self-assembly of α-syn is mainly governed by a non-amyloid-β component core (NACore). However, the effects of concentrations and temperatures on their conformational transition remain unclear. To answer this question, we investigated the aggregation kinetics of NACore oligomers in silico by performing several independent all-atom molecular dynamics simulations. The simulation results show that tetramers are more prone to form β-sheets at 300 K than dimers and octamers. We also found that the NACore oligomers had higher β-sheet and β-barrel contents at 310 K. The inter-chain hydrophobic interactions, the backbone hydrogen bonding, the residue-residue interactions between V70-V77 as well as V77-V77 play important roles in the aggregation tendency of NACore octamers at 310 K. Interestingly, the energy gap analysis revealed that the conformational transition of NACore oligomers from intermediate states (β-barrel conformation) to stable structures (β-sheet layers) was dependent on the temperatures. In short, our study provides insight into the kinetic and thermodynamic mechanisms of the conformational transition of NACore at different concentrations and temperatures, contributing to a better understanding of the aggregation process of α-syn in Parkinson's disease.
Collapse
Affiliation(s)
- Pengxuan Xia
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuanming Cao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Qingjie Zhao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huiyu Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
2
|
Kaur A, Goyal B. In silico design and identification of new peptides for mitigating hIAPP aggregation in type 2 diabetes. J Biomol Struct Dyn 2023; 42:10006-10021. [PMID: 37691445 DOI: 10.1080/07391102.2023.2254411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
The aberrant misfolding and self-aggregation of human islet amyloid polypeptide (hIAPP or amylin) into cytotoxic aggregates are implicated in the pathogenesis of type 2 diabetes (T2D). Among various inhibitors, short peptides derived from the amyloidogenic regions of hIAPP have been employed as hIAPP aggregation inhibitors due to their low immunogenicity, biocompatibility, and high chemical diversity. Recently, hIAPP fragment HSSNN18-22 was identified as an amyloidogenic sequence and displayed higher antiproliferative activity to RIN-5F cells. Various hIAPP aggregation inhibitors have been designed by chemical modifications of the highly amyloidogenic sequence (NFGAIL) of hIAPP. In this work, a library of pentapeptides based on fragment HSSNN18-22 was designed and assessed for their efficacy in blocking hIAPP aggregation using an integrated computational screening approach. The binding free energy calculations by molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method identified HSSQN and HSSNQ that bind to hIAPP monomer with a binding affinity of -21.25 ± 4.90 and -19.73 ± 3.10 kcal/mol, respectively, which is notably higher as compared to HSSNN (-11.90 ± 4.12 kcal/mol). The sampling of the non aggregation-prone helical conformation was notably increased from 23.5 ± 3.0 in the hIAPP monomer to 38.1 ± 3.6, and 33.8 ± 3.0% on the incorporation of HSSQN, and HSSNQ, respectively, which indicate reduced aggregation propensity of hIAPP monomer. The pentapeptides, HSSQN and HSSNQ, identified as hIAPP aggregation inhibitors in this work can be further conjugated with various metal chelating peptides to yield more efficacious and clinically relevant multifunctional modulators for targeting various pathological hallmarks of T2D.
Collapse
Affiliation(s)
- Apneet Kaur
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
3
|
Nie RZ, Huo YQ, Yu B, Liu CJ, Zhou R, Bao HH, Tang SW. Molecular insights into the inhibitory mechanisms of gallate moiety on the Aβ 1-40 amyloid aggregation: A molecular dynamics simulation study. Int J Biol Macromol 2020; 156:40-50. [PMID: 32275992 DOI: 10.1016/j.ijbiomac.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is the most common form of neurodegenerative disease and the formation of Aβ amyloid aggregates has been widely demonstrated to be the principal cause of Alzheimer's disease. Our previous study and other studies suggested that the gallate moiety played an obligatory role in the inhibition process of naturally occurring polyphenols on Aβ amyloid fibrils formation. However, the detailed mechanisms were still unknown. Thus, in the present study, the gallic acid (GA) was specially selected and the molecular recognition mechanisms between GA molecules and Aβ1-40 monomer were examined and analyzed by molecular dynamics simulation. The in silico experiments revealed that GA significantly prevented the conformational changes of Aβ1-40 monomer with no β-sheet structure during the whole 100 ns. By analyzing the binding sites of GA molecules to Aβ1-40 monomer, we found that both hydrophilic and hydrophobic amino acid residues were participated in the binding of GA molecules to Aβ1-40 monomer. Moreover, results from the binding free energy analysis further demonstrated that the strength of polar interactions was significantly stronger than that of nonpolar interactions. We believed that our results could help to elucidate the underlying mechanisms of gallate moiety on the anti-amyloidogenic effects of polyphenols at the atomic level.
Collapse
Affiliation(s)
- Rong-Zu Nie
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Yin-Qiang Huo
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Bo Yu
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Chuan-Ju Liu
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Rui Zhou
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Hong-Hui Bao
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Shang-Wen Tang
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China.
| |
Collapse
|
4
|
Mondal P, Khan J, Gupta V, Ghosh S. In Silico Approach for Designing Potent Neuroprotective Hexapeptide. ACS Chem Neurosci 2019; 10:3018-3030. [PMID: 31117343 DOI: 10.1021/acschemneuro.9b00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a constantly recurring neurodegenerative disease that deteriorates over a period of time. In this pathology, connections between neurons become extremely damaged due to the deposition of senile plaques in the membrane region, which results in abnormal signal transduction processes. Also, the intracellular microtubule networks are disrupted in the hyperphosphorylated tau cascade of AD. Therefore, design and development of potent neuroprotective molecules that can instantaneously target multiple facets of AD pathogenesis are greatly needed to tackle this unmet medical need. Here, we have implemented a pharmacophore based in silico analysis of various neuroprotective peptides known for neurotherapeutic application in AD. Fascinatingly, we have identified an active core of these peptides and designed a library of hexapeptides. We observed that peptide "LETVNQ" (LE6) has shown significant protection ability against degeneration of neurons. Experimental evidence suggests that this peptide immensely reduced the aggregation rate of amyloid-β (Aβ) and helped in microtubule polymerization. Intriguingly, this newly designed peptide does not have any cytotoxicity toward differentiated PC12 neurons; rather it helps in neurite outgrowth. Further, LE6 helps to maintain the complex microtubule network in cells by promoting the polymerization rate of intracellular microtubules and mediates excellent protection of neurons even after removal of nerve growth factor (NGF). Finally, we observed that this LE6 peptide has substantial stability under physiological conditions and helps to retain healthy morphology of primary rat cortical neurons. This excellent piece of work identifies a potent hexapeptide, which has exceptional ability to protect neurons as well as microtubule from degeneration and may become potent therapeutics against AD pathogenesis in the future.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Organic and Medicinal Chemistry Division and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032 WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Juhee Khan
- Organic and Medicinal Chemistry Division and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032 WB, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry Division and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032 WB, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032 WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Ou L, Luo Y, Wei G. Atomic-Level Study of Adsorption, Conformational Change, and Dimerization of an α-Helical Peptide at Graphene Surface. J Phys Chem B 2011; 115:9813-22. [DOI: 10.1021/jp201474m] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Luchun Ou
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yin Luo
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|