1
|
Guo Y, Gao X. Electronic dynamics through conical intersections via non-Markovian stochastic Schrödinger equation with complex modes. J Chem Phys 2024; 161:054110. [PMID: 39092942 DOI: 10.1063/5.0221087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Conical intersections (CIs) play a crucial role in photochemical reactions, offering an efficient channel for ultrafast non-adiabatic relaxation of excited states. This significantly influences the reaction pathways and the resulting products. In this work, we utilize the non-Markovian stochastic Schrödinger equation with complex modes method to explore the dynamics of electronic transitions through conical intersections (CIs) in pyrazine. The linear vibronic coupling model serves as the foundational framework, incorporating both intra-state and inter-state electron-vibrational interactions. The dynamics of the excited electronic transitions are analyzed across varying strengths of system-bath coupling and different bath relaxation times. The accuracy of this method is demonstrated by comparing its predictions with those from the hierarchical equations of motion method.
Collapse
Affiliation(s)
- Yukai Guo
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xing Gao
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
2
|
Vandaele E, Mališ M, Luber S. A Local Diabatisation Method for Two-State Adiabatic Conical Intersections. J Chem Theory Comput 2024; 20:856-872. [PMID: 38174710 DOI: 10.1021/acs.jctc.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A methodology to locally characterize conical intersections (CIs) between two adiabatic electronic states for which no nonadiabatic coupling (NAC) vectors are available is presented. Based on the Hessian and gradient at the CI, the branching space coordinates are identified. The potential energy surface around the CI in the branching space is expressed in the diabatic representation, from which the NAC vectors can be calculated in a wave-function-free, energy-based approach. To demonstrate the universality of the developed methodology, the minimum-energy CI (MECI) between the first (S1) and second (S2) singlet excited states of formamide is investigated at the state-averaged complete active space self-consistent field (SA-CASSCF) and extended multistate complete active space second-order perturbation theory (XMS-CASPT2) levels of theory. In addition, the asymmetrical MECI between the ground state (S0) and S1 of cyclopropanone is evaluated using SA-CASSCF, as well as (ME)CIs between the S1 and S2 states of benzene using SA-CASSCF and time-dependent density functional theory (TDDFT). Finally, a CI between the S1 and S2 excited states of thiophene was analyzed using TDDFT.
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
3
|
Janoš J, Slavíček P. What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm. J Chem Theory Comput 2023; 19:8273-8284. [PMID: 37939301 PMCID: PMC10688183 DOI: 10.1021/acs.jctc.3c00908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau-Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.
Collapse
Affiliation(s)
- Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
4
|
Vandaele E, Mališ M, Luber S. The ΔSCF method for non-adiabatic dynamics of systems in the liquid phase. J Chem Phys 2022; 156:130901. [PMID: 35395890 DOI: 10.1063/5.0083340] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Computational studies of ultrafast photoinduced processes give valuable insights into the photochemical mechanisms of a broad range of compounds. In order to accurately reproduce, interpret, and predict experimental results, which are typically obtained in a condensed phase, it is indispensable to include the condensed phase environment in the computational model. However, most studies are still performed in vacuum due to the high computational cost of state-of-the-art non-adiabatic molecular dynamics (NAMD) simulations. The quantum mechanical/molecular mechanical (QM/MM) solvation method has been a popular model to perform photodynamics in the liquid phase. Nevertheless, the currently used QM/MM embedding techniques cannot sufficiently capture all solute-solvent interactions. In this Perspective, we will discuss the efficient ΔSCF electronic structure method and its applications with respect to the NAMD of solvated compounds, with a particular focus on explicit quantum mechanical solvation. As more research is required for this method to reach its full potential, some challenges and possible directions for future research are presented as well.
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
5
|
Vandaele E, Mališ M, Luber S. The photodissociation of solvated cyclopropanone and its hydrate explored via non-adiabatic molecular dynamics using ΔSCF. Phys Chem Chem Phys 2022; 24:5669-5679. [PMID: 35179527 PMCID: PMC8890323 DOI: 10.1039/d1cp05187c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The decay of cyclopropanone is a typical example of a photodecomposition process. Ethylene and carbon monoxide are formed following the excitation to the first singlet excited state through a symmetrical or asymmetrical pathway. The results obtained with non-adiabatic molecular dynamics (NAMD) using the delta self-consistent field (ΔSCF) method correspond well to previous experimental and multireference theoretical studies carried out in the gas phase. Moreover, this efficient methodology allows NAMD simulations of cyclopropanone in aqueous solution to be performed, which reveal analogue deactivation mechanisms, but a shorter lifetime and reduced photodissociation as compared to the gas-phase. The excited state dynamics of cyclopropanone hydrate, an enzyme inhibitor, in an aqueous environment are reported as well. Cyclopropanone hydrate strongly interacts with the surrounding solvent via the formation of hydrogen bonds. Excitation to the first singlet excited state shows an asymmetric pathway with cyclopropanone hydrate and propionic acid as the main photoproducts. The lifetime and photodissociation of cyclopropanone are reduced in aqueous solution, while the excitation of solvated cyclopropanone hydrate yields a range of photoproducts.![]()
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
6
|
Ibele LM, Lassmann Y, Martínez TJ, Curchod BFE. Comparing (stochastic-selection) ab initio multiple spawning with trajectory surface hopping for the photodynamics of cyclopropanone, fulvene, and dithiane. J Chem Phys 2021; 154:104110. [DOI: 10.1063/5.0045572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Yorick Lassmann
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Todd J. Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, USA and PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Basile F. E. Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
7
|
Temen S, Akimov AV. A Simple Solution to Trivial Crossings: A Stochastic State Tracking Approach. J Phys Chem Lett 2021; 12:850-860. [PMID: 33427475 DOI: 10.1021/acs.jpclett.0c03428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a new state tracking algorithm based on a stochastic state reassignment that reflects the quantum mechanical interpretation of the state time-overlaps. We assess the new method with a range of model Hamiltonians and demonstrate that it yields the results generally consistent with the deterministic min-cost algorithm. However, the stochastic state tracking algorithm reduces magnitudes of the state population fluctuations as the quantum system evolves toward its equilibrium. The new algorithm facilitates the thermalization of quantum state populations and suppresses the population revivals and oscillations near the equilibrium in many-state systems. The new stochastic algorithm has a favorable computational scaling, is easy to implement due to its conceptual transparency, and treats various types of state identity changes (trivial or avoided crossings and any intermediate cases) on equal footing.
Collapse
Affiliation(s)
- Story Temen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
8
|
Suchan J, Janoš J, Slavíček P. Pragmatic Approach to Photodynamics: Mixed Landau–Zener Surface Hopping with Intersystem Crossing. J Chem Theory Comput 2020; 16:5809-5820. [DOI: 10.1021/acs.jctc.0c00512] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jiří Suchan
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| |
Collapse
|
9
|
Zhang YH, Sun XW, Zhang TS, Liu XY, Cui G. Nonadiabatic Dynamics Simulations on Early-Time Photochemistry of Spirobenzopyran. J Phys Chem A 2020; 124:2547-2559. [PMID: 32187492 DOI: 10.1021/acs.jpca.0c00791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoinduced ring-opening, decay, and isomerization of spirobenzopyran have been explored by the OM2/MRCI nonadiabatic dynamics simulations based on Tully's fewest-switches surface hopping scheme. The efficient S1 to S0 internal conversion as observed in experiments is attributed to the existence of two efficient excited-state decay pathways. The first one is related to the C-N dissociation, and the second one is done to the C-O dissociation. The C-O dissociation pathway is dominant, and more than 90% trajectories decay to the S0 state via the C-O bond-fission related S1/S0 conical intersections. Near these regions in the S0 state, trajectories can either return to spirobenzopyran or proceed to various intermediates including merocyanine via a series of bond rotations. Our nonadiabatic dynamics simulations also demonstrate that the hydrogen-out-of-plane (HOOP) motion is important for efficient and ultrafast excited-state deactivation. On the other hand, we have also found that the replacement of methyl groups by hydrogen atoms in spirobenzopyran can artificially introduce different intramolecular hydrogen transfers leading to hydrogen-transferred intermediates. This finding is important for the community and demonstrates that such a kind of structural truncation, sometimes, could be problematic, leading to incorrect photodynamics. Our present work provides valuable insights into the photodynamics of spirobenzopyran, which could be helpful for the design of spiropyran-based photochromic materials.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xin-Wei Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Zhang TS, Li ZW, Fang Q, Barbatti M, Fang WH, Cui G. Stereoselective Excited-State Isomerization and Decay Paths in cis-Cyclobiazobenzene. J Phys Chem A 2019; 123:6144-6151. [DOI: 10.1021/acs.jpca.9b04372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zi-Wen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | | | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
11
|
Filatov M, Min SK, Choi CH. Theoretical modelling of the dynamics of primary photoprocess of cyclopropanone. Phys Chem Chem Phys 2019; 21:2489-2498. [DOI: 10.1039/c8cp07104g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodecomposition of cyclopropanone is investigated by static quantum chemical calculations and non-adiabatic molecular dynamics (NAMD) simulations.
Collapse
Affiliation(s)
- Michael Filatov
- Department of Chemistry
- Kyungpook National University
- Daegu 702-701
- South Korea
| | - Seung Kyu Min
- Department of Chemistry
- School of Natural Sciences
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- South Korea
| | - Cheol Ho Choi
- Department of Chemistry
- Kyungpook National University
- Daegu 702-701
- South Korea
| |
Collapse
|
12
|
Han Y, Anderson K, Hobbie EK, Boudjouk P, Kilin DS. Unraveling Photodimerization of Cyclohexasilane from Molecular Dynamics Studies. J Phys Chem Lett 2018; 9:4349-4354. [PMID: 30004709 DOI: 10.1021/acs.jpclett.8b01691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoinduced reactions of a pair of cyclohexasilane (CHS) monomers are explored by time-dependent excited-state molecular dynamics (TDESMD) calculations. In TDESMD trajectories, one observes vivid reaction events including dimerization and fragmentation. A general reaction pathway is identified as (i) ring-opening formation of a dimer, (ii) rearrangement induced by bond breaking, and (iii) decomposition through the elimination of small fragments. The identified pathway supports the chemistry proposed for the fabrication of silicon-based materials using CHS as a precursor. In addition, we find dimers have smaller HOMO-LUMO gaps and exhibit a red shift and line-width broadening in the computed photoluminescence spectra compared with a pair of CHS monomers.
Collapse
Affiliation(s)
- Yulun Han
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Kenneth Anderson
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Erik K Hobbie
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Philip Boudjouk
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Dmitri S Kilin
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| |
Collapse
|
13
|
Xiao P, Wang Q, Fang WH, Cui G. Quantum Chemical Investigation on Photochemical Reactions of Nonanoic Acids at Air-Water Interface. J Phys Chem A 2017; 121:4253-4262. [PMID: 28513156 DOI: 10.1021/acs.jpca.7b03123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoinduced chemical reactions of organic compounds at the marine boundary layer have recently attracted significant experimental attention because this kind of photoreactions has been proposed to have substantial impact on local new particle formation and their photoproducts could be a source of secondary organic aerosols. In this work, we have employed first-principles density functional theory method combined with cluster models to systematically explore photochemical reaction pathways of nonanoic acids (NAs) to form volatile saturated and unsaturated C9 and C8 aldehydes at air-water interfaces. On the basis of the results, we have found that the formation of C9 aldehydes is not initiated by intermolecular Norrish type II reaction between two NAs but by intramolecular T1 C-O bond fission of NA generating acyl and hydroxyl radicals. Subsequently, saturated C9 aldehydes are formed through hydrogenation reaction of acyl radical by another intact NA. Following two dehydrogenation reactions, unsaturated C9 aldehydes are generated. In parallel, the pathway to C8 aldehydes is initiated by T1 C-C bond fission of NA, which generates octyl and carboxyl radicals; then, an octanol is formed through recombination reaction of octyl with hydroxyl radical. In the following, two dehydrogenation reactions result into an enol intermediate from which saturated C8 aldehydes are produced via NA-assisted intermolecular hydrogen transfer. Finally, two dehydrogenation reactions generate unsaturated C8 aldehydes. In these reactions, water and NA molecules are found to play important roles. They significantly reduce relevant reaction barriers. Our work has also explored oxygenation reactions of NA with molecular oxygen and radical-radical dimerization reactions.
Collapse
Affiliation(s)
- Pin Xiao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Qian Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| |
Collapse
|
14
|
Three-state conical intersection optimization methods: development and implementation at QM/MM level. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-2029-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Liu XY, Chang XP, Xia SH, Cui G, Thiel W. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore. J Chem Theory Comput 2016; 12:753-64. [PMID: 26744782 PMCID: PMC4750082 DOI: 10.1021/acs.jctc.5b00894] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The chemical locking of the central
single bond in core chromophores
of green fluorescent proteins (GFPs) influences their excited-state
behavior in a distinct manner. Experimentally, it significantly enhances
the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl
group, while it has almost no effect on the photophysics of GFP chromophores
with a para-hydroxyl group. To unravel the underlying physical reasons
for this different behavior, we report static electronic structure
calculations and nonadiabatic dynamics simulations on excited-state
intramolecular proton transfer, cis–trans isomerization, and
excited-state deactivation in a locked ortho-substituted GFP model
chromophore (o-LHBI). On the basis of our previous and present results,
we find that the S1 keto species is responsible for the
fluorescence emission of the unlocked o-HBI and the locked o-LHBI
species. Chemical locking does not change the parts of the S1 and S0 potential energy surfaces relevant to enol–keto
tautomerization; hence, in both chromophores, there is an ultrafast
excited-state intramolecular proton transfer that takes only 35 fs
on average. However, the locking effectively hinders the S1 keto species from approaching the keto S1/S0 conical intersections so that most of trajectories are trapped in
the S1 keto region for the entire 2 ps simulation time.
Therefore, the fluorescence quantum yield of o-LHBI is enhanced compared
with that of unlocked o-HBI, in which the S1 excited-state
decay is efficient and ultrafast. In the case of the para-substituted
GFP model chromophores p-HBI and p-LHBI, chemical locking hardly affects
their efficient excited-state deactivation via cis–trans isomerization;
thus, the fluorescence quantum yields in these chromophores remain
very low. The insights gained from the present work may help to guide
the design of new GFP chromophores with improved fluorescence emission
and brightness.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China and
| | - Xue-Ping Chang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China and
| | - Shu-Hua Xia
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China and
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China and
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Xia SH, Liu XY, Fang Q, Cui G. Photodissociation dynamics of CH3C(O)SH in argon matrix: A QM/MM nonadiabatic dynamics simulation. J Chem Phys 2015; 143:194303. [DOI: 10.1063/1.4935598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Xia SH, Liu XY, Fang Q, Cui G. Excited-State Ring-Opening Mechanism of Cyclic Ketones: A MS-CASPT2//CASSCF Study. J Phys Chem A 2015; 119:3569-76. [DOI: 10.1021/acs.jpca.5b00302] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shu-Hua Xia
- Key Laboratory of
Theoretical and Computational Photochemistry, Ministry of Education,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- Key Laboratory of
Theoretical and Computational Photochemistry, Ministry of Education,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiu Fang
- Key Laboratory of
Theoretical and Computational Photochemistry, Ministry of Education,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of
Theoretical and Computational Photochemistry, Ministry of Education,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Tanaka N, Urashima Y, Nishikiori H. Photoinduced reactions of chloroacetone in solid Ar: Identification of CH 2 COClCH 3. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Cui G, Lan Z, Thiel W. Intramolecular hydrogen bonding plays a crucial role in the photophysics and photochemistry of the GFP chromophore. J Am Chem Soc 2012; 134:1662-72. [PMID: 22175658 DOI: 10.1021/ja208496s] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In commonly studied GFP chromophore analogues such as 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (PHBDI), the dominant photoinduced processes are cis-trans isomerization and subsequent S(1) → S(0) decay via a conical intersection characterized by a highly twisted double bond. The recently synthesized 2-hydroxy-substituted isomer (OHBDI) shows an entirely different photochemical behavior experimentally, since it mainly undergoes ultrafast intramolecular excited-state proton transfer, followed by S(1) → S(0) decay and ground-state reverse hydrogen transfer. We have chosen 4-(2-hydroxybenzylidene)-1H-imidazol-5(4H)-one (OHBI) to model the gas-phase photodynamics of such 2-hydroxy-substituted chromophores. We first use various electronic structure methods (DFT, TDDFT, CC2, DFT/MRCI, OM2/MRCI) to explore the S(0) and S(1) potential energy surfaces of OHBI and to locate the relevant minima, transition state, and minimum-energy conical intersection. These static calculations suggest the following decay mechanism: upon photoexcitation to the S(1) state, an ultrafast adiabatic charge-transfer induced excited-state intramolecular proton transfer (ESIPT) occurs that leads to the S(1) minimum-energy structure. Nearby, there is a S(1)/S(0) minimum-energy conical intersection that allows for an efficient nonadiabatic S(1) → S(0) internal conversion, which is followed by a fast ground-state reverse hydrogen transfer (GSHT). This mechanism is verified by semiempirical OM2/MRCI surface-hopping dynamics simulations, in which the successive ESIPT-GSTH processes are observed, but without cis-trans isomerization (which is a minor path experimentally with less than 5% yield). These gas-phase simulations of OHBI give an estimated first-order decay time of 476 fs for the S(1) state, which is larger but of the same order as the experimental values measured for OHBDI in solution: 270 fs in CH(3)CN and 230 fs in CH(2)Cl(2). The differences between the photoinduced processes of the 2- and 4-hydroxy-substituted chromophores are attributed to the presence or absence of intramolecular hydrogen bonding between the two rings.
Collapse
Affiliation(s)
- Ganglong Cui
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
20
|
Cui G, Thiel W. Nonadiabatic dynamics of a truncated indigo model. Phys Chem Chem Phys 2012; 14:12378-84. [DOI: 10.1039/c2cp41867c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Cui G, Fang W. Ab Initio Trajectory Surface-Hopping Study on Ultrafast Deactivation Process of Thiophene. J Phys Chem A 2011; 115:11544-50. [DOI: 10.1021/jp206893n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ganglong Cui
- Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Weihai Fang
- Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
22
|
Cui G, Yang W. Conical intersections in solution: formulation, algorithm, and implementation with combined quantum mechanics/molecular mechanics method. J Chem Phys 2011; 134:204115. [PMID: 21639432 PMCID: PMC3124537 DOI: 10.1063/1.3593390] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 05/04/2011] [Indexed: 11/14/2022] Open
Abstract
The significance of conical intersections in photophysics, photochemistry, and photodissociation of polyatomic molecules in gas phase has been demonstrated by numerous experimental and theoretical studies. Optimization of conical intersections of small- and medium-size molecules in gas phase has currently become a routine optimization process, as it has been implemented in many electronic structure packages. However, optimization of conical intersections of small- and medium-size molecules in solution or macromolecules remains inefficient, even poorly defined, due to large number of degrees of freedom and costly evaluations of gradient difference and nonadiabatic coupling vectors. In this work, based on the sequential quantum mechanics and molecular mechanics (QM/MM) and QM/MM-minimum free energy path methods, we have designed two conical intersection optimization methods for small- and medium-size molecules in solution or macromolecules. The first one is sequential QM conical intersection optimization and MM minimization for potential energy surfaces; the second one is sequential QM conical intersection optimization and MM sampling for potential of mean force surfaces, i.e., free energy surfaces. In such methods, the region where electronic structures change remarkably is placed into the QM subsystem, while the rest of the system is placed into the MM subsystem; thus, dimensionalities of gradient difference and nonadiabatic coupling vectors are decreased due to the relatively small QM subsystem. Furthermore, in comparison with the concurrent optimization scheme, sequential QM conical intersection optimization and MM minimization or sampling reduce the number of evaluations of gradient difference and nonadiabatic coupling vectors because these vectors need to be calculated only when the QM subsystem moves, independent of the MM minimization or sampling. Taken together, costly evaluations of gradient difference and nonadiabatic coupling vectors in solution or macromolecules can be reduced significantly. Test optimizations of conical intersections of cyclopropanone and acetaldehyde in aqueous solution have been carried out successfully.
Collapse
Affiliation(s)
- Ganglong Cui
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
23
|
Cui G, Fang W. Mechanistic Photodissociation of Glycolaldehyde: Insights from Ab Initio and RRKM Calculations. Chemphyschem 2011; 12:1351-7. [DOI: 10.1002/cphc.201000968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/25/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Ganglong Cui
- Chemistry College, Beijing Normal University, Beijing 100875 (China), Fax: (+86) 10‐5880‐5382
| | - Weihai Fang
- Chemistry College, Beijing Normal University, Beijing 100875 (China), Fax: (+86) 10‐5880‐5382
| |
Collapse
|
24
|
Cui G, Ding L, Feng F, Liu Y, Fang W. Insights into mechanistic photochemistry of urea. J Chem Phys 2010; 132:194308. [DOI: 10.1063/1.3397067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|