1
|
Wakabayashi T, Matsui Y, Nakasako M. CryoEM and crystal structure analyses reveal the indirect role played by Trp89 in glutamate dehydrogenase enzymatic reactions. FEBS J 2025. [PMID: 39891504 DOI: 10.1111/febs.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
Glutamate dehydrogenase from Thermococcus profundus is a homo-hexameric enzyme that catalyzes the reversible deamination of glutamate to 2-oxoglutarate in the presence of a cofactor. In each subunit, a large active-site cleft is formed between the two functional domains, one of which displays motion to open and close the cleft. Trp89 in the cleft displays two sidechain conformers in the open cleft and a single conformer in the closed cleft. To reveal the role of the Trp89 sidechain in the domain motion, we mutated Trp89 to phenylalanine. Despite the Trp89 sidechain being located away from the reaction center, the catalytic constant decreased to 1/38-fold of that of the wild-type without a fatal reduction of the affinities to the cofactor and ligand molecules. To understand the molecular mechanism underlying this reduction, we determined the crystal structure in the unliganded state and the metastable conformations appearing in the steady stage of the reaction using cryo-electron microscopy (cryoEM). The four identified metastable conformations were similar to the three conformations observed in the wild-type, but their populations were different from those of the wild-type. In addition, a conformation with a completely closed active-site cleft necessary for the reaction to proceed was quite rare. The crystal structure and the four metastable conformations suggested that the reduction in the catalytic constant could be attributed to changes in the interactions between Gln13 and the 89th side chains, preventing the closing domain motion.
Collapse
Grants
- jp15076210 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp15H01647 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp17H05891 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp20050030 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp22018027 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp23120525 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp25120725 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp13480214 Japan Society for the Promotion of Science
- jp19204042 Japan Society for the Promotion of Science
- jp21H01050 Japan Society for the Promotion of Science
- jp22244054 Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Taiki Wakabayashi
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- RIKEN SPring-8 Center, Sayo-gun, Japan
| | - Yuka Matsui
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- RIKEN SPring-8 Center, Sayo-gun, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- RIKEN SPring-8 Center, Sayo-gun, Japan
| |
Collapse
|
2
|
Wakabayashi T, Oide M, Kato T, Nakasako M. Coenzyme-binding pathway on glutamate dehydrogenase suggested from multiple-binding sites visualized by cryo-electron microscopy. FEBS J 2023; 290:5514-5535. [PMID: 37682540 DOI: 10.1111/febs.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The structure of hexameric glutamate dehydrogenase (GDH) in the presence of the coenzyme nicotinamide adenine dinucleotide phosphate (NADP) was visualized using cryogenic transmission electron microscopy to investigate the ligand-binding pathways to the active site of the enzyme. Each subunit of GDH comprises one hexamer-forming core domain and one nucleotide-binding domain (NAD domain), which spontaneously opens and closes the active-site cleft situated between the two domains. In the presence of NADP, the potential map of GDH hexamer, assuming D3 symmetry, was determined at a resolution of 2.4 Å, but the NAD domain was blurred due to the conformational variety. After focused classification with respect to the NAD domain, the potential maps interpreted as NADP molecules appeared at five different sites in the active-site cleft. The subunits associated with NADP molecules were close to one of the four metastable conformations in the unliganded state. Three of the five binding sites suggested a pathway of NADP molecules to approach the active-site cleft for initiating the enzymatic reaction. The other two binding modes may rarely appear in the presence of glutamate, as demonstrated by the reaction kinetics. Based on the visualized structures and the results from the enzymatic kinetics, we discussed the binding modes of NADP to GDH in the absence and presence of glutamate.
Collapse
Grants
- JPMJPR22E2 Japan Science and Technology Agency
- 18J11653 Japan Society for the Promotion of Science
- jp13480214 Japan Society for the Promotion of Science
- jp19204042 Japan Society for the Promotion of Science
- jp21H01050 Japan Society for the Promotion of Science
- jp22244054 Japan Society for the Promotion of Science
- jp26800227 Japan Society for the Promotion of Science
- jp15076210 Ministry of Education, Culture, Sports, Science and Technology
- jp15H01647 Ministry of Education, Culture, Sports, Science and Technology
- jp17H05891 Ministry of Education, Culture, Sports, Science and Technology
- jp20050030 Ministry of Education, Culture, Sports, Science and Technology
- jp22018027 Ministry of Education, Culture, Sports, Science and Technology
- jp23120525 Ministry of Education, Culture, Sports, Science and Technology
- jp25120725 Ministry of Education, Culture, Sports, Science and Technology
- 0436 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Taiki Wakabayashi
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo, Japan
| | - Takayuki Kato
- Protein Research Institute, Osaka University, Suita, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| |
Collapse
|
3
|
Sato K, Oide M, Nakasako M. Prediction of hydrophilic and hydrophobic hydration structure of protein by neural network optimized using experimental data. Sci Rep 2023; 13:2183. [PMID: 36750742 PMCID: PMC9905073 DOI: 10.1038/s41598-023-29442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
The hydration structures of proteins, which are necessary for their folding, stability, and functions, were visualized using X-ray and neutron crystallography and transmission electron microscopy. However, complete visualization of hydration structures over the entire protein surface remains difficult. To compensate for this incompleteness, we developed a three-dimensional convolutional neural network to predict the probability distribution of hydration water molecules on the hydrophilic and hydrophobic surfaces, and in the cavities of proteins. The neural network was optimized using the distribution patterns of protein atoms around the hydration water molecules identified in the high-resolution X-ray crystal structures. We examined the feasibility of the neural network using water sites in the protein crystal structures that were not included in the datasets. The predicted distribution covered most of the experimentally identified hydration sites, with local maxima appearing in their vicinity. This computational approach will help to highlight the relevance of hydration structures to the biological functions and dynamics of proteins.
Collapse
Affiliation(s)
- Kochi Sato
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| |
Collapse
|
4
|
Oide M, Kato T, Oroguchi T, Nakasako M. Energy landscape of domain motion in glutamate dehydrogenase deduced from cryo-electron microscopy. FEBS J 2020; 287:3472-3493. [PMID: 31976609 DOI: 10.1111/febs.15224] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/09/2019] [Accepted: 01/21/2020] [Indexed: 11/28/2022]
Abstract
Analysis of the conformational changes of protein is important to elucidate the mechanisms of protein motions correlating with their function. Here, we studied the spontaneous domain motion of unliganded glutamate dehydrogenase from Thermococcus profundus using cryo-electron microscopy and proposed a novel method to construct free-energy landscape of protein conformations. Each subunit of the homo-hexameric enzyme comprises nucleotide-binding domain (NAD domain) and hexamer-forming core domain. A large active-site cleft is situated between the two domains and varies from open to close according to the motion of a NAD domain. A three-dimensional map reconstructed from all cryo-electron microscopy images displayed disordered volumes of NAD domains, suggesting that NAD domains in the collected images adopted various conformations in domain motion. Focused classifications on NAD domain of subunits provided several maps of possible conformations in domain motion. To deduce what kinds of conformations appeared in EM images, we developed a novel analysis method that describe the EM maps as a linear combination of representative conformations appearing in a 200-ns molecular dynamics simulation as reference. The analysis enabled us to estimate the appearance frequencies of the representative conformations, which illustrated a free-energy landscape in domain motion. In the open/close domain motion, two free-energy basins hindered the direct transformation from open to closed state. Structure models constructed for representative EM maps in classifications demonstrated the correlation between the energy landscape and conformations in domain motion. Based on the results, the domain motion in glutamate dehydrogenase and the analysis method to visualize conformational changes and free-energy landscape were discussed. DATABASE: The EM maps of the four conformations were deposited to Electron Microscopy Data Bank (EMDB) as accession codes EMD-9845 (open), EMD-9846 (half-open1), EMD-9847 (half-open2), and EMD-9848 (closed), respectively. In addition, the structural models built for the four conformations were deposited to the Protein Data Bank (PDB) as accession codes 6JN9 (open), 6JNA (half-open1), 6JNC (half-open2), and 6JND (closed), respectively.
Collapse
Affiliation(s)
- Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,RIKEN SPring-8 Center, Sayo-gun, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,RIKEN SPring-8 Center, Sayo-gun, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,RIKEN SPring-8 Center, Sayo-gun, Japan
| |
Collapse
|
5
|
Fukuda A, Oroguchi T, Nakasako M. Dipole-dipole interactions between tryptophan side chains and hydration water molecules dominate the observed dynamic stokes shift of lysozyme. Biochim Biophys Acta Gen Subj 2019; 1864:129406. [PMID: 31377191 DOI: 10.1016/j.bbagen.2019.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
The fluorescence intensity of tryptophan residues in hen egg-white lysozyme was measured up to 500 ps after the excitation by irradiation pulses at 290 nm. From the time-dependent variation of fluorescence intensity in a wavelength range of 320-370 nm, the energy relaxation in the dynamic Stokes shift was reconstructed as the temporal variation in wavenumber of the estimated fluorescence maximum. The relaxation was approximated by two exponential curves with decay constants of 1.2 and 26.7 ps. To interpret the relaxation, a molecular dynamics simulation of 75 ns was conducted for lysozyme immersed in a water box. From the simulation, the energy relaxation in the electrostatic interactions of each tryptophan residue was evaluated by using a scheme derived from the linear response theory. Dipole-dipole interactions between each of the Trp62 and Trp123 residues and hydration water molecules displayed an energy relaxation similar to that experimentally observed regarding time constants and magnitudes. The side chains of these residues were partly or fully exposed to the solvent. In addition, by inspecting the variation in dipole moments of the hydration water molecules around lysozyme, it was suggested that the observed relaxation could be attributed to the orientational relaxation of hydration water molecules participating in the hydrogen-bond network formed around each of the two tryptophan residues.
Collapse
Affiliation(s)
- Asahi Fukuda
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokihama 223-8522, Japan
| | - Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokihama 223-8522, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokihama 223-8522, Japan.
| |
Collapse
|
6
|
Oroguchi T, Nakasako M. Influences of lone-pair electrons on directionality of hydrogen bonds formed by hydrophilic amino acid side chains in molecular dynamics simulation. Sci Rep 2017; 7:15859. [PMID: 29158598 PMCID: PMC5696464 DOI: 10.1038/s41598-017-16203-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/08/2017] [Indexed: 11/08/2022] Open
Abstract
The influence of lone-pair electrons on the directionality of hydrogen bonds that are formed by oxygen and nitrogen atoms in the side chains of nine hydrophilic was investigated using molecular dynamics simulations. The simulations were conducted using two types of force fields; one incorporated lone-pair electrons placed at off-atom sites and the other did not. The density distributions of the hydration water molecules around the oxygen and nitrogen atoms were calculated from the simulation trajectories, and were compared with the empirical hydration distribution functions, which were constructed from a large number of hydration water molecules found in the crystal structures of proteins. Only simulations using the force field explicitly incorporating lone-pair electrons reproduced the directionality of hydrogen bonds that is observed in the empirical distribution functions for the deprotonated oxygen and nitrogen atoms in the sp 2-hybridization. The amino acids that include such atoms are functionally important glutamate, aspartate, and histidine. Therefore, a set of force field that incorporates lone-pair electrons as off-atom charge sites would be effective for considering hydrogen bond formation by these amino acids in molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| |
Collapse
|
7
|
Hydration of proteins and nucleic acids: Advances in experiment and theory. A review. Biochim Biophys Acta Gen Subj 2016; 1860:1821-35. [PMID: 27241846 DOI: 10.1016/j.bbagen.2016.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Most biological processes involve water, and the interactions of biomolecules with water affect their structure, function and dynamics. SCOPE OF REVIEW This review summarizes the current knowledge of protein and nucleic acid interactions with water, with a special focus on the biomolecular hydration layer. Recent developments in both experimental and computational methods that can be applied to the study of hydration structure and dynamics are reviewed, including software tools for the prediction and characterization of hydration layer properties. MAJOR CONCLUSIONS In the last decade, important advances have been made in our understanding of the factors that determine how biomolecules and their aqueous environment influence each other. Both experimental and computational methods contributed to the gradually emerging consensus picture of biomolecular hydration. GENERAL SIGNIFICANCE An improved knowledge of the structural and thermodynamic properties of the hydration layer will enable a detailed understanding of the various biological processes in which it is involved, with implications for a wide range of applications, including protein-structure prediction and structure-based drug design.
Collapse
|
8
|
Changes in hydration structure are necessary for collective motions of a multi-domain protein. Sci Rep 2016; 6:26302. [PMID: 27193111 PMCID: PMC4872039 DOI: 10.1038/srep26302] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 01/27/2023] Open
Abstract
Conformational motions of proteins are necessary for their functions. To date, experimental studies measuring conformational fluctuations of a whole protein structure have revealed that water molecules hydrating proteins are necessary to induce protein functional motions. However, the underlying microscopic mechanism behind such regulation remains unsolved. To clarify the mechanism, multi-domain proteins are good targets because it is obvious that water molecules between domains play an important role in domain motions. Here, we show how changes in hydration structure microscopically correlate with large-amplitude motions of a multi-domain protein, through molecular dynamics simulation supported by structural analyses and biochemical experiments. We first identified collective domain motions of the protein, which open/close an active-site cleft between domains. The analyses on changes in hydration structure revealed that changes in local hydration in the depth of the cleft are necessary for the domain motion and vice versa. In particular, ‘wetting’/‘drying’ at a hydrophobic pocket and ‘adsorption’/‘dissociation’ of a few water molecules at a hydrophilic crevice in the cleft were induced by dynamic rearrangements of hydrogen-bond networks, and worked as a switch for the domain motions. Our results microscopically demonstrated the importance of hydrogen-bond networks of water molecules in understanding energy landscapes of protein motions.
Collapse
|
9
|
Matsuoka D, Sugiyama S, Murata M, Matsuoka S. Molecular Dynamics Simulations of Heart-type Fatty Acid Binding Protein in Apo and Holo Forms, and Hydration Structure Analyses in the Binding Cavity. J Phys Chem B 2014; 119:114-27. [DOI: 10.1021/jp510384f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daisuke Matsuoka
- JST ERATO, Lipid Active
Structure Project, ‡Department of Chemistry, Graduate
School of Science, and §Project Research Center for Fundamental Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Sugiyama
- JST ERATO, Lipid Active
Structure Project, ‡Department of Chemistry, Graduate
School of Science, and §Project Research Center for Fundamental Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- JST ERATO, Lipid Active
Structure Project, ‡Department of Chemistry, Graduate
School of Science, and §Project Research Center for Fundamental Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Matsuoka
- JST ERATO, Lipid Active
Structure Project, ‡Department of Chemistry, Graduate
School of Science, and §Project Research Center for Fundamental Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
10
|
Sun H, Zhao L, Peng S, Huang N. Incorporating replacement free energy of binding-site waters in molecular docking. Proteins 2014; 82:1765-76. [DOI: 10.1002/prot.24530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Hanzi Sun
- College of Life Sciences; Beijing Normal University; Beijing 100875 China
- National Institute of Biological Sciences, Beijing, Zhongguancun Life Science Park; Beijing 102206 China
| | - Lifeng Zhao
- National Institute of Biological Sciences, Beijing, Zhongguancun Life Science Park; Beijing 102206 China
| | - Shiming Peng
- National Institute of Biological Sciences, Beijing, Zhongguancun Life Science Park; Beijing 102206 China
| | - Niu Huang
- College of Life Sciences; Beijing Normal University; Beijing 100875 China
- National Institute of Biological Sciences, Beijing, Zhongguancun Life Science Park; Beijing 102206 China
| |
Collapse
|
11
|
Matsuoka D, Nakasako M. Application of empirical hydration distribution functions around polar atoms for assessing hydration structures of proteins. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Karino Y, Matubayasi N. Communication: Free-energy analysis of hydration effect on protein with explicit solvent: Equilibrium fluctuation of cytochrome c. J Chem Phys 2011; 134:041105. [DOI: 10.1063/1.3535560] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|