1
|
Yamato T, Wang T, Sugiura W, Laprévote O, Katagiri T. Computational Study on the Thermal Conductivity of a Protein. J Phys Chem B 2022; 126:3029-3036. [PMID: 35416670 DOI: 10.1021/acs.jpcb.2c00958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein molecules are thermally fluctuating and tightly packed amino acid residues strongly interact with each other. Such interactions are characterized in terms of heat current at the atomic level. We calculated the thermal conductivity of a small globular protein, villin headpiece subdomain, based on the linear response theory using equilibrium molecular dynamics simulation. The value of its thermal conductivity was 0.3 ± 0.01 [W m-1 K-1], which is in good agreement with experimental and computational studies on the other proteins in the literature. Heat current along the main chain was dominated by local vibrations in the polypeptide bonds, with amide I, II, III, and A bands on the Fourier transform of the heat current autocorrelation function.
Collapse
Affiliation(s)
- Takahisa Yamato
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Wataru Sugiura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Olivier Laprévote
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takahiro Katagiri
- Information Technology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
2
|
Tahara S, Mizuno M, Mizutani Y. Nonbonded Atomic Contacts Drive Ultrafast Helix Motions in Myoglobin. J Phys Chem B 2020; 124:5407-5414. [DOI: 10.1021/acs.jpcb.0c04772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shinya Tahara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
Zheng D, Fan J, Huang X, Ding L, Xin Y. Fluorescent binary ensemble with pattern recognition ability for identifying multiple metalloproteins with applications in serum and urine. RSC Adv 2017. [DOI: 10.1039/c7ra09741g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A fluorescent binary ensemble with multiple-wavelength cross-reactivity functioning as a discriminative sensor to identify different metalloproteins in serum or urine solution.
Collapse
Affiliation(s)
- Demin Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Junmei Fan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Xinyan Huang
- College of Physics and Information Technology
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Yunhong Xin
- College of Physics and Information Technology
- Shaanxi Normal University
- Xi'an 710062
- PR China
| |
Collapse
|
4
|
Takayanagi M, Kurisaki I, Nagaoka M. Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure. Sci Rep 2014; 4:4601. [PMID: 24710521 PMCID: PMC3978498 DOI: 10.1038/srep04601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/12/2014] [Indexed: 12/11/2022] Open
Abstract
Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a “site-specific” homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional “non-site-specific” allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view.
Collapse
Affiliation(s)
- Masayoshi Takayanagi
- 1] Venture Business Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan [2] Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan [3] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Ikuo Kurisaki
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masataka Nagaoka
- 1] Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| |
Collapse
|
5
|
Abstract
![]()
Myoglobin
(Mb) binds diatomic ligands, like O2, CO,
and NO, in a cavity that is only transiently accessible. Crystallography
and molecular simulations show that the ligands can migrate through
an extensive network of transiently connected cavities but disagree
on the locations and occupancy of internal hydration sites. Here,
we use water 2H and 17O magnetic relaxation
dispersion (MRD) to characterize the internal water molecules in Mb
under physiological conditions. We find that equine carbonmonoxy Mb
contains 4.5 ± 1.0 ordered internal water molecules with a mean
survival time of 5.6 ± 0.5 μs at 25 °C. The likely
locations of these water molecules are the four polar hydration sites,
including one of the xenon-binding cavities, that are fully occupied
in all high-resolution crystal structures of equine Mb. The finding
that water escapes from these sites, located 17–31 Å apart
in the protein, on the same μs time scale suggests a global
exchange mechanism. We propose that this mechanism involves transient
penetration of the protein by H-bonded water chains. Such a mechanism
could play a functional role by eliminating trapped ligands. In addition,
the MRD results indicate that 2 or 3 of the 11 histidine residues
of equine Mb undergo intramolecular hydrogen exchange on a μs
time scale.
Collapse
Affiliation(s)
- Shuji Kaieda
- Department of Biophysical Chemistry, Lund University , P.O. Box 124, SE-22100 Lund, Sweden
| | | |
Collapse
|
6
|
Takayanagi M, Kurisaki I, Nagaoka M. Oxygen Entry through Multiple Pathways in T-State Human Hemoglobin. J Phys Chem B 2013; 117:6082-91. [DOI: 10.1021/jp401459b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masayoshi Takayanagi
- Core
Research for Evolutional
Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Ikuo Kurisaki
- Core
Research for Evolutional
Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Masataka Nagaoka
- Core
Research for Evolutional
Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| |
Collapse
|
7
|
Tsuduki T, Tomita A, Koshihara SY, Adachi SI, Yamato T. Ligand migration in myoglobin: a combined study of computer simulation and x-ray crystallography. J Chem Phys 2012; 136:165101. [PMID: 22559505 DOI: 10.1063/1.4704586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A ligand-migration mechanism of myoglobin was studied by a multidisciplinary approach that used x-ray crystallography and molecular dynamics simulation. The former revealed the structural changes of the protein along with the ligand migration, and the latter provided the statistical ensemble of protein conformations around the thermal average. We developed a novel computational method, homogeneous ensemble displacement, and generated the conformational ensemble of ligand-detached species from that of ligand-bound species. The thermally averaged ligand-protein interaction was illustrated in terms of the potential of mean force. Although the structural changes were small, the presence of the ligand molecule in the protein matrix significantly affected the 3D scalar field of the potential of mean force, in accordance with the self-opening model proposed in the previous x-ray study.
Collapse
Affiliation(s)
- Takayuki Tsuduki
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
8
|
Takayanagi M, Nagaoka M. Incipient structural and vibrational relaxation process of photolyzed carbonmonoxy myoglobin: statistical analysis by perturbation ensemble molecular dynamics method. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-0992-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|