1
|
Li D, Minkara MS. Comparative Assessment of Water Models in Protein-Glycan Interaction: Insights from Alchemical Free Energy Calculations and Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:9459-9473. [PMID: 39378441 DOI: 10.1021/acs.jcim.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Accurate computational simulations of protein-glycan dynamics are crucial for a comprehensive understanding of critical biological mechanisms, including host-pathogen interactions, immune system defenses, and intercellular communication. The accuracy of these simulations, including molecular dynamics (MD) simulation and alchemical free energy calculations, critically relies on the appropriate parameters, including the water model, because of the extensive hydrogen bonding with glycan hydroxyl groups. However, a systematic evaluation of water models' accuracy in simulating protein-glycan interaction at the molecular level is still lacking. In this study, we used full atomistic MD simulations and alchemical absolute binding free energy (ABFE) calculations to investigate the performance of five distinct water models in six protein-glycan complex systems. We evaluated water models' impact on structural dynamics and binding affinity through over 5.8 μs of simulation time per system. Our results reveal that most protein-glycan complexes are stable in the overall structural dynamics regardless of the water model used, while some show obvious fluctuations with specific water models. More importantly, we discover that the stability of the binding motif's conformation is dependent on the water model chosen when its residues form weak hydrogen bonds with the glycan. The water model also influences the conformational stability of the glycan in its bound state according to density functional theory (DFT) calculations. Using alchemical ABFE calculations, we find that the OPC water model exhibits exceptional consistency with experimental binding affinity data, whereas commonly used models such as TIP3P are less accurate. The findings demonstrate how different water models affect protein-glycan interactions and the accuracy of binding affinity calculations, which is crucial in developing therapeutic strategies targeting these interactions.
Collapse
Affiliation(s)
- Deng Li
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| | - Mona S Minkara
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| |
Collapse
|
2
|
Elucidating the enhanced binding affinity of a double mutant SP-D with trimannose on the influenza A virus using molecular dynamics. Comput Struct Biotechnol J 2022; 20:4984-5000. [PMID: 36097510 PMCID: PMC9452405 DOI: 10.1016/j.csbj.2022.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
The Asp325Ala mutation in SP-D promotes a trimannose conformational change to a more stable state. The Arg343Val mutation in SP-D reduces its interaction with Glu333 to increase the binding affinity with trimannose. The Arg343Val mutation contributes more to the increase of SP-D’s binding affinity with trimannose than Asp325Ala.
Surfactant protein D (SP-D) is an essential component of the human pulmonary surfactant system, which is crucial in the innate immune response against glycan-containing pathogens, including Influenza A viruses (IAV) and SARS-CoV-2. Previous studies have shown that wild-type (WT) SP-D can bind IAV but exhibits poor antiviral activities. However, a double mutant (DM) SP-D consisting of two point mutations (Asp325Ala and Arg343Val) inhibits IAV more potently. Presently, the structural mechanisms behind the point mutations’ effects on SP-D’s binding affinity with viral surface glycans are not fully understood. Here we use microsecond-scale, full-atomistic molecular dynamics (MD) simulations to understand the molecular mechanism of mutation-induced SP-D’s higher antiviral activity. We find that the Asp325Ala mutation promotes a trimannose conformational change to a more stable state. Arg343Val increases the binding with trimannose by increasing the hydrogen bonding interaction with Glu333. Free energy perturbation (FEP) binding free energy calculations indicate that the Arg343Val mutation contributes more to the increase of SP-D’s binding affinity with trimannose than Asp325Ala. This study provides a molecular-level exploration of how the two mutations increase SP-D binding affinity with trimannose, which is vital for further developing preventative strategies for related diseases.
Collapse
Key Words
- CRD, Carbohydrate Recognition Domain
- DM, Double mutant
- FEP, Free Energy Perturbation
- Free Energy Perturbation
- HA, Hemagglutinin
- IAV, Influenza A Viruses
- MD, Molecular Dynamics
- Molecular Dynamics Simulation
- PAP, Pulmonary Alveolar Proteinosis
- PME, Particle Mesh Ewald
- PS, Pulmonary Surfactant
- Protein-Glycan Complexes
- RMSD, Root Mean Square Deviation
- RMSF, Root Mean Square Fluctuation
- SP-A, Surfactant Protein A
- SP-B, Surfactant Protein B
- SP-C, Surfactant Protein C
- SP-D, Surfactant Protein D
- Surfactant Protein D
- WT, Wild-type
- λ-REMD, λ-Replica-Exchange Molecular Dynamics
Collapse
|
3
|
Hu F, Liu XT, Zhang JL, Zheng QC, Eglitis RI, Zhang HX. MD Simulation Investigation on the Binding Process of Smoke-Derived Germination Stimulants to Its Receptor. J Chem Inf Model 2019; 59:1554-1562. [PMID: 30884225 DOI: 10.1021/acs.jcim.8b00844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Karrikins (KARs) are a class of smoke-derived seed germination stimulants with great significance in both agriculture and plant biology. By means of direct binding to the receptor protein KAI2, the compounds can initiate the KAR signal transduction pathway, hence triggering germination of the dormant seeds in the soil. In the research, several molecular dynamics (MD) simulation techniques were properly integrated to investigate the binding process of KAR1 to KAI2 and reveal the details of the whole binding event. The calculated binding free energy, -7.00 kcal/mol, is in good agreement with the experimental measurement, -6.83 kcal/mol. The obtained PMF profile indicates the existence of three intermediate states in the binding process. The analysis of the simulation trajectories demonstrates that, in the intermediate structures, KAR1 is stabilized by some hydrophobic residues (Phe26, Phe134, Leu142, Trp153, Phe157, Leu160, Phe194), along with several bridging water molecules, and meanwhile, the significant shifting occurs in the local conformation of the protein as the ligand's binding. A series of the residues (Gln141-Phe157) on the so-called "cap domain" are proposed to be responsible for capturing the ligand at the initial stage of the binding. Besides, the changes of the ligand's poses are also quantitatively characterized by the proper choice of the coordinate system. Our work will contribute to the more penetrating understanding of the ligand binding process and the receptor affinity difference between several members in the KAR family and help design new, more effective germination stimulants.
Collapse
Affiliation(s)
- Fei Hu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , Jilin , People's Republic of China
| | - Xiao-Ting Liu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , Jilin , People's Republic of China
| | - Ji-Long Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , Jilin , People's Republic of China
| | - Qing-Chuan Zheng
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , Jilin , People's Republic of China
| | - Roberts I Eglitis
- Institute of Solid State Physics , University of Latvia , 8 Kengaraga Str. , Riga LV1067 , Latvia
| | - Hong-Xing Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , Jilin , People's Republic of China
| |
Collapse
|
4
|
Zhang JL, Zheng QC, Yu LY, Li ZQ, Zhang HX. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter. J Chem Inf Model 2016; 56:1539-46. [PMID: 27472561 DOI: 10.1021/acs.jcim.6b00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.
Collapse
Affiliation(s)
- Ji-Long Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University , Changchun 130021, Jilin, People's Republic of China.,Department of Chemistry and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Qing-Chuan Zheng
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| | - Li-Ying Yu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| | - Zheng-Qiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University , Changchun 130021, Jilin, People's Republic of China
| | - Hong-Xing Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| |
Collapse
|
5
|
Qian M, Guan S, Shan Y, Zhang H, Wang S. Structural and molecular basis of cellulase Cel48F by computational modeling: Insight into catalytic and product release mechanism. J Struct Biol 2016; 194:347-56. [DOI: 10.1016/j.jsb.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 11/26/2022]
|
6
|
Zhang Z, Zhang J, Zheng Q, Kong C, Li Z, Zhang H, Ma J. Theoretical investigation on binding process of allophanate to allophanate hydrolase. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5108-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Guan SS, Han WW, Zhang H, Wang S, Shan YM. Insight into the interactive residues between two domains of human somatic Angiotensin-converting enzyme and Angiotensin II by MM-PBSA calculation and steered molecular dynamics simulation. J Biomol Struct Dyn 2015; 34:15-28. [PMID: 25582663 DOI: 10.1080/07391102.2015.1007167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Angiotensin-converting enzyme (ACE), a membrane-bound zinc metallopeptidase, catalyzes the formation of Angiotensin-II (AngII) and the deactivation of bradykinin in the renin-angiotensin-aldosterone and kallikrein-kinin systems. As a hydrolysis product of ACE, AngII is regarded as an inhibitor and displays stronger competitive inhibition in the C-domain than the N-domain of ACE. However, the AngII binding differences between the two domains and the mechanisms behind AngII dissociation from the C-domain are rarely explored. In this work, molecular docking, Molecular Mechanics/Poisson-Boltzmann Surface Area calculation, and steered molecular dynamics (SMD) are applied to explore the structures and interactions in the binding or unbinding of AngII with the two domains of human somatic ACE. Calculated free energy values suggest that the C-domain-AngII complex is more stable than the N-domain-AngII complex, consistent with available experimental data. SMD simulation results imply that electrostatic interaction is dominant in the dissociation of AngII from the C-domain. Moreover, Gln106, Asp121, Glu123, and Tyr213 may be the key residues in the unbinding pathway of AngII. The simulation results in our work provide insights into the interactions between the two domains of ACE and its natural peptide inhibitor AngII at a molecular level. Moreover, the results provide theoretical clues for the design of new inhibitors.
Collapse
Affiliation(s)
- Shan-shan Guan
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Wei-wei Han
- b Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , School of Life Sciences, Jilin University , Changchun 130023 , People's Republic of China
| | - Hao Zhang
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Song Wang
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Ya-ming Shan
- c School of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China
| |
Collapse
|
8
|
Zhang JL, Zheng QC, Li ZQ, Zhang HX. Theoretical evaluation and improvement on the potency of the rhodanine-based inhibitors for human serotoninN-acetyltransferase. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.854894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Goh BC, Rynkiewicz MJ, Cafarella TR, White MR, Hartshorn KL, Allen K, Crouch EC, Calin O, Seeberger PH, Schulten K, Seaton BA. Molecular mechanisms of inhibition of influenza by surfactant protein D revealed by large-scale molecular dynamics simulation. Biochemistry 2013; 52:8527-38. [PMID: 24224757 DOI: 10.1021/bi4010683] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. Interactions of SP-D with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with that of full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have determined crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). On the basis of the D325A+R343V-Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding caused by additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V because of alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D-HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.
Collapse
Affiliation(s)
- Boon Chong Goh
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang JL, Zheng QC, Li ZQ, Zhang HX. How does (E)-2-(acetamidomethylene)succinate bind to its hydrolase? From the binding process to the final result. PLoS One 2013; 8:e53811. [PMID: 23308285 PMCID: PMC3538738 DOI: 10.1371/journal.pone.0053811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
The binding of (E)-2-(acetamidomethylene)succinate (E-2AMS) to E-2AMS hydrolase is crucial for biological function of the enzyme and the last step reaction of vitamin B(6) biological degradation. In the present study, several molecular simulation methods, including molecular docking, conventional molecular dynamics (MD), steered MD (SMD), and free energy calculation methods, were properly integrated to investigate the detailed binding process of E-2AMS to its hydrolase and to assign the optimal enzyme-substrate complex conformation. It was demonstrated that the substrate binding conformation with trans-form amide bond is energetically preferred conformation, in which E-2AMS's pose not only ensures hydrogen bond formation of its amide oxygen atom with the vicinal oxyanion hole but also provides probability of the hydrophobic interaction between its methyl moiety and the related enzyme's hydrophobic cavity. Several key residues, Arg146, Arg167, Tyr168, Arg179, and Tyr259, orientate the E-2AMS's pose and stabilize its conformation in the active site via the hydrogen bond interaction with E-2AMS. Sequentially, the binding process of E-2AMS to E-2AMS hydrolase was studied by SMD simulation, which shows the surprising conformational reversal of E-2AMS. Several important intermediate structures and some significant residues were identified in the simulation. It is stressed that Arg146 and Arg167 are two pivotal residues responsible for the conformational reversal of E-2AMS in the binding or unbinding. Our research has shed light onto the full binding process of the substrate to E-2AMS hydrolase, which could provide more penetrating insight into the interaction of E-2AMS with the enzyme and would help in the further exploration on the catalysis mechanism.
Collapse
Affiliation(s)
- Ji-Long Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, People's Republic of China
| | - Qing-Chuan Zheng
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Zheng-Qiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, People's Republic of China
| | - Hong-Xing Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
- * E-mail:
| |
Collapse
|
11
|
Zhang JL, Zheng QC, Li ZQ, Zhang HX. Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase. PLoS One 2012; 7:e39546. [PMID: 22761821 PMCID: PMC3383691 DOI: 10.1371/journal.pone.0039546] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
The research on the binding process of ligand to pyrazinamidase (PncA) is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA’s activity. In the present study, molecular dynamics (MD) simulation methods were performed to investigate the unbinding process of nicotinamide (NAM) from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF) based on the steered molecular dynamics (SMD) simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM’s unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand’s binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.
Collapse
Affiliation(s)
- Ji-Long Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People's Republic of China.
| | | | | | | |
Collapse
|
12
|
Zhang JL, Zheng QC, Zhang HX. Theoretical improvement of the specific inhibitor of human carbonic anhydrase VII. Comput Biol Chem 2011; 35:50-6. [PMID: 21320803 DOI: 10.1016/j.compbiolchem.2011.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
The selectivity of a known arylsulfonamides inhibitor for two isozymes II and VII of human carbonic anhydrases (hCAs) was studied by homology modeling, molecular docking and molecular dynamics methods. The results show that the selectivity of the inhibitor for two isozymes is due to the different side chain lengths between N67 of hCA II and Q64 of hCA VII. One more methene group in the side chain of Q64 of hCA VII makes it possible to form the hydrogen bond with the bromide atom of the known inhibitor. From the point of view, the modification to the known inhibitor was performed to obtain an inhibitor with higher selectivity. The complex conformations of the new designed inhibitor and two isozymes designate the formation of the hydrogen bond between the newly added group (hydroxypropyl group) and Q64 of hCA VII but N67 of hCA II. The results of the binding free energy from the MM/PBSA approach also prove the selectivity improvement of the new inhibitor in comparison with the known inhibitor. The work will help the design of the isozyme-specific inhibitors of hCA VII.
Collapse
Affiliation(s)
- Ji-Long Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People's Republic of China
| | | | | |
Collapse
|