1
|
Vallance C, Heathcote D, Lee JWL. Covariance-Map Imaging: A Powerful Tool for Chemical Dynamics Studies. J Phys Chem A 2021; 125:1117-1133. [DOI: 10.1021/acs.jpca.0c10038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - David Heathcote
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jason W. L. Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
2
|
Michiels R, LaForge AC, Bohlen M, Callegari C, Clark A, von Conta A, Coreno M, Di Fraia M, Drabbels M, Finetti P, Huppert M, Oliver V, Plekan O, Prince KC, Stranges S, Svoboda V, Wörner HJ, Stienkemeier F. Time-resolved formation of excited atomic and molecular states in XUV-induced nanoplasmas in ammonia clusters. Phys Chem Chem Phys 2020; 22:7828-7834. [PMID: 32248221 DOI: 10.1039/d0cp00669f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High intensity XUV radiation from a free-electron laser (FEL) was used to create a nanoplasma inside ammonia clusters with the intent of studying the resulting electron-ion interactions and their interplay with plasma evolution. In a plasma-like state, electrons with kinetic energy lower than the local collective Coulomb potential of the positive ionic core are trapped in the cluster and take part in secondary processes (e.g. electron-impact excitation/ionization and electron-ion recombination) which lead to subsequent excited and neutral molecular fragmentation. Using a time-delayed UV laser, the dynamics of the excited atomic and molecular states are probed from -0.1 ps to 18 ps. We identify three different phases of molecular fragmentation that are clearly distinguished by the effect of the probe laser on the ionic and electronic yield. We propose a simple model to rationalize our data and further identify two separate channels leading to the formation of excited hydrogen.
Collapse
Affiliation(s)
- Rupert Michiels
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany.
| | - Aaron C LaForge
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Matthias Bohlen
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany.
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Andrew Clark
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Aaron von Conta
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Marcello Coreno
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Michele Di Fraia
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Marcel Drabbels
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Paola Finetti
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Martin Huppert
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Veronica Oliver
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Stefano Stranges
- Department of Chemistry and Drug Technologies, University Sapienza, 00185 Rome, Italy, and Tasc IOM-CNR, Basovizza, Trieste, Italy
| | - Vít Svoboda
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
3
|
Yatsuhashi T, Nakashima N. Multiple ionization and Coulomb explosion of molecules, molecular complexes, clusters and solid surfaces. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2017.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Molecular Dynamics of XFEL-Induced Photo-Dissociation, Revealed by Ion-Ion Coincidence Measurements. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7050531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Niu D, Li H, Liang F, Wen L, Luo X. Covariance analysis of the Coulomb explosion of ammonia induced by intense nanosecond laser at 532 nm. Sci Bull (Beijing) 2013. [DOI: 10.1007/bf03322810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Reinard MS, Johnston MV. Ion formation mechanism in laser desorption ionization of individual nanoparticles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:389-399. [PMID: 18191579 DOI: 10.1016/j.jasms.2007.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/20/2007] [Accepted: 11/23/2007] [Indexed: 05/25/2023]
Abstract
Covariance mapping is used to study ion formation mechanisms in laser desorption ionization of individual 50 or 220 nm diameter particles having compositions similar to ambient aerosol. Single particle mass spectra are found to vary substantially from particle to particle. This variation is systematic--the energetically preferred ions (e.g., lowest ionization energy, highest electron affinity) are positively correlated with each other and negatively correlated with less preferred ions. For the compositions studied, the average positive ion yield is two to five times greater than the negative ion yield, indicating that free electrons are the main negatively charged species. For many particles, typically 20% to 40% of those analyzed, only positive ions are detected. Smaller particles give fewer negative ions, presumably because the plume is less dense and electron capture is less likely. The results suggest that ion formation occurs by a two stage process. In the first stage, photoionization of laser desorbed neutrals gives cations and free electrons. In the second stage, collisions in the plume cause electron capture and competitive charge transfer. When the particle ablates in a manner giving a dense plume with many collisions, the energetically preferred positive and negative ions are dominant. When the particle ablates in a manner giving a less dense plume with fewer collisions, the less preferred ions are able to survive and the energetically preferred ions constitute a lower fraction of the total ion signal. Systematic particle to particle variations of relative signal intensities can complicate ambient particle classification efforts by spreading a single particle composition over several classes.
Collapse
Affiliation(s)
- Melissa S Reinard
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
7
|
Buchachenko AL. Chemistry on the border of two centuries — achievements and prospects. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1999v068n02abeh000487] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Fernandez-Lima FA, Cardozo TM, Rodriguez RM, Ponciano CR, da Silveira EF, Nascimento MAC. Characterization of (NH3)(n=1-6)NH+ clusters produced by 252Cf fragments impact onto a NH3 condensed target. J Phys Chem A 2007; 111:8302-7. [PMID: 17685500 DOI: 10.1021/jp073827p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper reports the first characterization of the (NH(3))(n)NH+ cluster series produced by a 252Cf fission fragments (FF) impact onto a NH(3) ice target. The (NH(3))(n=1-6)NH+ members of this series have been analyzed theoretically and experimentally. Their ion desorption yields show an exponential dependence of the cluster population on its mass, presenting a relative higher abundance at n = 5. The results of DFT/B3LYP calculations show that two main series of ammonium clusters may be formed. Both series follow a clear pattern: each additional NH(3) group makes a new hydrogen bond with one of the hydrogen atoms of the respective {NH(3)NH}+ and {NH(2)NH(2)}+ cores. The energy analysis (i.e., D-plot and stability analysis) shows that the calculated members of the (NH(3))(n-1){NH(2)NH(2)}+ series are more stable than those of the (NH(3))(n-1){NH(3)NH}+ series. The trend on the relative stability of the members of more stable series, (NH(3))(n-1){NH(2)NH(2)}+, shows excellent agreement with the experimental distribution of cluster abundances. In particular, the (NH(3))4{NH(2)NH(2)}+ structure is the most stable one, in agreement with the experiments.
Collapse
|
9
|
Roscioli JR, Johnson MA. Isomer-specific spectroscopy of the (H2O)8− cluster anion in the intramolecular bending region by selective photodepletion of the more weakly electron binding species (isomer II). J Chem Phys 2007; 126:024307. [PMID: 17228954 DOI: 10.1063/1.2409295] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vibrational predissociation spectra of the two more strongly electron binding forms of the (H2O)8- anion are obtained in the HOH intramolecular bending region. This is accomplished by deconvoluting the overlapping spectra obtained from a mixed ensemble using a population modulation scheme in which the low electron binding isomer (II) is removed from the ion packet prior to spectroscopic analysis. By choosing the energy of the photodepletion laser to lie between the vertical detachment energies of the two isomers, the contribution from isomer II can be quantitatively eliminated, leaving the population of I largely unaffected. The low binding energies involved in the application of the method to the water cluster anions necessitate that this should be carried out in the midinfrared, thus requiring two tunable ir laser systems for implementation. The isolated spectrum of isomer 1 displays a strong, redshifted feature associated with a double H-bond acceptor (AA) water molecule in direct contact with the excess electron and a large gap before higher energy features appear that are typically associated with (acceptor/donor) AD and ADD binding sites in the network. The more weakly binding isomer II does not display the AA feature and instead contributes broad structure at intermediate redshifts that merges with the region associated with neutral water cluster networks.
Collapse
Affiliation(s)
- J R Roscioli
- Department of Chemistry, Sterling Chemistry Laboratory, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
10
|
Fernandez-Lima FA, Ponciano CR, Chaer Nascimento MA, da Silveira EF. Theoretical and experimental analysis of ammonia ionic clusters produced by 252Cf fragment impact on an NH3 ice target. J Phys Chem A 2006; 110:10018-24. [PMID: 16913675 DOI: 10.1021/jp0619944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Positive and negatively charged ammonia clusters produced by the impact of (252)Cf fission fragments (FF) on an NH(3) ice target have been examined theoretical and experimentally. The ammonia clusters generated by (252)Cf FF show an exponential dependence of the cluster population on its mass, and the desorption yields for the positive (NH(3))(n)NH(4)(+) clusters are 1 order of magnitude higher than those for the negative (NH(3))(n)NH(2)(-) clusters. The experimental population analysis of (NH(3))(n)NH(4)(+) (n = 0-18) and (NH(3))(n)NH(2)(-) (n = 0-8) cluster series show a special stability at n = 4 and 16 and n = 2, 4, and 6, respectively. DFT/B3LYP calculations of the (NH(3))(0)(-)(8)NH(4)(+) clusters show that the structures of the more stable conformers follow a clear pattern: each additional NH(3) group makes a new hydrogen bond with one of the hydrogen atoms of an NH(3) unit already bound to the NH(4)(+) core. For the (NH(3))(0)(-)(8)NH(2)(-) clusters, the DFT/B3LYP calculations show that, within the calculation error, the more stable conformers follow a clear pattern for n = 1-6: each additional NH(3) group makes a new hydrogen bond to the NH(2)(-) core. For n = 7 and 8, the additional NH(3) groups bind to other NH(3) groups, probably because of the saturation of the NH(2)(-) core. Similar results were obtained at the MP2 level of calculation. A stability analysis was performed using the commonly defined stability function E(n)(-)(1) + E(n)(+1) - 2E(n), where E is the total energy of the cluster, including the zero point correction energy (E = E(t) + ZPE). The trend on the relative stability of the clusters presents an excellent agreement with the distribution of experimental cluster abundances. Moreover, the stability analysis predicts that the (NH(3))(4)NH(4)(+) and the even negative clusters [(NH(3))(n)NH(2)(-), n = 2, 4, and 6] should be the most stable ones, in perfect agreement with the experimental results.
Collapse
Affiliation(s)
- F A Fernandez-Lima
- Physics Department, Pontifícia Universidade Católica, Rua Marques de São Vicente 225, 22543-970 Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
11
|
Dong F, Heinbuch S, Rocca JJ, Bernstein ER. Dynamics and fragmentation of van der Waals clusters: (H2O)n, (CH3OH)n, and (NH3)n upon ionization by a 26.5eV soft x-ray laser. J Chem Phys 2006; 124:224319. [PMID: 16784286 DOI: 10.1063/1.2202314] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A tabletop soft x-ray laser is applied for the first time as a high energy photon source for chemical dynamics experiments in the study of water, methanol, and ammonia clusters through time of flight mass spectroscopy. The 26.5 eV/photon laser (pulse time duration of approximately 1 ns) is employed as a single photon ionization source for the detection of these clusters. Only a small fraction of the photon energy is deposited in the cluster for metastable dissociation of cluster ions, and most of it is removed by the ejected electron. Protonated water, methanol, and ammonia clusters dominate the cluster mass spectra. Unprotonated ammonia clusters are observed in the protonated cluster ion size range 2< or =n< or =22. The unimolecular dissociation rate constants for reactions involving loss of one neutral molecule are calculated to be (0.6-2.7)x10(4), (3.6-6.0)x10(3), and (0.8-2.0)x10(4) s(-1) for the protonated water (9< or =n< or =24), methanol (5< or =n< or =10), and ammonia (5< or =n< or =18) clusters, respectively. The temperatures of the neutral clusters are estimated to be between 40 and 200 K for water clusters (10< or =n< or =21), and 50-100 K for methanol clusters (6< or =n< or =10). Products with losses of up to five H atoms are observed in the mass spectrum of the neutral ammonia dimer. Large ammonia clusters (NH(3))(n) (n>3) do not lose more than three H atoms in the photoionization/photodissociation process. For all three cluster systems studied, single photon ionization with a 26.5 eV photon yields near threshold ionization. The temperature of these three cluster systems increases with increasing cluster size over the above-indicated ranges.
Collapse
Affiliation(s)
- F Dong
- NSF ERC for Extreme Ultraviolet Science and Technology and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
12
|
Niu D, Li H, Liang F, Wen L, Luo X, Wang B, Qu H. Coulomb explosion of ammonia clusters induced by intense nanosecond laser at 532 and 1064nm: Wavelength dependence of the multicharged nitrogen ions. J Chem Phys 2005; 122:151103. [PMID: 15945617 DOI: 10.1063/1.1894786] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Coulomb explosion of ammonia clusters induced by nanosecond laser field with intensity in the range of 10(10)-10(12) W cm(-2) and wavelength of 532 and 1064 nm has been studied. N2+ and N3+ ions are the main multicharged ions at 532 nm, while He-like N5+ ion is the domain multicharged ion at 1064 nm.
Collapse
Affiliation(s)
- Dongmei Niu
- Dalian Institute of Chemical Physics, Dalian 116023 and Anhui Institute of Optics and Fine Mechanics, Hefei 230031, Chinese Academy of Sciences, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Affiliation(s)
- T E Dermota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
15
|
Feldman AB, Antoine M, Lin JS, Demirev PA. Covariance mapping in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:991-995. [PMID: 12717774 DOI: 10.1002/rcm.1013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel method for acquisition and numerical analysis of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectral data is described. The digitized ion current transient from each consecutive laser shot is first acquired and stored independently. Subsequently, statistical correlation parameters between all stored transients are computed. We illustrate the uses of this event-by-event analysis method for studies of sample surface heterogeneity as well as for elucidating the mechanisms of ion formation in MALDI. Other potential applications of the method are also outlined.
Collapse
Affiliation(s)
- Andrew B Feldman
- Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723, USA
| | | | | | | |
Collapse
|
16
|
Card DA, Wisniewski ES, Folmer DE, Castleman AW. Dynamics of Coulomb explosion and kinetic energy release in clusters of heterocyclic compounds. J Chem Phys 2002. [DOI: 10.1063/1.1446849] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
|
18
|
Zhong Q, Castleman AW. An ultrafast glimpse of cluster solvation effects on reaction dynamics. Chem Rev 2000; 100:4039-58. [PMID: 11749339 DOI: 10.1021/cr990056f] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Q Zhong
- Departments of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
19
|
Calandra P, O’Connor CSS, Price SD. Electron-impact ionization of the chlorine molecule. J Chem Phys 2000. [DOI: 10.1063/1.481753] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Loomis RA, Reid JP, Leone SR. Photofragmentation of ammonia at 193.3 nm: Bimodal rotational distributions and vibrational excitation of NH2(Ã). J Chem Phys 2000. [DOI: 10.1063/1.480677] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
21
|
Pelc A, Michalak L. Electron ionization study of ammonia micro-clusters. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2000; 14:1455-1461. [PMID: 10931537 DOI: 10.1002/1097-0231(20000830)14:16<1455::aid-rcm47>3.0.co;2-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An electron impact ion source on a double focusing sector field mass spectrometer was used to investigate ammonia micro-clusters produced by the adiabatic free jet expansion of ammonia gas. The appearance energies for [NH(3)](n)(+), n </= 9, ions have been determined. Results of measurements of appearance pressures of selected clusters are described for a range of operating conditions. An empirical formula describing the ammonia clusters production is proposed. Copyright 2000 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A Pelc
- Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | | |
Collapse
|
22
|
Folmer DE, Wisniewski ES, Hurley SM, Castleman AW. Femtosecond cluster studies of the solvated 7-azaindole excited state double-proton transfer. Proc Natl Acad Sci U S A 1999; 96:12980-6. [PMID: 10557258 PMCID: PMC23885 DOI: 10.1073/pnas.96.23.12980] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presented here are femtosecond pump-probe studies on the water-solvated 7-azaindole dimer, a model DNA base pair. In particular, studies are presented that further elucidate the nature of the reactive and nonreactive dimers and also provide new insights establishing that the excited state double-proton transfer in the dimer occurs in a stepwise rather than a concerted manner. A major question addressed is whether the incorporation of a water molecule with the dimer results in the formation of species that are unable to undergo excited state double-proton transfer, as suggested by a recent study reported in the literature [Nakajima, A., Hirano, M., Hasumi, R., Kaya, K., Watanabe, H., Carter, C. C., Williamson, J. M. & Miller, T. (1997) J. Phys. Chem. 101, 392-398]. In contrast to this earlier work, our present findings reveal that both reactive and nonreactive dimers can coexist in the molecular beam under the same experimental conditions and definitively show that the clustering of water does not induce the formation of the nonreactive dimer. Rather, when present with a species already determined to be a nonreactive dimer, the addition of water can actually facilitate the occurrence of the proton transfer reaction. Furthermore, on attaining a critical hydration number, the data for the nonreactive dimer suggest a solvation-induced conformational structure change leading to proton transfer on the photoexcited half of the 7-azaindole dimer.
Collapse
Affiliation(s)
- D E Folmer
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
23
|
Radi PP, Beaud P, Franzke D, Frey HM, Gerber T, Mischler B, Tzannis AP. Femtosecond photoionization of (H2O)n and (D2O)n clusters. J Chem Phys 1999. [DOI: 10.1063/1.479330] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Foltin M, Stueber GJ, Bernstein ER. Dynamics of neutral cluster growth and cluster ion fragmentation for toluene/water, aniline/argon, and 4-fluorostyrene/argon clusters: Covariance mapping of the mass spectral data. J Chem Phys 1998. [DOI: 10.1063/1.477037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Poth L, Castleman AW. Molecular Dynamics Simulation of Coulomb Explosion Processes. J Phys Chem A 1998. [DOI: 10.1021/jp980311k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- L. Poth
- 152 Davey Laboratory, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - A. W. Castleman
- 152 Davey Laboratory, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
26
|
Folmer D, Poth L, Wisniewski E, Castleman A. Arresting intermediate states in a chemical reaction on a femtosecond time scale: proton transfer in model base pairs. Chem Phys Lett 1998. [DOI: 10.1016/s0009-2614(98)00138-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
The transition from recoil to shattering in cluster-surface impact: an experimental and computational study. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0168-1176(97)00288-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
|