1
|
Wang S, Guo Z, Wang L, Zeng Y, Liang X, Dong F, Zhu P, Liu H, Wang D, Li Y. Atomically Dispersed Palladium Catalyst for Chemoselective Hydrogenation of Quinolines. NANO LETTERS 2024; 24:12666-12675. [PMID: 39311622 DOI: 10.1021/acs.nanolett.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Chemoselective hydrogenation of quinoline and its derivatives is a significant strategy to achieve the corresponding 1,2,3,4-tetrahydroquinolines (py-THQ) for various potential applications. Here, we precisely constructed a titanium carbide supported atomically dispersed Pd catalyst (PdSA+NC/TiC) for quinoline hydrogenation, delivering above 99% py-THQ selectivity at complete conversion with an outstanding turnover frequency (TOF) of 463 h-1. AC-HAADF-STEM and XAFS demonstrate that the atomic dispersion of Pd includes Pd-Ti2C2 single atoms and Pd clusters with atomic-layer thickness. Theoretical calculation and experimental results revealed that H2 dissociation and subsequent hydrogenation rates were greatly promoted over Pd clusters. Although the adsorption of quinolines and intermediates are easier on Pd clusters than on Pd single atoms, the desorption of py-THQ is more favored over Pd single atoms than over Pd clusters. The desorption step may be the main reason for 5,6,7,8-tetrahydroquinoline (bz-THQ) and decahydroquinoline (DHQ) formation. Thus, a low reaction activity and py-THQ selectivity were received over PdSA/TiC and PdNP/TiC, respectively.
Collapse
Affiliation(s)
- Shunwu Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhenbo Guo
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ligang Wang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Yang Zeng
- School of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Feng Dong
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Peng Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Huan Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
2
|
Bazin D, Vekeman J, Wang Q, Deraet X, De Proft F, Guesmi H, Tielens F. Nanostructured materials and heterogeneous catalysis: a succinct review regarding DeNox catalysis. CR CHIM 2022. [DOI: 10.5802/crchim.163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Bazin D. Nanomaterials in medicine: a concise review of nanomaterials intended to treat pathology, nanomaterials induced by pathology, and pathology provoked by nanomaterials. CR CHIM 2022. [DOI: 10.5802/crchim.194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Colboc H, Moguelet P, Letavernier E, Frochot V, Bernaudin JF, Weil R, Rouzière S, Senet P, Bachmeyer C, Laporte N, Lucas I, Descamps V, Amode R, Brunet-Possenti F, Kluger N, Deschamps L, Dubois A, Reguer S, Somogyi A, Medjoubi K, Refregiers M, Daudon M, Bazin D. Pathologies related to abnormal deposits in dermatology: a physico-chemical approach. CR CHIM 2022. [DOI: 10.5802/crchim.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Bazin D, Daudon M, Frochot V, Haymann JP, Letavernier E. Foreword to microcrystalline pathologies: combining clinical activity and fundamental research at the nanoscale. CR CHIM 2022. [DOI: 10.5802/crchim.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Bazin D, Lucas IT, Rouzière S, Elkaim E, Mocuta C, Réguer S, Reid DG, Mathurin J, Dazzi A, Deniset-Besseau A, Petay M, Frochot V, Haymann JP, Letavernier E, Verpont MC, Foy E, Bouderlique E, Colboc H, Daudon M. Profile of an “at cutting edge” pathology laboratory for pathological human deposits: from nanometer to in vivo scale analysis on large scale facilities. CR CHIM 2022. [DOI: 10.5802/crchim.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Bazin D, Reguer S, Vantelon D, Haymann JP, Letavernier E, Frochot V, Daudon M, Esteve E, Colboc H. XANES spectroscopy for the clinician. CR CHIM 2022. [DOI: 10.5802/crchim.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Gauffenic A, Bazin D, Combes C, Daudon M, Ea HK. Pathological calcifications in the human joint. CR CHIM 2022. [DOI: 10.5802/crchim.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Bazin D, Bouderlique E, Daudon M, Frochot V, Haymann JP, Letavernier E, Tielens F, Weil R. Scanning electron microscopy—a powerful imaging technique for the clinician. CR CHIM 2022. [DOI: 10.5802/crchim.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Bazin D, Frochot V, Haymann JP, Letavernier E, Daudon M. Crystal size in μcrystalline pathologies and its clinical implication. CR CHIM 2022. [DOI: 10.5802/crchim.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Bazin D, Papoular RJ, Elkaim E, Weil R, Thiaudière D, Pisapia C, Ménez B, Hwang NS, Tielens F, Livrozet M, Bouderlique E, Haymann JP, Letavernier E, Hennet L, Frochot V, Daudon M. Whitlockite structures in kidney stones indicate infectious origin: a scanning electron microscopy and Synchrotron Radiation investigation. CR CHIM 2022. [DOI: 10.5802/crchim.80] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Bazin D, Foy E, Reguer S, Rouzière S, Fayard B, Colboc H, Haymann JP, Daudon M, Mocuta C. The crucial contribution of X-ray fluorescence spectroscopy in medicine. CR CHIM 2022. [DOI: 10.5802/crchim.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Ashraf A, Liu G, Yousaf B, Arif M, Ahmed R, Rashid A, Riaz L, Rashid MS. Phyto-mediated photocatalysis: a critical review of in-depth base to reactive radical generation for erythromycin degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32513-32544. [PMID: 35190984 DOI: 10.1007/s11356-022-19119-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Erythromycin (ERY), designated as a risk-prioritized macrolide antibiotic on the 2015 European Union watch list, is the third most commonly used antibiotic, most likely due to its ability to inhibit the protein. ERY has revealed record-high aquatic concentrations threatening the entire ecosystem and hence demands priority remedial measures. The inefficiency of various conventional ERY degradation methodologies opened up a gateway to advanced technologies. The conventional approach comprising of a chemically formulated, single photocatalyst has a major drawback of creating multiple environmental stresses. In this context, photocatalysis is grabbing tremendous attention as an efficient and cost-effective antibiotic treatment approach. Several studies have ascertained that ZnO, TiO2, Fe3O4, and rGO nanoparticles possess remarkable pollution minimizing operational capabilities. Additionally, composites are found much more effective in antibiotic removal than single nanoparticles. In this review, an attempt has been made to provide a comprehensive baseline for efficient reactive radical production by a phyto-mediated composite kept under a certain source of irradiation. Considerable efforts have been directed towards the in-depth investigation of rGO-embedded, phyto-mediated ZnO/TiO2/Fe3O4 photocatalyst fabrication for efficient ERY degradation, undergoing green photocatalysis. This detailed review provides photocatalytic nanocomposite individualities along with a hypothetical ERY degradation mechanism. It is assumed that derived information presented here will provoke innovative ideas for water purification incorporating green photocatalysis, initiating the construction of high-performance biogenic hierarchical nanocatalysts.
Collapse
Affiliation(s)
- Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Luqman Riaz
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
14
|
Lin J, Ding J, Wang H, Yang X, Zheng X, Huang Z, Song W, Ding J, Han X, Hu W. Boosting Energy Efficiency and Stability of Li-CO 2 Batteries via Synergy between Ru Atom Clusters and Single-Atom Ru-N 4 sites in the Electrocatalyst Cathode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200559. [PMID: 35230732 DOI: 10.1002/adma.202200559] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The Li-CO2 battery is a novel strategy for CO2 capture and energy-storage applications. However, the sluggish CO2 reduction and evolution reactions cause large overpotential and poor cycling performance. Herein, a new catalyst containing well-defined ruthenium (Ru) atomic clusters (RuAC ) and single-atom Ru-N4 (RuSA ) composite sites on carbon nanobox substrate (RuAC+SA @NCB) (NCB = nitrogen-doped carbon nanobox) is fabricated by utilizing the different complexation effects between the Ru cation and the amine group (NH2 ) on carbon quantum dots or nitrogen moieties on NCB. Systematic experimental and theoretical investigations demonstrate the vital role of electronic synergy between RuAC and Ru-N4 in improving the electrocatalytic activity toward the CO2 evolution reaction (CO2 ER) and CO2 reduction reaction (CO2 RR). The electronic properties of the Ru-N4 sites are essentially modulated by the adjacent RuAC species, which optimizes the interactions with key reaction intermediates thereby reducing the energy barriers in the rate-determining steps of the CO2 RR and CO2 ER. Remarkably, the RuAC+SA @NCB-based cell displays unprecedented overpotentials as low as 1.65 and 1.86 V at ultrahigh rates of 1 and 2 A g-1 , and twofold cycling lifespan than the baselines. The findings provide a novel strategy to construct catalysts with composite active sites comprising multiple atom assemblies for high-performance metal-CO2 batteries.
Collapse
Affiliation(s)
- Jiangfeng Lin
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jingnan Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haozhi Wang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xinyi Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuerong Zheng
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zechuan Huang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wanqing Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaopeng Han
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
15
|
Affiliation(s)
- Xiang Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education School of Public Health Guizhou Medical University Guiyang 550025 P. R. China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
| |
Collapse
|
16
|
Firet NJ, Burdyny T, Nesbitt NT, Chandrashekar S, Longo A, Smith WA. Copper and silver gas diffusion electrodes performing CO2 reduction studied through operando X-ray absorption spectroscopy. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01267j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A guide on operando XAS for high current density CO2 reduction and a detailed analysis of the obtained XAS data.
Collapse
Affiliation(s)
- Nienke J. Firet
- Materials for Energy Conversion and Storage (MECS)
- Department of Chemical Engineering
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| | - Thomas Burdyny
- Materials for Energy Conversion and Storage (MECS)
- Department of Chemical Engineering
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| | - Nathan T. Nesbitt
- Materials for Energy Conversion and Storage (MECS)
- Department of Chemical Engineering
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| | - Sanjana Chandrashekar
- Materials for Energy Conversion and Storage (MECS)
- Department of Chemical Engineering
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| | - Alessandro Longo
- Netherlands Organisation for Scientific Research (NWO)
- The European Synchrotron Radiation Facility (ESRF)
- 38043 Grenoble Cedex 9
- France
- Department of Materials, Textiles and Chemical Engineering
| | - Wilson A. Smith
- Materials for Energy Conversion and Storage (MECS)
- Department of Chemical Engineering
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| |
Collapse
|
17
|
Sharapa DI, Doronkin DE, Studt F, Grunwaldt JD, Behrens S. Moving Frontiers in Transition Metal Catalysis: Synthesis, Characterization and Modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807381. [PMID: 30803078 DOI: 10.1002/adma.201807381] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Nanosized transition metal particles are important materials in catalysis with a key role not only in academic research but also in many processes with industrial and societal relevance. Although small improvements in catalytic properties can lead to significant economic and environmental impacts, it is only now that knowledge-based design of such materials is emerging, partly because the understanding of catalytic mechanisms on nanoparticle surfaces is increasingly improving. A knowledge-based design requires bottom-up synthesis of well-defined model catalysts, an understanding of the catalytic nanomaterials "at work" (operando), and both a detailed understanding and a prediction by theoretical methods. This article reports on progress in colloidal synthesis of transition metal nanoparticles for preparation of model catalysts to close the materials gap between the discoveries of fundamental surface science and industrial application. The transition metal particles, however, often undergo extensive transformations when applied to the catalytic process and much progress has recently been achieved operando characterization techniques under relevant reaction conditions. They allow better understanding of size/structure-activity correlations in these systems. Moreover, the growth of computing power and the improvement of theoretical methods uncover mechanisms on nanoparticles and have recently predicted highly active particles for CO/CO2 hydrogenation or direct H2 O2 synthesis.
Collapse
Affiliation(s)
- Dmitry I Sharapa
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dmitry E Doronkin
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Silke Behrens
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
On the way of understanding the behavior of nanometer-scale metallic particles toward the adsorption of CO and NO molecules. CR CHIM 2018. [DOI: 10.1016/j.crci.2017.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Martin NM, Hemmingsson F, Wang X, Merte LR, Hejral U, Gustafson J, Skoglundh M, Meira DM, Dippel AC, Gutowski O, Bauer M, Carlsson PA. Structure–function relationship during CO2 methanation over Rh/Al2O3 and Rh/SiO2 catalysts under atmospheric pressure conditions. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00516h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intermediate species formed during CO2 methanation over Rh/Al2O3 and Rh/SiO2 catalysts.
Collapse
Affiliation(s)
- Natalia M. Martin
- Competence Centre for Catalysis
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- Göteborg
- Sweden
| | - Felix Hemmingsson
- Competence Centre for Catalysis
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- Göteborg
- Sweden
| | - Xueting Wang
- Competence Centre for Catalysis
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- Göteborg
- Sweden
| | - Lindsay R. Merte
- Division of Chemical Physics
- Department of Physics
- Chalmers University of Technology
- Göteborg
- Sweden
| | - Uta Hejral
- Division of Synchrotron Radiation Research
- Lund University
- 22100 Lund
- Sweden
| | - Johan Gustafson
- Division of Synchrotron Radiation Research
- Lund University
- 22100 Lund
- Sweden
| | - Magnus Skoglundh
- Competence Centre for Catalysis
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- Göteborg
- Sweden
| | | | | | - Olof Gutowski
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
| | - Matthias Bauer
- Department of Chemistry
- Paderborn University
- 33098 Paderborn
- Germany
| | - Per-Anders Carlsson
- Competence Centre for Catalysis
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- Göteborg
- Sweden
| |
Collapse
|
20
|
Esteve E, Reguer S, Boissiere C, Chanéac C, Lugo G, Jouanneau C, Mocuta C, Thiaudière D, Leclercq N, Leyh B, Greisch JF, Berthault J, Daudon M, Ronco P, Bazin D. Flyscan opportunities in medicine: the case of quantum rattle based on gold quantum dots. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:991-999. [PMID: 28862621 DOI: 10.1107/s1600577517009572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The new rapid scan method, Flyscan mode, implemented on the DiffAbs beamline at Synchrotron SOLEIL, allows fast micro-X-ray fluorescence data acquisition. It paves the way for applications in the biomedical field where a large amount of data is needed to generate meaningful information for the clinician. This study presents a complete set of data acquired after injection of gold-cluster-enriched mesoporous silica nanospheres, used as potential theranostic vectors, into rats. While classical X-ray fluorescence investigations (using step-by-step acquisitions) are based on a limited number of samples (approximately one per day at the DiffAbs beamline), the Flyscan mode has enabled gathering information on the interaction of nanometer-scale vectors in different organs such as liver, spleen and kidney at the micrometer scale, for five rats, in only a single five-day synchrotron shift. Moreover, numerous X-ray absorption near-edge structure spectra, which are beam-time-consuming taking into account the low concentration of these theranostic vectors, were collected.
Collapse
Affiliation(s)
- Emmanuel Esteve
- UMR S1155, INSERM/UPMC, 4 Rue de la Chine, 75970 Paris Cedex 20, France
| | - Solenn Reguer
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Cédric Boissiere
- Laboratoire Chimie de la Matière Condensée de Paris, UMR UPMC College de France - CNRS 7574, Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris, France
| | - Corinne Chanéac
- Laboratoire Chimie de la Matière Condensée de Paris, UMR UPMC College de France - CNRS 7574, Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris, France
| | - Gustavo Lugo
- Laboratoire Chimie de la Matière Condensée de Paris, UMR UPMC College de France - CNRS 7574, Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris, France
| | - Chantal Jouanneau
- UMR S1155, INSERM/UPMC, 4 Rue de la Chine, 75970 Paris Cedex 20, France
| | - Cristian Mocuta
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Dominique Thiaudière
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Nicolas Leclercq
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Bernard Leyh
- Department of Chemistry, University of Liège, B4000 Liège, Belgium
| | - Jean François Greisch
- Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Julien Berthault
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Michel Daudon
- UMR S1155, INSERM/UPMC, 4 Rue de la Chine, 75970 Paris Cedex 20, France
| | - Pierre Ronco
- UMR S1155, INSERM/UPMC, 4 Rue de la Chine, 75970 Paris Cedex 20, France
| | - Dominique Bazin
- Laboratoire Chimie de la Matière Condensée de Paris, UMR UPMC College de France - CNRS 7574, Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris, France
| |
Collapse
|
21
|
|
22
|
Großmann D, Klementiev K, Sinev I, Grünert W. Surface Alloy or Metal-Cation Interaction-The State of Zn Promoting the Active Cu Sites in Methanol Synthesis Catalysts. ChemCatChem 2016. [DOI: 10.1002/cctc.201601102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dennis Großmann
- Lehrstuhl Technische Chemie; Ruhr-Universität Bochum; P.O. Box 102148 44780 Bochum Germany
- Present address: Sasol; Germany, GmbH Paul-Baumann-Str. 1 45772 Marl Germany
| | - Konstantin Klementiev
- Alba Synchrotron; 08290 Cerdanyola del Vallès Barcelona Spain
- Present address: MAX IV Laboratory; Lund University; Lund Sweden
| | - Ilya Sinev
- Lehrstuhl Technische Chemie; Ruhr-Universität Bochum; P.O. Box 102148 44780 Bochum Germany
| | - Wolfgang Grünert
- Lehrstuhl Technische Chemie; Ruhr-Universität Bochum; P.O. Box 102148 44780 Bochum Germany
| |
Collapse
|
23
|
Combining field effect scanning electron microscopy, deep UV fluorescence, Raman, classical and synchrotron radiation Fourier transform Infra-Red Spectroscopy in the study of crystal-containing kidney biopsies. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Rouzière S, Bazin D, Daudon M. In-lab X-ray fluorescence and diffraction techniques for pathological calcifications. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
|
26
|
Ben Lakhdar A, Daudon M, Mathieu MC, Kellum A, Balleyguier C, Bazin D. Underlining the complexity of the structural and chemical characteristics of ectopic calcifications in breast tissues through FE-SEM and μFTIR spectroscopy. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Petrova O, Kulp C, Pohl MM, ter Veen R, Veith L, Grehl T, van den Berg MWE, Brongersma H, Bron M, Grünert W. Chemical Leaching of Pt-Cu/C Catalysts for Electrochemical Oxygen Reduction: Activity, Particle Structure, and Relation to Electrochemical Leaching. ChemElectroChem 2016. [DOI: 10.1002/celc.201600468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Olga Petrova
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr; 45470 Mülheim Germany
| | - Christian Kulp
- Institut für Chemie; Martin-Luther-Universität Halle-Wittenberg von-Danckelmann-Platz 4, 06120 Halle/Saale; Halle (Saale) Germany
- Bayerische Motoren Werke Aktiengesellschaft; Petuelring 130 80788 München Germany
| | - Marga-Martina Pohl
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29A, 18059 Rostock; Rostock Germany
| | - Rik ter Veen
- Tascon GmbH, Mendelstraße 17, 48149 Münster; Münster Germany
| | - Lothar Veith
- Tascon GmbH, Mendelstraße 17, 48149 Münster; Münster Germany
| | - Thomas Grehl
- Ion-TOF GmbH, Heisenbergstraße 15, 48149 Münster; Münster Germany
| | | | - Hidde Brongersma
- Eindhoven University of Technology, De Rondom 70, 5612 AP Eindhoven, The Netherlands; Eindhoven The Netherlands
| | - Michael Bron
- Institut für Chemie; Martin-Luther-Universität Halle-Wittenberg von-Danckelmann-Platz 4, 06120 Halle/Saale; Halle (Saale) Germany
| | - Wolfgang Grünert
- Lehrstuhl für Technische Chemie; Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum; 44780 Bochum Germany
| |
Collapse
|
28
|
|
29
|
Gallagher JR, Childers DJ, Zhao H, Winans RE, Meyer RJ, Miller JT. Structural evolution of an intermetallic Pd–Zn catalyst selective for propane dehydrogenation. Phys Chem Chem Phys 2015; 17:28144-53. [DOI: 10.1039/c5cp00222b] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Formation of PdZn intermetallic nanoalloys selective for propane dehydrogenation tracked using in situ synchrotron XRD.
Collapse
Affiliation(s)
- James R. Gallagher
- Chemical Science and Engineering Division
- Argonne National Laboratory
- Argonne
- USA
| | | | - Haiyan Zhao
- X-Ray Science Division
- Advanced Photon Source
- Argonne National Laboratory
- Argonne
- USA
| | - Randall E. Winans
- X-Ray Science Division
- Advanced Photon Source
- Argonne National Laboratory
- Argonne
- USA
| | - Randall J. Meyer
- Department of Chemical Engineering University of Illinois
- Chicago
- USA
| | - Jeffrey T. Miller
- Chemical Science and Engineering Division
- Argonne National Laboratory
- Argonne
- USA
| |
Collapse
|
30
|
|
31
|
Childers DJ, Schweitzer NM, Shahari SMK, Rioux RM, Miller JT, Meyer RJ. Modifying structure-sensitive reactions by addition of Zn to Pd. J Catal 2014. [DOI: 10.1016/j.jcat.2014.07.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Watts B. Calculation of the Kramers-Kronig transform of X-ray spectra by a piecewise Laurent polynomial method. OPTICS EXPRESS 2014; 22:23628-23639. [PMID: 25321829 DOI: 10.1364/oe.22.023628] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An algorithm is presented for the calculation of the Kramers-Kronig transform of a spectrum via a piecewise Laurent polynomial method. This algorithm is demonstrated to be highly accurate, while also being computationally efficient. The algorithm places no requirements on data point spacing and is capable of integrating across the full spectrum (i.e. from zero to infinity). Further, we present a computer application designed to aid in calculating the Kramers-Kronig transform on near-edge experimental X-ray absorption spectra (extended with atomic scattering factor data) in order to produce the dispersive part of the X-ray refractive index, including near-edge features.
Collapse
|
33
|
|
34
|
Bazin D, Haymann JP, Letavernier E, Rode J, Daudon M. Calcifications pathologiques : un diagnostic médical basé sur leurs paramètres physicochimiques. Presse Med 2014; 43:135-48. [DOI: 10.1016/j.lpm.2013.02.333] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/28/2013] [Accepted: 02/27/2013] [Indexed: 10/26/2022] Open
|
35
|
Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C. Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques. Chem Rev 2013; 113:1736-850. [DOI: 10.1021/cr2000898] [Citation(s) in RCA: 488] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Elena Groppo
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Giovanni Agostini
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Jeroen A. van Bokhoven
- ETH Zurich, Institute for Chemical and Bioengineering, HCI E127 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry (LSK) Swiss Light Source, Paul Scherrer Instituteaul Scherrer Institute, Villigen, Switzerland
| | - Carlo Lamberti
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
36
|
Pretzer LA, Song HJ, Fang YL, Zhao Z, Guo N, Wu T, Arslan I, Miller JT, Wong MS. Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size. J Catal 2013. [DOI: 10.1016/j.jcat.2012.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Bazin D, Daudon M, Combes C, Rey C. Characterization and some physicochemical aspects of pathological microcalcifications. Chem Rev 2012; 112:5092-120. [PMID: 22809072 DOI: 10.1021/cr200068d] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- D Bazin
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, 91405 Orsay, France.
| | | | | | | |
Collapse
|
38
|
Daudon M, Bazin DC. Application of Physical Methods to Kidney Stones and Randall’s Plaque Characterization. Urolithiasis 2012. [DOI: 10.1007/978-1-4471-4387-1_85] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Mansour A, Badway F, Yoon WS, Chung K, Amatucci G. In situ X-ray absorption spectroscopic investigation of the electrochemical conversion reactions of CuF2–MoO3 nanocomposite. J SOLID STATE CHEM 2010. [DOI: 10.1016/j.jssc.2010.09.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
|
41
|
Carpentier X, Bazin D, Jungers P, Reguer S, Thiaudière D, Daudon M. The pathogenesis of Randall's plaque: a papilla cartography of Ca compounds through an ex vivo investigation based on XANES spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2010; 17:374-379. [PMID: 20400836 DOI: 10.1107/s0909049510003791] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/30/2010] [Indexed: 05/29/2023]
Abstract
At the surface of attached kidney stones, a particular deposit termed Randall's plaque (RP) serves as a nucleus. This structural particularity as well as other major public health problems such as diabetes type-2 may explain the dramatic increase in urolithiasis now affecting up to 20% of the population in the industrialized countries. Regarding the chemical composition, even if other phosphate phases such as whitlockite or brushite can be found as minor components (less than 5%), calcium phosphate apatite as well as amorphous carbonated calcium phosphate (ACCP) are the major components of most RPs. Through X-ray absorption spectroscopy performed at the Ca K-absorption edge, a technique specific to synchrotron radiation, the presence and crystallinity of the Ca phosphate phases present in RP were determined ex vivo. The sensitivity of the technique was used as well as the fact that the measurements can be performed directly on the papilla. The sample was stored in formol. Moreover, a first mapping of the chemical phase from the top of the papilla to the deep medulla is obtained. Direct structural evidence of the presence of ACCP as a major constituent is given for the first time. This set of data, coherent with previous studies, shows that this chemical phase can be considered as one precursor in the genesis of RP.
Collapse
Affiliation(s)
- Xavier Carpentier
- Laboratoire de Physique des Solides, Bâtiment 510, Université Paris Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
42
|
Murayama H, Hashimoto N, Tanaka H. Ag triangular nanoplates synthesized by photo-induced reduction: Structure analysis and stability. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Bazin D, Chappard C, Combes C, Carpentier X, Rouzière S, André G, Matzen G, Allix M, Thiaudière D, Reguer S, Jungers P, Daudon M. Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporos Int 2009; 20:1065-75. [PMID: 19340497 DOI: 10.1007/s00198-009-0868-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- D Bazin
- Laboratoire de Physique des Solides, Bat 510, Université Paris XI, 91405 Orsay, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen CH, Sarma LS, Chen JM, Shih SC, Wang GR, Liu DG, Tang MT, Lee JF, Hwang BJ. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. ACS NANO 2007; 1:114-125. [PMID: 19206527 DOI: 10.1021/nn700021x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study, we demonstrate the unique application of X-ray absorption spectroscopy (XAS) as a fundamental characterization tool to help in designing and controlling the architecture of Pd-Au bimetallic nanoparticles within a water-in-oil microemulsion system of water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane. Structural insights obtained from the in situ XAS measurements recorded at each step during the formation process revealed that Pd-Au bimetallic clusters with various Pd-Au atomic stackings are formed by properly performing hydrazine reduction and redox transmetalation reactions sequentially within water-in-oil microemulsions. A structural model is provided to explain reasonably each reaction step and to give detailed insight into the nucleation and growth mechanism of Pd-Au bimetallic clusters. The combination of in situ XAS analysis at both the Pd K-edge and the Au L(III)-edge and UV-vis absorption spectral features confirms that the formation of Pd-Au bimetallic clusters follows a (Pd(nuclei)-Au(stack))-Pd(surf) stacking. This result further implies that the thickness of Au(stack) and Pd(surf) layers may be modulated by varying the dosage of the Au precursor and hydrazine, respectively. In addition, a bimetallic (Pd-Au)(alloy) nanocluster with a (Pd(nuclei)-Au(stack))-(Pd-Au(alloy))(surf) stacking was also designed and synthesized in order to check the feasibility of Pd(surf) layer modification. The result reveals that the Pd(surf) layer of the stacked (Pd(nuclei)-Au)(stack) bimetallic clusters can be successfully modified to form a (Au-Pd alloy)(surf) layer by a co-reduction of Pd and Au ions by hydrazine. Further, we demonstrate the alloying extent or atomic distribution of Pd and Au in Pd-Au bimetallic nanoparticles from the derived XAS structural parameters. The complete XAS-based methodology, demonstrated here on the Pd-Au bimetallic system, can easily be extended to design and control the alloying extent or atomic distribution, atomic stacking, and electronic structure to construct many other types of bimetallic systems for interesting applications.
Collapse
Affiliation(s)
- Ching-Hsiang Chen
- Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hwang BJ, Sarma LS, Wang GR, Chen CH, Liu DG, Sheu HS, Lee JF. Heat-Induced Alterations in the Surface Population of Metal Sites in Bimetallic Nanoparticles. Chemistry 2007; 13:6255-64. [PMID: 17458913 DOI: 10.1002/chem.200700126] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to alter the surface population of metal sites in bimetallic nanoparticles (NPs) is of great interest in the context of heterogeneous catalysis. Here, we report findings of surface alterations of Pt and Ru metallic sites in bimetallic carbon-supported (PtRu/C) NPs that were induced by employing a controlled thermal-treatment strategy. The thermal-treatment procedure was designed in such a way that the particle size of the initial NPs was not altered and only the surface population of Pt and Ru was changed, thus allowing us to deduce structural information independent of particle-size effects. X-ray absorption spectroscopy (XAS) was utilized to deduce the structural parameters that can provide information on atomic distribution and/or extent of alloying as well as the surface population of Pt and Ru in PtRu/C NPs. The PtRu/C catalyst sample was obtained from Johnson Matthey, and first the as-received catalyst was reduced in 2 % H2 and 98 % Ar gas mixture at 300 degrees C for 4 h (PtRu/C as-reduced). Later this sample was subjected to thermal treatment in either oxygen (PtRu/C-O2-300) or hydrogen (PtRu/C-H2-350). The XAS results reveal that when the as-reduced PtRu/C catalyst was exposed to the O2 thermal-treatment strategy, a considerable amount of Ru was moved to the catalyst surface. In contrast, the H2 thermal-treatment strategy led to a higher population of Pt on the PtRu/C surface. Characterization of the heat-treated PtRu/C samples by X-ray diffraction and transmission electron microscopy reveals that there is no significant change in the particle size of thermally treated samples when compared to the as-received PtRu/C sample. The electrochemical properties of the as-reduced and heat-treated PtRu/C catalyst samples were confirmed by cyclic voltammetry, CO-adsorption stripping voltammetry, and linear sweep voltammetry. Both XAS and electrochemical investigations concluded that the PtRu/C-H2-350 sample exhibits significant enhancement in reactivity toward methanol oxidation as a result of the increased surface population of the Pt when compared to the PtRu/C-O2-300 and PtRu/C as-reduced samples.
Collapse
Affiliation(s)
- Bing-Joe Hwang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Tapei 106, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Sarma LS, Chen CH, Kumar SMS, Wang GR, Yen SC, Liu DG, Sheu HS, Yu KL, Tang MT, Lee JF, Bock C, Chen KH, Hwang BJ. Formation of Pt-Ru nanoparticles in ethylene glycol solution: an in situ X-ray absorption spectroscopy study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5802-9. [PMID: 17425346 DOI: 10.1021/la0637418] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The chemical state and formation mechanism of Pt-Ru nanoparticles (NPs) synthesized by using ethylene glycol (EG) as a reducing agent and their stability have been examined by in situ X-ray absorption spectroscopy (XAS) at the Pt LIII and Ru K edges. It appears that the reduction of Pt(IV) and Ru(III) precursor salts by EG is not a straightforward reaction but involves different intermediate steps. The pH control of the reaction mixture containing Pt(IV) and Ru(III) precursor salts in EG to 11 led to the reduction of Pt(IV) to Pt(II) corresponding to [PtCl4](2-) whereas Ru(III)Cl3 is changed to the [Ru(OH)6](3-) species. Refluxing the mixture containing [PtCl4](2-) and [Ru(OH)6](3-) species at 160 degrees C for 0.5 h produces Pt-Ru NPs as indicated by the presence of Pt and Ru in the first coordination shell of the respective metals. No change in XAS structural parameters is found when the reaction time is further increased, indicating that the Pt-Ru NPs formed are extremely stable and less prone to aggregation. XAS structural parameters suggest a Pt-rich core and a Ru-rich shell structure for the final Pt-Ru NPs. Due to the inherent advantages of the EG reduction method, the atomic distribution and alloying extent of Pt and Ru in the Pt-Ru NPs synthesized by the EG method are higher than those of the Pt-Ru/C NPs synthesized by a modified Watanabe method.
Collapse
Affiliation(s)
- Loka Subramanyam Sarma
- Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Hwang BJ, Chen CH, Sarma LS, Chen JM, Wang GR, Tang MT, Liu DG, Lee JF. Probing the Formation Mechanism and Chemical States of Carbon-Supported Pt−Ru Nanoparticles by in Situ X-ray Absorption Spectroscopy. J Phys Chem B 2006; 110:6475-82. [PMID: 16570944 DOI: 10.1021/jp0563686] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The understanding of the formation mechanism of nanoparticles is essential for the successful particle design and scaling-up process. This paper reports findings of an X-ray absorption spectroscopy (XAS) investigation, comprised of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions, to understand the mechanism of the carbon-supported Pt-Ru nanoparticles (NPs) formation process. We have utilized Watanabe's colloidal reduction method to synthesize Pt-Ru/C NPs. We slightly modified the Watanabe method by introducing a mixing and heat treatment step of Pt and Ru oxidic species at 100 degrees C for 8 h with a view to enhance the mixing efficiency of the precursor species, thereby one can achieve improved homogeneity and atomic distribution in the resultant Pt-Ru/C NPs. During the reduction process, in situ XAS measurements allowed us to follow the evolution of Pt and Ru environments and their chemical states. The Pt LIII-edge XAS indicates that when H2PtCl6 is treated with NaHSO3, the platinum compound is found to be reduced to a Pt(II) form corresponding to the anionic complex [Pt(SO3)4]6-. Further oxidation of this anionic complex with hydrogen peroxide forms dispersed [Pt(OH)6]2- species. Analysis of Ru K-edge XAS results confirms the reduction of RuIIICl3 to [RuII(OH)4]2- species upon addition of NaHSO3. Addition of hydrogen peroxide to [RuII(OH)4]2- causes dehydrogenation and forms RuOx species. Mixing of [Pt(OH)6]2- and RuOx species and heat treatment at 100 degrees C for 8 h produced a colloidal sol containing both Pt and Ru metallic as well as ionic contributions. The reduction of this colloidal mixture at 300 degrees C in hydrogen atmosphere for 2 h forms Pt-Ru nanoparticles as indicated by the presence of Pt and Ru atoms in the first coordination shell. Determination of the alloying extent or atomic distribution of Pt and Ru atoms in the resulting Pt-Ru/C NPs reveals that the alloying extent of Ru (JRu) is greater than that of the alloying extent of Pt (JPt). The XAS results support the Pt-rich core and Ru-rich shell structure with a considerable amount of segregation in the Pt region and with less segregation in the Ru region for the obtained Pt-Ru/C NPs.
Collapse
Affiliation(s)
- Bing Joe Hwang
- Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen CH, Hwang BJ, Wang GR, Sarma LS, Tang MT, Liu DG, Lee JF. Nucleation and Growth Mechanism of Pd/Pt Bimetallic Clusters in Sodium Bis(2-ethylhexyl)sulfosuccinate (AOT) Reverse Micelles as Studied by in Situ X-ray Absorption Spectroscopy. J Phys Chem B 2005; 109:21566-75. [PMID: 16853800 DOI: 10.1021/jp054062t] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report in situ X-ray absorption spectroscopy (XAS) investigations on the formation of palladium-platinum (Pd/Pt) bimetallic clusters at the early stage within the water-in-oil microemulsion system of water/AOT/n-heptane. The reduction of palladium and platinum ions and the formation of corresponding clusters are monitored as a function of dosage of reducing agent, hydrazine (N(2)H(5)OH). Upon successive addition of the reducing agent, hydrazine (N(2)H(5)OH), five distinguishable steps are observed in the formation process of Pd/Pt clusters at the early stage. Both in situ X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis for both the Pd K-edge and Pt L(III)-edge revealed the formation of Pd/Pt bimetallic clusters. A corresponding structural model is proposed for each step to provide a detailed insight into the nucleation and growth mechanism of Pd/Pt bimetallic clusters. We also discussed the atomic distribution of Pd and Pt atoms in Pd/Pt bimetallic clusters based on the calculated XAS structural parameters.
Collapse
Affiliation(s)
- Ching-Hsiang Chen
- Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, R.O.C
| | | | | | | | | | | | | |
Collapse
|
50
|
Ciuparu D, Haider P, Fernandez-García M, Chen Y, Lim S, Haller GL, Pfefferle L. X-ray Absorption Spectroscopic Investigation of Partially Reduced Cobalt Species in Co−MCM-41 Catalysts during Synthesis of Single-Wall Carbon Nanotubes. J Phys Chem B 2005; 109:16332-9. [PMID: 16853076 DOI: 10.1021/jp052243p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemometric tools were employed to analyze the in-situ dynamic X-ray absorption spectroscopy data to probe the state of Co-MCM-41 catalysts during reduction in pure hydrogen and under single-wall carbon nanotube synthesis reaction conditions. The use of the progressive correlation analysis established the sequence in which changes in the spectral features near the Co K edge occurred, and the evolving factor analysis provided evidence for the formation of an intermediate Co(1+) ionic species during reduction of the Co-MCM-41 catalyst in pure hydrogen up to 720 degrees C. This intermediate species preserves the tetrahedral environment in the silica framework and is resistant to complete reduction to the metal in H(2). While the Co(2+) species is resistant to reduction in pure CO, the intermediate Co(1+) species is more reactive in CO most likely forming cobalt carbonyl-like compounds with high mobility in the MCM-41. These mobile species are the precursors of the metallic clusters growing carbon nanotubes. Controlling the rates of each step of this two-stage reduction process is key to controlling the size of the metallic Co clusters formed in Co-MCM-41 catalysts.
Collapse
Affiliation(s)
- Dragos Ciuparu
- Department of Chemical Engineering, Yale University, P.O. Box 208286, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|