1
|
Jyde NK, Kristensen HH, Kranabetter L, Christensen JK, Hansen E, Carlsen MB, Stapelfeldt H. Time-resolved Coulomb explosion imaging of vibrational wave packets in alkali dimers on helium nanodroplets. J Chem Phys 2024; 161:224301. [PMID: 39651812 DOI: 10.1063/5.0239196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
Vibrational wave packets are created in the lowest triplet state 13Σu+ of K2 and Rb2 residing on the surface of helium nanodroplets, through non-resonant stimulated impulsive Raman scattering induced by a moderately intense near-infrared laser pulse. A delayed, intense 50-fs laser pulse doubly ionizes the alkali dimers via multiphoton absorption and thereby causes them to Coulomb explode into a pair of alkali ions Ak+. From the kinetic energy distribution P(Ekin) of the Ak+ fragment ions, measured at a large number of delays, we determine the time-dependent internuclear distribution P(R, t), which represents the modulus square of the wave packet within the accuracy of the experiment. For both K2 and Rb2, P(R, t) exhibits a periodic oscillatory structure throughout the respective 300 and 100 ps observation times. The oscillatory structure is reflected in the time-dependent mean value of R, ⟨R⟩(t). The Fourier transformation of ⟨R⟩(t) shows that the wave packets are composed mainly of the vibrational ground state and the first excited vibrational state, in agreement with numerical simulations. In the case of K2, the oscillations are observed for 300 ps, corresponding to more than 180 vibrational periods with an amplitude that decreases gradually from 0.035 to 0.020 Å. Using time-resolved spectral analysis, we find that the decay time of the amplitude is ∼260 ps. The decrease is ascribed to the weak coupling between the vibrating dimers and the droplet.
Collapse
Affiliation(s)
- Nicolaj K Jyde
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik H Kristensen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Lorenz Kranabetter
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jeppe K Christensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Emil Hansen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Mads B Carlsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Topcu G, Al Hindawi AMA, Feng C, Spence D, Sitorus B, Liu H, Ellis AM, Yang S. Precision engineering of nano-assemblies in superfluid helium by the use of van der Waals forces. Commun Chem 2024; 7:125. [PMID: 38834741 DOI: 10.1038/s42004-024-01203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
The ability to precisely engineer nanostructures underpins a wide range of applications in areas such as electronics, optics, and biomedical sciences. Here we present a novel approach for the growth of nanoparticle assemblies that leverages the unique properties of superfluid helium. Unlike viscous solvents at or near room temperature, superfluid helium provides an unperturbed and cold environment in which weak van der Waals interactions between molecular templates and metal atoms become significant and can define the spatial arrangement of nanoparticles. To demonstrate this concept, diol and porphyrin-based molecules are employed as templates to grow gold nanoparticle assemblies in superfluid helium droplets. After soft-landing on a solid surface to remove the helium, transmission electron microscopy (TEM) imaging shows the growth of gold nanoparticles at specific binding sites within the molecular templates where the interaction between gold atoms and the molecular template is at its strongest.
Collapse
Affiliation(s)
- Gokhan Topcu
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Aula M A Al Hindawi
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
- Department of Chemistry, College of Education for Pure Science, University of Karbala, Karbala, Iraq
| | - Cheng Feng
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Daniel Spence
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Berlian Sitorus
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
- Department of Chemistry, Tanjungpura University, Pontianak, Indonesia
| | - Hanqing Liu
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Andrew M Ellis
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Shengfu Yang
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
3
|
Mabrouk N, Dhiflaoui J, Saidi S, Bejaoui M, Alharzali N, Berriche H. Potential Energy Surface and Bound States of Ne-Li 2+( X2Σ g+) van der Waals Complex Based on Ab Initio Calculations. J Phys Chem A 2023; 127:9167-9177. [PMID: 37890154 PMCID: PMC10641847 DOI: 10.1021/acs.jpca.3c03811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Theoretical studies of the potential energy surface and vibrational bound states calculations were performed for the ground state of the Ne-Li2+(X2Σg+) van der Waals (vdW) complex. The intermolecular interactions were investigated by using an accurate monoconfigurational RCCSD(T) method and large basis sets (aug-cc-pVnZ, n = T, Q, 5), extrapolated to the complete basis set (CBS) limit. In turn, the obtained raw data from RCCSD(T)/CBS(Q5) calculations were numerically interpolated using the Morse + vdW model and the Reproducing Kernel Hilbert Space (RKHS) polynomial method to generate analytic expressions for the 2D-PES. The RKHS interpolated PES was then used to assess the bound states of the Ne-Li2+(X2Σg+) system through nuclear quantum calculations. By studying the aspect of the potential energy surface, the analysis sheds light on the behavior of the Ne-Li2+(X2Σg+) complex and its interactions between repulsive and attractive forces with other particles. By examining the vibrational states and wave functions of the system, the researchers were able to gain a better understanding of the behavior of the Ne-Li2+(X2Σg+) complex. The calculated radial and angular distributions for all even and odd symmetries are discussed in detail. We observe that the radial distributions exhibit a more complicated nodal structure, representing stretching vibrational behavior in the neon atom along its radial coordinate. For the highest bound states, the situation is very different, and the energies surpass the angular barrier.
Collapse
Affiliation(s)
- Nesrine Mabrouk
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Jamila Dhiflaoui
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Samah Saidi
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
- Department
of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Mohamed Bejaoui
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Nissrin Alharzali
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 814 99, Slovakia
| | - Hamid Berriche
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
- Mathematics
and Physics Department, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al-Khaimah 10021, United Arab Emirates
| |
Collapse
|
4
|
Kranabetter L, Kristensen HH, Ghazaryan A, Schouder CA, Chatterley AS, Janssen P, Jensen F, Zillich RE, Lemeshko M, Stapelfeldt H. Nonadiabatic Laser-Induced Alignment Dynamics of Molecules on a Surface. PHYSICAL REVIEW LETTERS 2023; 131:053201. [PMID: 37595218 DOI: 10.1103/physrevlett.131.053201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/08/2023] [Indexed: 08/20/2023]
Abstract
We demonstrate that a sodium dimer, Na_{2}(1^{3}Σ_{u}^{+}), residing on the surface of a helium nanodroplet, can be set into rotation by a nonresonant 1.0 ps infrared laser pulse. The time-dependent degree of alignment measured, exhibits a periodic, gradually decreasing structure that deviates qualitatively from that expected for gas-phase dimers. Comparison to alignment dynamics calculated from the time-dependent rotational Schrödinger equation shows that the deviation is due to the alignment dependent interaction between the dimer and the droplet surface. This interaction confines the dimer to the tangential plane of the droplet surface at the point where it resides and is the reason that the observed alignment dynamics is also well described by a 2D quantum rotor model.
Collapse
Affiliation(s)
- Lorenz Kranabetter
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Henrik H Kristensen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Areg Ghazaryan
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Adam S Chatterley
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Paul Janssen
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Robert E Zillich
- Institute for Theoretical Physics, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-4040 Linz, Austria
| | - Mikhail Lemeshko
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Saidi S, Mabrouk N, Dhiflaoui J, Berriche H. Structural, Spectroscopic, and Dynamic Properties of Li2+(X2∑g+) in Interaction with Krypton Atom. Molecules 2023; 28:5512. [PMID: 37513385 PMCID: PMC10385072 DOI: 10.3390/molecules28145512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
We report a computational study of the potential energy surface (PES) and vibrational bound states for the ground electronic state of Li2+Kr. The PES was calculated in Jacobi coordinates at the Restricted Coupled Cluster method RCCSD(T) level of calculation and using aug-cc-pVnZ (n = 4 and 5) basis sets. Afterward, this PES is extrapolated to the complete basis set (CBS) limit for correction. The obtained interaction energies were, then, interpolated numerically using the reproducing kernel Hilbert space polynomial (RKHS) approach to produce analytic expressions for the 2D-PES. The analytical PES is used to solve the nuclear Schrodinger equation to determine the bound states' eigenvalues of Li2+Kr for a J = 0 total angular momentum configuration and to understand the effects of orientational anisotropy of the forces and the interplay between the repulsive and attractive interaction within the potential surface. In addition, the radial and angular distributions of some selected bound state levels, which lie below, around, and above the T-shaped 90° barrier well, are calculated and discussed. We note that the radial distributions clearly acquire a more complicated nodal structure and correspond to bending and stretching vibrational motions "mode" of the Kr atom along the radial coordinate, and the situation becomes very different at the highest bound states levels with energies higher than the T-shaped 90° barrier well. The shape of the distributions becomes even more complicated, with extended angular distributions and prominent differences between even and odd states.
Collapse
Affiliation(s)
- Samah Saidi
- Laboratory of Interfaces and Advanced Materials, Physics Department, Faculty of Sciences of Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nesrine Mabrouk
- Laboratory of Interfaces and Advanced Materials, Physics Department, Faculty of Sciences of Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
| | - Jamila Dhiflaoui
- Laboratory of Interfaces and Advanced Materials, Physics Department, Faculty of Sciences of Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
| | - Hamid Berriche
- Laboratory of Interfaces and Advanced Materials, Physics Department, Faculty of Sciences of Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
- Mathematics and Natural Sciences Department, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al-Khaimah 10021, United Arab Emirates
| |
Collapse
|
6
|
Karachi SS, Eskandari K. Bonding in the high spin lithium clusters: Non-nuclear attractors play a crucial role. J Comput Chem 2023; 44:962-968. [PMID: 36573786 DOI: 10.1002/jcc.27056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022]
Abstract
The bonding in lithium high-spin clusters contradicts the usual chemical bonding concept since there are no electron pairs between the atoms, and they are bound with parallel spin electrons. Quantum theory of atoms in molecules and interacting quantum atom analysis (IQA) were used to investigate the nature of bonding in the high-spin Li n n + 1 n = 2 - 5 clusters. Our findings demonstrate that the non-nuclear attractors (NNAs) are an essential component of the high-spin lithium clusters and play a key role in keeping them stable. Based on IQA energy terms, an electrostatic destabilizing interaction between the lithium atoms works against the cluster formation. On the other hand, the interactions between lithium atoms and NNA basins are stabilizing and outweigh the lithium-lithium destabilizing effects. In fact, NNAs tend to draw lithium atoms together and stabilize the resulting cluster. The high-spin clusters of lithium can be regarded as electrostatically driven compounds since the electrostatic components are primarily responsible for the stabilizing interactions between NNAs and Li atoms. The only exception is 3 Li2 , which lacks NNA and has a non-repellent lithium-lithium interaction. Indeed, in the 3 Li2 , the interatomic electrostatic component is negligibly small, and the exchange-correlation term leads to a weak bonding interaction.
Collapse
Affiliation(s)
- Sara Sadat Karachi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Kiamars Eskandari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
7
|
Albertini S, Gruber E, Zappa F, Krasnokutski S, Laimer F, Scheier P. Chemistry and physics of dopants embedded in helium droplets. MASS SPECTROMETRY REVIEWS 2022; 41:529-567. [PMID: 33993543 DOI: 10.1002/mas.21699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 05/18/2023]
Abstract
Helium droplets represent a cold inert matrix, free of walls with outstanding properties to grow complexes and clusters at conditions that are perfect to simulate cold and dense regions of the interstellar medium. At sub-Kelvin temperatures, barrierless reactions triggered by radicals or ions have been observed and studied by optical spectroscopy and mass spectrometry. The present review summarizes developments of experimental techniques and methods and recent results they enabled.
Collapse
Affiliation(s)
- Simon Albertini
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Elisabeth Gruber
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Fabio Zappa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Serge Krasnokutski
- Laboratory Astrophysics Group of the MPI for Astronomy, University of Jena, Jena, Germany
| | - Felix Laimer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Briant M, Mestdagh JM, Gaveau MA, Poisson L. Reaction dynamics within a cluster environment. Phys Chem Chem Phys 2022; 24:9807-9835. [PMID: 35441619 DOI: 10.1039/d1cp05783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective article reviews experimental and theoretical works where rare gas clusters and helium nanodroplets are used as a nanoreactor to investigate chemical dynamics in a solvent environment. A historical perspective is presented first followed by specific considerations on the mobility of reactants within these reaction media. The dynamical response of pure clusters and nanodroplets to photoexcitation is shortly reviewed before examining the role of the cluster (or nanodroplet) degrees of freedom in the photodynamics of the guest atoms and molecules.
Collapse
Affiliation(s)
- Marc Briant
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
| | | | - Marc-André Gaveau
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
| | - Lionel Poisson
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.
| |
Collapse
|
9
|
Kristensen HH, Kranabetter L, Schouder CA, Stapper C, Arlt J, Mudrich M, Stapelfeldt H. Quantum-State-Sensitive Detection of Alkali Dimers on Helium Nanodroplets by Laser-Induced Coulomb Explosion. PHYSICAL REVIEW LETTERS 2022; 128:093201. [PMID: 35302820 DOI: 10.1103/physrevlett.128.093201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Rubidium dimers residing on the surface of He nanodroplets are doubly ionized by an intense femtosecond laser pulse leading to fragmentation into a pair of Rb^{+} ions. We show that the kinetic energy of the Rb^{+} fragment ions can be used to identify dimers formed in either the X ^{1}Σ_{g}^{+} ground state or in the lowest-lying triplet state, a ^{3}Σ_{u}^{+}. From the experiment, we estimate the abundance ratio of dimers in the a and X states as a function of the mean droplet size and find values between 4∶1 and 5∶1. Our technique applies generally to dimers and trimers of alkali atoms, here also demonstrated for Li_{2}, Na_{2}, and K_{2}, and will enable femtosecond time-resolved measurements of their rotational and vibrational dynamics, possibly with atomic structural resolution.
Collapse
Affiliation(s)
- Henrik H Kristensen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Lorenz Kranabetter
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Christoph Stapper
- Faculty of Chemistry and Pharmacy, University of Würzburg, Am Hubland, Campus Süd, D-97074 Würzburg, Germany
| | - Jacqueline Arlt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Castillo-García A, Hauser AW, de Lara-Castells MP, Villarreal P. A Path Integral Molecular Dynamics Simulation of a Harpoon-Type Redox Reaction in a Helium Nanodroplet. Molecules 2021; 26:5783. [PMID: 34641327 PMCID: PMC8510490 DOI: 10.3390/molecules26195783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
We present path integral molecular dynamics (PIMD) calculations of an electron transfer from a heliophobic Cs2 dimer in its (3Σu) state, located on the surface of a He droplet, to a heliophilic, fully immersed C60 molecule. Supported by electron ionization mass spectroscopy measurements (Renzler et al., J. Chem. Phys.2016, 145, 181101), this spatially quenched reaction was characterized as a harpoon-type or long-range electron transfer in a previous high-level ab initio study (de Lara-Castells et al., J. Phys. Chem. Lett.2017, 8, 4284). To go beyond the static approach, classical and quantum PIMD simulations are performed at 2 K, slightly below the critical temperature for helium superfluidity (2.172 K). Calculations are executed in the NVT ensemble as well as the NVE ensemble to provide insights into real-time dynamics. A droplet size of 2090 atoms is assumed to study the impact of spatial hindrance on reactivity. By changing the number of beads in the PIMD simulations, the impact of quantization can be studied in greater detail and without an implicit assumption of superfluidity. We find that the reaction probability increases with higher levels of quantization. Our findings confirm earlier, static predictions of a rotational motion of the Cs2 dimer upon reacting with the fullerene, involving a substantial displacement of helium. However, it also raises the new question of whether the interacting species are driven out-of-equilibrium after impurity uptake, since reactivity is strongly quenched if a full thermal equilibration is assumed. More generally, our work points towards a novel mechanism for long-range electron transfer through an interplay between nuclear quantum delocalization within the confining medium and delocalized electronic dispersion forces acting on the two reactants.
Collapse
Affiliation(s)
| | - Andreas W. Hauser
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria;
| | | | - Pablo Villarreal
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, ES-28006 Madrid, Spain;
| |
Collapse
|
11
|
Abstract
AbstractWe have measured depletion spectra of the heteronuclear (85Rb87Rb+) dimer cation complexed with up to 10 He atoms. Two absorption bands are observed between 920 and 250 nm. The transition into the repulsive 12Σu+state of HeRb2+gives rise to a broad feature at 790 nm (12,650 cm−1); it exhibits a blueshift of 98 cm−1per added He atom. The transition into the bound 12Πustate of HeRb2+reveals vibrational structure with a band head at ≤ 15,522 cm−1, a harmonic constant of 26 cm−1, and a spin–orbit splitting of ≤ 183 cm−1. The band experiences an average redshift of − 38 cm−1per added He atom. Ab initio calculations rationalize the shape of the spectra and spectral shifts with respect to the number of helium atoms attached. For a higher number of solvating helium atoms, symmetric solvation on both ends of the Rb2+ion is predicted.
Collapse
|
12
|
Ernst WE, Hauser AW. Metal clusters synthesized in helium droplets: structure and dynamics from experiment and theory. Phys Chem Chem Phys 2020; 23:7553-7574. [PMID: 33057510 DOI: 10.1039/d0cp04349d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal clusters have drawn continuous interest because of their high potential for the assembly of matter with special properties that may significantly differ from the corresponding bulk. Controlled combination of particular elements in one nanoparticle can increase the options for the creation of new materials for photonic, catalytic, or electronic applications. Superfluid helium droplets provide confinement and ultralow temperature, i.e. an ideal environment for the atom-by-atom aggregation of a new nanoparticle. This perspective presents a review of the current research progress on the synthesis of tailored metal and metal oxide clusters including core-shell designs, their characterization within the helium droplet beam, deposition on various solid substrates, and analysis via surface diagnostics. Special attention is given to the thermal properties of mixed metal clusters and questions about alloy formation on the nanoscale. Experimental results are accompanied by theoretical approaches employing computational chemistry, molecular dynamics simulations and He density functional theory.
Collapse
Affiliation(s)
- Wolfgang E Ernst
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria.
| | | |
Collapse
|
13
|
Kranabetter L, Bersenkowitsch NK, Martini P, Gatchell M, Kuhn M, Laimer F, Schiller A, Beyer MK, Ončák M, Scheier P. Considerable matrix shift in the electronic transitions of helium-solvated cesium dimer cation Cs 2He. Phys Chem Chem Phys 2019; 21:25362-25368. [PMID: 31702748 PMCID: PMC7116336 DOI: 10.1039/c9cp04790e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We investigate the photodissociation of helium-solvated cesium dimer cations using action spectroscopy and quantum chemical calculations. The spectrum of Cs2He+ shows three distinct absorption bands into both bound and dissociative states. Upon solvation with further helium atoms, considerable shifts of the absorption bands are observed, exceeding 0.1 eV (850 cm-1) already for Cs2He10+, along with significant broadening. The shifts are highly sensitive to the character of the excited state. Our calculations show that helium atoms adsorb on the ends of Cs2+. The shifts are particularly pronounced if the excited state orbitals extend to the area occupied by the helium atoms. In this case, Pauli repulsion leads to a deformation of the excited state orbitals, resulting in the observed blue shift of the transition. Since the position of the weakly bound helium atoms is ill defined, Pauli repulsion also explains the broadening.
Collapse
Affiliation(s)
- Lorenz Kranabetter
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Nina K Bersenkowitsch
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Paul Martini
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria. and Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Kuhn
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Felix Laimer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Arne Schiller
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| |
Collapse
|
14
|
Rincon L, Torres FJ, Zambrano CH, Becerra M, Burgos JL, Almeida R, Liu S. Stability of "No-Pair Ferromagnetic" Lithium Clusters. J Phys Chem A 2019; 123:9721-9728. [PMID: 31638808 DOI: 10.1021/acs.jpca.9b06721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-spin lithium clusters, n+1Lin (n = 2-21), have been systematically studied by using density functional theory. Although these high-spin clusters have no bonding electron pairs, they are stable with respect to isolated atoms. A set of 42 density functional theory functionals were benchmarked against CCSD(T)/cc-pVQZ results for clusters from the dimer to the hexamer. For these clusters, the strong non-additivity on the binding energy is analyzed employing a many-body energy decomposition scheme, concluding that most of the binding energy is due to a balance between the three- and four-body contributions. After a quality parameter had been defined, the LC-BP86 functional was identified as the most promising one for the description of high-spin lithium clusters. We employ the dependence of the second energy difference on cluster size to predict the formation of a higher-stability cluster.
Collapse
Affiliation(s)
- Luis Rincon
- Universidad San Francisco de Quito (USFQ) , Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, and Instituto de Simulación Computacional (ISC-USFQ) , Diego de Robles y Via Interoceanica , Quito , Ecuador 17-1200-841.,Universidad de Los Andes (ULA) , Departamento de Química, Facultad de Ciencias , La Hechicera, Mérida 5101 , Venezuela
| | - F Javier Torres
- Universidad San Francisco de Quito (USFQ) , Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, and Instituto de Simulación Computacional (ISC-USFQ) , Diego de Robles y Via Interoceanica , Quito , Ecuador 17-1200-841
| | - Cesar H Zambrano
- Universidad San Francisco de Quito (USFQ) , Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, and Instituto de Simulación Computacional (ISC-USFQ) , Diego de Robles y Via Interoceanica , Quito , Ecuador 17-1200-841
| | - Marcos Becerra
- Universidad San Francisco de Quito (USFQ) , Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, and Instituto de Simulación Computacional (ISC-USFQ) , Diego de Robles y Via Interoceanica , Quito , Ecuador 17-1200-841
| | - Jose Luis Burgos
- Universidad de Los Andes (ULA) , Departamento de Química, Facultad de Ciencias , La Hechicera, Mérida 5101 , Venezuela
| | - Rafael Almeida
- Universidad de Los Andes (ULA) , Departamento de Química, Facultad de Ciencias , La Hechicera, Mérida 5101 , Venezuela
| | - Shubin Liu
- Research Computing Center , University of North Carolina , Chapel Hill , North Carolina 27599-3420 , United States
| |
Collapse
|
15
|
Ghosh A, Cederbaum LS, Gokhberg K. Electron transfer mediated decay in HeLi 2 cluster: Potential energy surfaces and decay widths. J Chem Phys 2019; 150:164309. [PMID: 31042888 DOI: 10.1063/1.5082952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electron transfer mediated decay (ETMD) is a process responsible for double ionization of dopants in He droplets. It is initiated by producing He+ in the droplet, which is neutralized by ETMD, and has been shown to strongly enhance the dopant's double ionization cross section. The efficiency of ETMD, the spectra of emitted secondary electrons, and the character of the ionic products depend on the nuclear dynamics during the decay. To date, there has been no theoretical investigation of multimode dynamics which accompanies ETMD, which could help to understand such dynamics in a He droplet. In this article, we consider the He-Li2 cluster where an ab initio examination of multimode dynamics during the electronic decay is feasible. Moreover, this cluster can serve as a minimal model for Li2 adsorbed on the droplet's surface-a system where ETMD can be observed experimentally. In He droplets, Li2 can be formed in both the ground X1Σg + and the first excited a3Σu + states. In this article, we present ab initio potential energy surfaces of the electronic states of the He-Li2 cluster involved in ETMD, as well as the respective decay widths. We show that the structure of these surfaces and expected nuclear dynamics strongly depend on the electronic state of Li2. Thus, the overall decay rate and the appearance of the observable electron spectra will be dictated by the electronic structure of the dopant.
Collapse
Affiliation(s)
- Aryya Ghosh
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Kirill Gokhberg
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
16
|
Lackner F, Ernst WE. Photoinduced Molecule Formation of Spatially Separated Atoms on Helium Nanodroplets. J Phys Chem Lett 2018; 9:3561-3566. [PMID: 29893573 DOI: 10.1021/acs.jpclett.8b01530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Besides the use as cold matrix for spectroscopic studies, superfluid helium droplets have served as a cold environment for the synthesis of molecules and clusters. Since vibrational frequencies of molecules in helium droplets exhibit almost no shift compared to the free molecule values, one could assume the solvated particles move frictionless and undergo a reaction as soon as their paths cross. There have been a few unexplained observations that seemed to indicate cases of two species on one droplet not forming bonds but remaining isolated. In this work, we performed a systematic study of helium droplets doped with one rubidium and one strontium atom showing that besides a reaction to RbSr, there is a probability of finding separated Rb and Sr atoms on one droplet that only react after electronic excitation. Our results further indicate that ground-state Sr atoms can reside at the surface as well as inside the droplet.
Collapse
Affiliation(s)
- Florian Lackner
- Institute of Experimental Physics , Graz University of Technology , Petersgasse 16 , A-8010 Graz , Austria, European Union
| | - Wolfgang E Ernst
- Institute of Experimental Physics , Graz University of Technology , Petersgasse 16 , A-8010 Graz , Austria, European Union
| |
Collapse
|
17
|
|
18
|
He Y, Zhang J, Lei L, Kong W. Self-Assembly of Iodine in Superfluid Helium Droplets: Halogen Bonds and Nanocrystals. Angew Chem Int Ed Engl 2017; 56:3541-3545. [PMID: 28220998 DOI: 10.1002/anie.201611922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/18/2017] [Indexed: 11/09/2022]
Abstract
We present evidence of halogen bond in iodine clusters formed in superfluid helium droplets based on results from electron diffraction. Iodine crystals are known to form layered structures with intralayer halogen bonds, with interatomic distances shorter than the sum of the van der Waals radii of the two neighboring atoms. The diffraction profile of dimer dominated clusters embedded in helium droplets reveals an interatomic distance of 3.65 Å, much closer to the value of 3.5 Å in iodine crystals than to the van der Waals distance of 4.3 Å. The profile from larger iodine clusters deviates from a single layer structure; instead, a bi-layer structure qualitatively fits the experimental data. This work highlights the possibility of small halogen bonded iodine clusters, albeit in a perhaps limited environment of superfluid helium droplets. The role of superfluid helium in guiding the trapped molecules into local potential minima awaits further investigation.
Collapse
Affiliation(s)
- Yunteng He
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Lei Lei
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
19
|
He Y, Zhang J, Lei L, Kong W. Self‐Assembly of Iodine in Superfluid Helium Droplets: Halogen Bonds and Nanocrystals. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yunteng He
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Jie Zhang
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Lei Lei
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Wei Kong
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
20
|
Renzler M, Daxner M, Kranabetter L, Kaiser A, Hauser AW, Ernst WE, Lindinger A, Zillich R, Scheier P, Ellis AM. Communication: Dopant-induced solvation of alkalis in liquid helium nanodroplets. J Chem Phys 2017; 145:181101. [PMID: 27846692 DOI: 10.1063/1.4967405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alkali metal atoms and small alkali clusters are classic heliophobes and when in contact with liquid helium they reside in a dimple on the surface. Here we show that alkalis can be induced to submerge into liquid helium when a highly polarizable co-solute, C60, is added to a helium nanodroplet. Evidence is presented that shows that all sodium clusters, and probably single Na atoms, enter the helium droplet in the presence of C60. Even clusters of cesium, an extreme heliophobe, dissolve in liquid helium when C60 is added. The sole exception is atomic Cs, which remains at the surface.
Collapse
Affiliation(s)
- Michael Renzler
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Matthias Daxner
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Lorenz Kranabetter
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Alexander Kaiser
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Andreas W Hauser
- Institut für Experimentalphysik, Technische Universität Graz, Petergasse 16, A-8010 Graz, Austria
| | - Wolfgang E Ernst
- Institut für Experimentalphysik, Technische Universität Graz, Petergasse 16, A-8010 Graz, Austria
| | - Albrecht Lindinger
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Robert Zillich
- Institut für Theoretische Physik, Johannes Kepler Universität, A-4040 Linz, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Andrew M Ellis
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
21
|
Hild MB, Dufour A, Achazi G, Patas A, Scheier P, Lindinger A. Selection of ionization paths of K2 on superfluid helium droplets by wave packet interference. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Abstract
As we approach the Lewis model centennial, it may be timely to discuss novel bonding motifs. Accordingly, this review discusses no-pair ferromagnetic (NPFM) bonds that hold together monovalent metallic atoms using exclusively parallel spins. Thus, without any traditional electron-pair bonds, the bonding energy per atom in these clusters can reach 20 kcal mol(-1). This review describes the origins of NPFM bonding using a valence bond (VB) analysis, which shows that this bonding motif arises from bound triplet electron pairs that are delocalized over all the close neighbors of a given atom in the cluster. The VB model accounts for the tendency of NPFM clusters to assume polyhedral shapes with rather high symmetry and for the very steep rise of the bonding energy per atom. The advent of NPFM clusters offers new horizons in chemistry of highly magnetic species sensitive to magnetic and electric fields.
Collapse
Affiliation(s)
- David Danovich
- Institute of Chemistry, The Hebrew University, 91904 Jerusalem, Israel; ,
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University, 91904 Jerusalem, Israel; ,
| |
Collapse
|
23
|
Rodríguez-Cantano R, González-Lezana T, Villarreal P. Path integral Monte Carlo investigations on doped helium clusters. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2015.1132595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Rodríguez-Cantano R, González-Lezana T, Prosmiti R, Delgado-Barrio G, Villarreal P, Jellinek J. Reactive scattering calculations for (87)Rb+(87)RbHe→Rb2((3)Σ(u)(+),v)+He from ultralow to intermediate energies. J Chem Phys 2015; 142:164304. [PMID: 25933761 DOI: 10.1063/1.4919062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate atom-diatom reactive collisions, as a preliminary step,in order to assess the possibility of forming Rb(2) molecules in their lowest triplet electronic state by cold collisions of rubidium atoms on the surface of helium nanodroplets [corrected]. A simple model related to the well-known Rosen treatment of linear triatomic molecules [N. Rosen, J. Chem. Phys. 1, 319 (1933)] in relative coordinates is used, allowing to estimate reactive probabilities for different values of the total angular momentum. The best available full dimensional potential energy surface [Guillon et al., J. Chem. Phys. 136, 174307 (2012)] is employed through the calculations. Noticeable values of the probabilities in the ultracold regime, which numerically fulfill the Wigner threshold law, support the feasibility of the process. The rubidium dimer is mainly produced at high vibrational states, and the reactivity is more efficient for a bosonic helium partner than when the fermion species is considered.
Collapse
Affiliation(s)
| | | | - Rita Prosmiti
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid, Spain
| | | | - Pablo Villarreal
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid, Spain
| | - Julius Jellinek
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
25
|
Pototschnig JV, Krois G, Lackner F, Ernst WE. Investigation of the RbCa molecule: Experiment and theory. JOURNAL OF MOLECULAR SPECTROSCOPY 2015; 310:126-134. [PMID: 25922550 PMCID: PMC4407902 DOI: 10.1016/j.jms.2015.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/12/2015] [Indexed: 06/04/2023]
Abstract
We present a thorough theoretical and experimental study of the electronic structure of RbCa. The mixed alkali-alkaline earth molecule RbCa was formed on superfluid helium nanodroplets. Excited states of the molecule in the range of 13 000-23 000 cm-1 were recorded by resonance enhanced multi-photon ionization time-of-flight spectroscopy. The experiment is accompanied by high level ab initio calculations of ground and excited state properties, utilizing a multireference configuration interaction method based on multiconfigurational self consistent field calculations. With this approach the potential energy curves and permanent electric dipole moments of 24 electronic states were calculated. In addition we computed the transition dipole moments for transitions from the ground into excited states. The combination of experiment and theory allowed the assignment of features in the recorded spectrum to the excited [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] states, where the experiment allowed to benchmark the calculation. This is the first experimental work giving insight into the previously unknown RbCa molecule, which offers great prospects in ultracold molecular physics due to its magnetic and electronic dipole moment in the [Formula: see text] ground state.
Collapse
|
26
|
Lackner F, Krois G, Buchsteiner T, Pototschnig JV, Ernst WE. Helium-droplet-assisted preparation of cold RbSr molecules. PHYSICAL REVIEW LETTERS 2014; 113:153001. [PMID: 25375707 DOI: 10.1103/physrevlett.113.153001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Indexed: 06/04/2023]
Abstract
We present a combined experimental and theoretical study of the RbSr molecule. The experimental approach is based on the formation of RbSr molecules on helium nanodroplets. Utilizing two-photon ionization spectroscopy, an excitation spectrum ranging from 11,600 up to 23,000 cm(-1) was recorded. High level ab initio calculations of potential energy curves and transition dipole moments accompany the experiment and facilitate an assignment of transitions. We show that RbSr molecules desorb from the helium droplets upon excitation, which enables dispersed fluorescence spectroscopy of free RbSr. These spectra elucidate X(2)Σ(+) ground and excited state properties. Emission spectra originating from states corresponding to the Rb(5s(2)S) + Sr(5s5p(3)P) asymptote were recorded; spin-orbit coupling was included for the simulation. The results should provide a good basis for achieving the formation of this molecule in cold collisions, thus offering intriguing prospects for ultracold molecular physics.
Collapse
Affiliation(s)
- Florian Lackner
- Institute of Experimental Physics, TU Graz, Petersgasse 16, A-8010 Graz, Austria
| | - Günter Krois
- Institute of Experimental Physics, TU Graz, Petersgasse 16, A-8010 Graz, Austria
| | - Thomas Buchsteiner
- Institute of Experimental Physics, TU Graz, Petersgasse 16, A-8010 Graz, Austria
| | - Johann V Pototschnig
- Institute of Experimental Physics, TU Graz, Petersgasse 16, A-8010 Graz, Austria
| | - Wolfgang E Ernst
- Institute of Experimental Physics, TU Graz, Petersgasse 16, A-8010 Graz, Austria
| |
Collapse
|
27
|
Krois G, Lackner F, Pototschnig JV, Buchsteiner T, Ernst WE. Characterization of RbSr molecules: spectral analysis on helium droplets. Phys Chem Chem Phys 2014; 16:22373-81. [DOI: 10.1039/c4cp03135k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Viel A, Launay JM. Low-temperature rate coefficients for vibrational relaxation of (3)Σ(u)(+)Rb2 molecules by (3)He and (4)He atoms. J Phys Chem A 2014; 118:6529-35. [PMID: 24839871 DOI: 10.1021/jp503086b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present quantum-scattering calculations of (4)He and (3)He colliding with (87)Rb2. For both helium isotopes, the elastic and inelastic rate coefficients are strongly influenced by the J = 1 partial wave. For the lighter isotope, a strong resonance feature of the J = 1 partial wave is responsible for an extremely efficient vibrational relaxation process. We also perform bound-state calculations of the Rb2He complex for even Rb permutation symmetry and nonzero total angular momentum. The global Rb2He (3)Σu(+) potential-energy surface used supports four bound states for (4)He and a single one for (3)He. We propose an analysis of the (87)Rb2(4)He spectrum separating the contributions of Rb2 rotation and helium motion.
Collapse
Affiliation(s)
- Alexandra Viel
- Institut de Physique de Rennes , UMR 6251 CNRS & Université de Rennes 1, 263 av. du Général Leclerc, F-35042 Rennes, France
| | | |
Collapse
|
29
|
|
30
|
Danovich D, Shaik S. Bonding with parallel spins: high-spin clusters of monovalent metal atoms. Acc Chem Res 2014; 47:417-26. [PMID: 23941238 DOI: 10.1021/ar4001422] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bonding is a glue of chemical matter and is also a useful concept for designing new molecules. Despite the fact that electron pairing remains the bonding mechanism in the great majority of molecules, in the past few decades scientists have had a growing interest in discovering novel bonding motifs. As this Account shows, monovalent metallic atoms having exclusively parallel spins, such as (11)Li10, (11)Au10, and (11)Cu10, can nevertheless form strongly bound clusters, without having even one traditional bond due to electron pairing. These clusters, which also can be made chiral, have high magnetic moments. We refer to this type as no-pair ferromagnetic (NPFM) bonding, which characterizes the (n+1)Mn clusters, which were all predicted by theoretical computations. The small NPFM alkali clusters that have been "synthesized" to date, using cold-atom techniques, support the computational predictions. In this Account, we describe the origins of NPFM bonding using a valence bond (VB) analysis, which shows that this bonding motif arises from bound triplet electron pairs that spread over all the close neighbors of a given atom in the cluster. The bound triplet pair owes its stabilization to the resonance energy provided by the mixing of the local ionic configurations, [(3)M(↑↑)(-)]M(+) and M(+)[(3)M(↑↑)(-)], and the various excited covalent configurations (involving pz and dz(2) atomic orbitals) into the repulsive covalent structure (3)(M↑↑M) with the s(1)s(1) electronic configuration. The NPFM bond of the bound triplet is described by a resonating wave function with "in-out" and "out-in" pointing hybrids. The VB model accounts for the tendency of NPFM clusters to assume polyhedral shapes with rather high symmetry. In addition, this model explains the very steep rise of the bonding energy per atom (De/n), which starts out small in the (3)M2 dimer (<1 kcal/mol) and reaches 12-19 kcal/mol for clusters with 10 atoms. The model further predicts that usage of heteroatomic clusters should increase the bonding energy of an NPFM cluster. These NPFM clusters are excited state species. We suggest here stabilizing these states and making them accessible, for example, by using magnetic fields, or a combination of magnetic and electric fields. The advent of NPFM clusters offers new horizons in chemistry and enriches the scope of chemical bonding. These prospects form a strong incentive to investigate the origins of the bound triplet pairs and further chart the territory of NPFM clusters, for example, in clusters of Be, Mg, or Zn, possibly in clusters of their monosubstituted species, and the group III metalloids, such as B, Al, as well as in transition metals such as Sc.
Collapse
Affiliation(s)
- David Danovich
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Sason Shaik
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
31
|
Krois G, Pototschnig JV, Lackner F, Ernst WE. Spectroscopy of cold LiCa molecules formed on helium nanodroplets. J Phys Chem A 2013; 117:13719-31. [PMID: 24028555 PMCID: PMC3871282 DOI: 10.1021/jp407818k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/11/2013] [Indexed: 11/30/2022]
Abstract
We report on the formation of mixed alkali-alkaline earth molecules (LiCa) on helium nanodroplets and present a comprehensive experimental and theoretical study of the ground and excited states of LiCa. Resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy were used for the experimental investigation of LiCa from 15000 to 25500 cm(-1). The 4(2)Σ(+) and 3(2)Π states show a vibrational structure accompanied by distinct phonon wings, which allows us to determine molecular parameters as well as to study the interaction of the molecule with the helium droplet. Higher excited states (4(2)Π, 5(2)Σ(+), 5(2)Π, and 6(2)Σ(+)) are not vibrationally resolved and vibronic transitions start to overlap. The experimental spectrum is well reproduced by high-level ab initio calculations. By using a multireference configuration interaction (MRCI) approach, we calculated the 19 lowest lying potential energy curves (PECs) of the LiCa molecule. On the basis of these calculations, we could identify previously unobserved transitions. Our results demonstrate that the helium droplet isolation approach is a powerful method for the characterization of tailor-made alkali-alkaline earth molecules. In this way, important contributions can be made to the search for optimal pathways toward the creation of ultracold alkali-alkaline earth ground state molecules from the corresponding atomic species. Furthermore, a test for PECs calculated by ab initio methods is provided.
Collapse
Affiliation(s)
- Günter Krois
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Johann V. Pototschnig
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Florian Lackner
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Wolfgang E. Ernst
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| |
Collapse
|
32
|
Yang S, Ellis AM, Spence D, Feng C, Boatwright A, Latimer E, Binns C. Growing metal nanoparticles in superfluid helium. NANOSCALE 2013; 5:11545-11553. [PMID: 24107922 DOI: 10.1039/c3nr04003h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Helium droplets provide a cold and confined environment where atomic and/or molecular dopants can aggregate into clusters and nanoparticles. In particular, the sequential addition of different materials to helium droplets can lead to the formation of a wide range of nanoparticles, including core-shell nanoparticles, which can then be deposited onto a surface. Here we briefly discuss the fundamental properties of helium droplets and then address their implications for the formation of clusters and nanoparticles. Several key experiments on atomic and molecular clusters will be highlighted and new results obtained for nanoparticles formed in this way will be presented. Finally, the versatility, the limitations and new possibilities provided by superfluid helium droplets in nanoscience and nanotechnology will be addressed.
Collapse
Affiliation(s)
- Shengfu Yang
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Loginov E, Gomez LF, Vilesov AF. Formation of core-shell silver-ethane clusters in He droplets. J Phys Chem A 2013; 117:11774-82. [PMID: 23767815 DOI: 10.1021/jp402614s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we have studied the utility of large He droplets of 10(5)-10(7) atoms for the growth of composite clusters consisting of an Ag core and a shell of ethane molecules. The clusters have been assembled by doping He droplets with up to 10(3) Ag atoms and ethane molecules in two sequential pickup cells and studied via infrared spectroscopy in the C-H stretch region of the ethane molecules. We found that the ν7 band of ethane molecules at the interface with the Ag atoms has a low frequency shift of approximately 15 cm(-1) with respect to that of more distant ethane molecules away from the interface. The intensity ratio of the two bands was used for evaluation of the Ag core and ethane shell cluster structure. We found that the number of surface ethane molecules is in good agreement with a model that assumes a dense, core-shell structure for clusters containing less than about 100 atoms. However, large Ag clusters consisting of about 3000 atoms have a factor of about 5 larger surface area than that predicted by the model, indicating a ramified structure for such larger Ag clusters obtained in liquid He. Moreover, we demonstrate that He droplets behave as calorimeters for measurements of the number of captured atoms and molecules as well as the amount of absorbed laser energy.
Collapse
Affiliation(s)
- Evgeny Loginov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | | | | |
Collapse
|
34
|
Eder SD, Samelin B, Bracco G, Ansperger K, Holst B. A free jet (supersonic), molecular beam source with automatized, 50 nm precision nozzle-skimmer positioning. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:093303. [PMID: 24089819 DOI: 10.1063/1.4821147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Low energy (thermal) free jet (supersonic) molecular beams are used in a range of applications from surface science and surface deposition to quantum coherence and gas kinetics experiments. A free jet molecular beam is created by a gas expansion from a high pressure reservoir through a small aperture (nozzle). The nozzle typically has a diameter of 2-20 μm. The central part of the beam is selected using a skimmer, typically up to 500 μm in diameter. Recent years have seen the introduction of highly spatially confined beam sources based on micrometer skimmers and micrometer or even sub-micrometer nozzles. Such sources have been applied, for example, in the investigation of superfluidity and in neutral helium microscopy. However, up till now no source design allowing the precise positioning of the micro-skimmer relative to the nozzle has been available. This is an important issue because the relative position of skimmer and nozzle can influence the beam properties considerably. Here we present the design and implementation of a new molecular beam source, which allows an automatized, 50 nm precision positioning of the skimmer relative to the nozzle. The source is liquid nitrogen cooled and the temperature can be controlled between 110 K and 350 K with a temperature fluctuation of less than ±0.1 K over several hours. Beam intensity measurements using a 5 μm nozzle and a skimmer 5 μm in diameter are presented for stagnation pressures po in the range 3-180 bars. A 2D beam profile scan, using a 9.5 μm skimmer and a 5 μm nozzle is presented as a further documentation of the versatility of the new design and as an illustration of the influence of the relative skimmer-nozzle position on the beam properties.
Collapse
Affiliation(s)
- S D Eder
- Department of Physics and Technology, University of Bergen, Allègaten 55, 5007 Bergen, Norway
| | | | | | | | | |
Collapse
|
35
|
Lackner F, Poms J, Krois G, Pototschnig JV, Ernst WE. Spectroscopy of lithium atoms and molecules on helium nanodroplets. J Phys Chem A 2013; 117:11866-73. [PMID: 23895106 PMCID: PMC3839407 DOI: 10.1021/jp4030238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We
report on the spectroscopic investigation of lithium atoms and
lithium dimers in their triplet manifold on the surface of helium
nanodroplets (HeN). We present the excitation spectrum
of the 3p ← 2s and 3d ← 2s two-photon transitions for
single Li atoms on HeN. The atoms are excited from the
2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic
molecular substates. Excitation spectra are recorded by resonance
enhanced multiphoton ionization time-of-flight (REMPI-TOF) mass spectroscopy,
which allows an investigation of the exciplex (Li*–Hem, m = 1–3) formation process
in the Li–HeN system. Electronic states are shifted
and broadened with respect to free atom states, which is explained
within the pseudodiatomic model. The assignment is assisted by theoretical
calculations, which are based on the Orsay–Trento density functional
where the interaction between the helium droplet and the lithium atom
is introduced by a pairwise additive approach. When a droplet is doped
with more than one alkali atom, the fragility of the alkali–HeN systems leads preferably to the formation of high-spin molecules
on the droplets. We use this property of helium nanodroplets for the
preparation of Li dimers in their triplet ground state (13Σu+).
The excitation spectrum of the 23Πg(ν′
= 0–11) ← 13Σu+(ν″ = 0) transition is presented.
The interaction between the molecule and the droplet manifests in
a broadening of the transitions with a characteristic asymmetric form.
The broadening extends to the blue side of each vibronic level, which
is caused by the simultaneous excitation of the molecule and vibrations
of the droplet (phonons). The two isotopes of Li form 6Li2 and 7Li2 as well as isotope
mixed 6Li7Li molecules on the droplet surface.
By using REMPI-TOF mass spectroscopy, isotope-dependent effects could
be studied.
Collapse
Affiliation(s)
- Florian Lackner
- Institute of Experimental Physics, Graz University of Technology , Petersgasse 16, A-8010 Graz, Austria/EU
| | | | | | | | | |
Collapse
|
36
|
Benedek G, Hizhnyakov V. Fermi sea excitations in the optical spectrum of a doped 3He droplet. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.07.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Rodríguez-Cantano R, López-Durán D, Pérez de Tudela R, González-Lezana T, Delgado-Barrio G, Villarreal P, Gianturco F. Helium aggregates doped with alkali dimer impurities: A finite temperature study of complexes. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Guillon G, Viel A, Launay JM. Full dimension Rb2He ground triplet potential energy surface and quantum scattering calculations. J Chem Phys 2012; 136:174307. [DOI: 10.1063/1.4709433] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
39
|
|
40
|
Hizhnyakov V. Zero-phonon lines of systems with different dimensions and unconventional vibronic interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:104011. [PMID: 22353367 DOI: 10.1088/0953-8984/24/10/104011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The standard theory of the optical spectra of impurity centres in solids predicts the Lorentzian shape of the zero-phonon lines to have temperature-dependent position and width. However, in recent years different systems, including ones of reduced dimension, have been found, in which remarkable deviations from the standard laws have been observed. Generalizations of the theory to these systems are presented. Among other things, the quantum liquid 3He doped by optical centres is considered.
Collapse
Affiliation(s)
- V Hizhnyakov
- Institute of Physics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
41
|
An der Lan L, Bartl P, Leidlmair C, Schöbel H, Jochum R, Denifl S, Märk TD, Ellis AM, Scheier P. The submersion of sodium clusters in helium nanodroplets: identification of the surface → interior transition. J Chem Phys 2011; 135:044309. [PMID: 21806121 DOI: 10.1063/1.3610388] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The submersion of sodium clusters beyond a critical size in helium nanodroplets, which has recently been predicted on theoretical grounds, is demonstrated for the first time. Confirmation of a clear transition from a surface location, which occurs for alkali atoms and small clusters, to full immersion for larger clusters, is provided by identifying the threshold electron energy required to initiate Na(n) cluster ionization. On the basis of these measurements, a lower limit for the cluster size required for submersion, n ≥ 21, has been determined. This finding is consistent with the recent theoretical prediction.
Collapse
Affiliation(s)
- Lukas An der Lan
- Institut für Ionenphysik und Angewandte Physik und Research Platform Advanced Materials, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Giese C, Stienkemeier F, Mudrich M, Hauser AW, Ernst WE. Homo- and heteronuclear alkali metal trimers formed on helium nanodroplets. Part II. Femtosecond spectroscopy and spectra assignments. Phys Chem Chem Phys 2011; 13:18769-80. [PMID: 21869967 DOI: 10.1039/c1cp21191a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Homo- and heteronuclear alkali quartet trimers of type K(3-n)Rb(n) (n = 0,1,2,3) formed on helium nanodroplets are probed by one-color femtosecond (fs) photoionization (PI) spectroscopy. The obtained frequencies are assigned to vibrations in different electronic states in comparison to high level ab initio calculations of the involved potentials including pronounced Jahn-Teller and spin-orbit couplings. Despite the fact that the resulting complex vibronic structure of the heavy alkali molecules complicates the comparison of experiment and theory we find good agreement for many of the observed lines for all species.
Collapse
Affiliation(s)
- Christian Giese
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
43
|
Guillon G, Zanchet A, Leino M, Viel A, Zillich RE. Theoretical Study of Rb2 in HeN: Potential Energy Surface and Monte Carlo Simulations. J Phys Chem A 2011; 115:6918-26. [DOI: 10.1021/jp112053b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Grégroire Guillon
- Institut de Physique de Rennes, UMR 6251, CNRS & Université de Rennes I, F-35042 Rennes, France
| | | | | | | | | |
Collapse
|
44
|
Pifrader A, Allard O, Auböck G, Callegari C, Ernst WE, Huber R, Ancilotto F. One- and two-photon spectroscopy of highly excited states of alkali-metal atoms on helium nanodroplets. J Chem Phys 2010; 133:164502. [DOI: 10.1063/1.3500397] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Danovich D, Shaik S. Bound Triplet Pairs in the Highest Spin States of Coinage Metal Clusters. J Chem Theory Comput 2010; 6:1479-89. [DOI: 10.1021/ct100088u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Danovich
- The Institute of Chemistry and The Lise-Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Sason Shaik
- The Institute of Chemistry and The Lise-Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
46
|
Auböck G, Aymar M, Dulieu O, Ernst WE. Reinvestigation of the Rb2 (2)Π3g−a Σ3u+ band on helium nanodroplets. J Chem Phys 2010; 132:054304. [DOI: 10.1063/1.3308493] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Koch M, Lanzersdorfer J, Callegari C, Muenter JS, Ernst WE. Molecular Beam Magnetic Resonance in Doped Helium Nanodroplets. A Setup for Optically Detected ESR/NMR in the Presence of Unresolved Zeeman Splittings. J Phys Chem A 2009; 113:13347-56. [PMID: 19921944 DOI: 10.1021/jp9041827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Markus Koch
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria/EU, and Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| | - Johannes Lanzersdorfer
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria/EU, and Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| | - Carlo Callegari
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria/EU, and Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| | - John S. Muenter
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria/EU, and Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| | - Wolfgang E. Ernst
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria/EU, and Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| |
Collapse
|
48
|
Bovino S, Coccia E, Bodo E, Lopez-Durán D, Gianturco FA. Spin-driven structural effects in alkali doped (4)He clusters from quantum calculations. J Chem Phys 2009; 130:224903. [PMID: 19530785 DOI: 10.1063/1.3147466] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we carry out variational Monte Carlo and diffusion Monte Carlo (DMC) calculations for Li(2)((1)Sigma(g) (+))((4)He)(N) and Li(2)((3)Sigma(u) (+))((4)He)(N) with N up to 30 and discuss in detail the results of our computations. After a comparison between our DMC energies with the "exact" discrete variable representation values for the species with one (4)He, in order to test the quality of our computations at 0 K, we analyze the structural features of the whole range of doped clusters. We find that both species reside on the droplet surface, but that their orientation is spin driven, i.e., the singlet molecule is perpendicular and the triplet one is parallel to the droplet's surface. We have also computed quantum vibrational relaxation rates for both dimers in collision with a single (4)He and we find them to differ by orders of magnitude at the estimated surface temperature. Our results therefore confirm the findings from a great number of experimental data present in the current literature and provide one of the first attempts at giving an accurate, fully quantum picture for the nanoscopic properties of alkali dimers in (4)He clusters.
Collapse
Affiliation(s)
- S Bovino
- Department of Chemistry and CNISM, The University of Rome Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
49
|
Auböck G, Nagl J, Callegari C, Ernst WE. Observation of relativistic E⊗e vibronic coupling in Rb3 and K3 quartet states on helium droplets. J Chem Phys 2008; 129:114501. [DOI: 10.1063/1.2976765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Nagl J, Auböck G, Hauser AW, Allard O, Callegari C, Ernst WE. High-spin alkali trimers on helium nanodroplets: Spectral separation and analysis. J Chem Phys 2008; 128:154320. [DOI: 10.1063/1.2906120] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|