1
|
Rose PA, Krich JJ. Interpretations of High-Order Transient Absorption Spectroscopies. J Phys Chem Lett 2023; 14:10849-10855. [PMID: 38032056 DOI: 10.1021/acs.jpclett.3c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Transient absorption (TA) spectroscopy is an invaluable tool for determining the energetics and dynamics of excited states. When pump intensities are sufficiently high, TA spectra include both the generally desired third-order response and responses that are higher in order in the field amplitudes. Recent work demonstrated that pump-intensity-dependent TA measurements allow separating the orders of response, but the information content in those higher orders has not been described. We give a general framework for understanding high-order TA spectra. We extend to higher order the fundamental processes of standard TA: ground-state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA). Each order introduces two new processes: SE and ESA from previously inaccessible highly excited states and negations of lower-order processes. We show the new spectral and dynamical information at each order and show how the relative signs of the signals in different orders can be used to identify which processes dominate.
Collapse
Affiliation(s)
- Peter A Rose
- Department of Physics, University of Ottawa, Ottawa ON K1N 6N5, Canada
| | - Jacob J Krich
- Department of Physics, University of Ottawa, Ottawa ON K1N 6N5, Canada
- Nexus for Quantum Technologies, University of Ottawa, Ottawa ON K1N 6N5, Canada
| |
Collapse
|
2
|
Malý P, Lüttig J, Rose PA, Turkin A, Lambert C, Krich JJ, Brixner T. Separating single- from multi-particle dynamics in nonlinear spectroscopy. Nature 2023; 616:280-287. [PMID: 36973449 DOI: 10.1038/s41586-023-05846-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
Quantum states depend on the coordinates of all their constituent particles, with essential multi-particle correlations. Time-resolved laser spectroscopy1 is widely used to probe the energies and dynamics of excited particles and quasiparticles such as electrons and holes2,3, excitons4-6, plasmons7, polaritons8 or phonons9. However, nonlinear signals from single- and multiple-particle excitations are all present simultaneously and cannot be disentangled without a priori knowledge of the system4,10. Here, we show that transient absorption-the most commonly used nonlinear spectroscopy-with N prescribed excitation intensities allows separation of the dynamics into N increasingly nonlinear contributions; in systems well-described by discrete excitations, these N contributions systematically report on zero to N excitations. We obtain clean single-particle dynamics even at high excitation intensities and can systematically increase the number of interacting particles, infer their interaction energies and reconstruct their dynamics, which are not measurable via conventional means. We extract single- and multiple-exciton dynamics in squaraine polymers11,12 and, contrary to common assumption6,13, we find that the excitons, on average, meet several times before annihilating. This surprising ability of excitons to survive encounters is important for efficient organic photovoltaics14,15. As we demonstrate on five diverse systems, our procedure is general, independent of the measured system or type of observed (quasi)particle and straightforward to implement. We envision future applicability in the probing of (quasi)particle interactions in such diverse areas as plasmonics7, Auger recombination2 and exciton correlations in quantum dots5,16,17, singlet fission18, exciton interactions in two-dimensional materials19 and in molecules20,21, carrier multiplication22, multiphonon scattering9 or polariton-polariton interaction8.
Collapse
Affiliation(s)
- Pavel Malý
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Würzburg, Germany.
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Julian Lüttig
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Würzburg, Germany
| | - Peter A Rose
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Arthur Turkin
- Institut für Organische Chemie, Universität Würzburg, Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Universität Würzburg, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg, Germany
| | - Jacob J Krich
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, Canada.
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Yamamoto YI, Suzuki T. Distortion Correction of Low-Energy Photoelectron Spectra of Liquids Using Spectroscopic Data for Solvated Electrons. J Phys Chem A 2023; 127:2440-2452. [PMID: 36917090 DOI: 10.1021/acs.jpca.2c08046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Time-resolved photoelectron spectroscopy (TRPES) enables real-time observation of ultrafast electronic dynamics in solutions. When extreme ultraviolet (EUV) probe pulses are employed, they can ionize solutes from all electronic states involved in the dynamics. However, EUV pulses also produce a strong ionization signal from a solvent that is typically 6 orders of magnitude greater than the pump-probe photoelectron signal of solutes. Alternatively, UV probe pulses enable highly sensitive and selective observation of photoexcited solutes because typical solvents such as water are transparent to UV radiation. An obstacle in such UV-TRPES measurements is spectral distortion caused by electron scattering and a yet to be identified mechanism in liquids. We have previously proposed the spectral retrieval (SR) method as an a posteriori approach to removing the distortion and overcoming this difficulty in UV-TRPES; however, its accuracy has not yet been verified by comparison with EUV-TRPES results. In the present study, we perform EUV-TRPES for charge transfer reactions in water, methanol, and ethanol, and verify SR analysis of UV-TRPES. We also estimate a previously undetermined energy-dependent intensity factor and expand the basis sets for SR analysis. The refined SR method is employed for reanalyzing the UV-TRPES data for the formation and relaxation dynamics of solvated electrons in various systems. The electron binding energy distributions for solvated electrons in liquid water, methanol, and ethanol are confirmed to be Gaussian centered at 3.78, 3.39, and 3.25 eV, respectively, in agreement with Nishitani et al. [ Sci. Adv. 2019, 5(8), eaaw6896]. An effective energy gap between the conduction band and the vacuum level at the gas-liquid interface is estimated to be 0.2 eV for liquid water and 0.1 eV for methanol and ethanol.
Collapse
Affiliation(s)
- Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Goryo S, Iwata K. Photoionization of 3-Methylindole Embedded in Sodium Dodecyl Sulfate and Dodecyltrimethylammonium Chloride Micelles: Migration of Electrons Generated in Micelle Cores and Their Solvation in Outside Water. J Phys Chem Lett 2023; 14:1479-1484. [PMID: 36744965 DOI: 10.1021/acs.jpclett.2c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrons were generated in the core of micelles formed by negatively charged sodium dodecyl sulfate (SDS) or positively charged dodecyltrimethylammonium chloride (DTAC) by photoionization of 3-methylindole embedded in the core. The electrons were hydrated after they moved out of the core to the outer aqueous phase. These processes were monitored with femtosecond time-resolved absorption spectroscopy. The migration of electrons from the micelle core to the outer aqueous phase was faster than the instrumental response time of 200 fs. Hot electrons in the aqueous phase were produced in ≤320 fs. There was no significant difference observed for the micellar solutions of negatively charged SDS and positively charged DTAC, or for water. The geminate recombination between the electrons and the radical cations was hindered to a large extent once the electrons hydrated at the outer aqueous phase were separated from the radical cations remaining in the micelle core.
Collapse
Affiliation(s)
- Shion Goryo
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo171-8588, Japan
| | - Koichi Iwata
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo171-8588, Japan
| |
Collapse
|
5
|
Heim ZN, Neumark DM. Nonadiabatic Dynamics Studied by Liquid-Jet Time-Resolved Photoelectron Spectroscopy. Acc Chem Res 2022; 55:3652-3662. [PMID: 36480155 DOI: 10.1021/acs.accounts.2c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of the liquid microjet technique by Faubel and co-workers has enabled the investigation of high vapor pressure liquids and solutions utilizing high-vacuum methods. One such method is photoelectron spectroscopy (PES), which allows one to probe the electronic properties of a sample through ionization in a state-specific manner. Liquid microjets consisting of pure solvents and solute-solvent systems have been studied with great success utilizing PES and, more recently, time-resolved PES (TRPES). Here, we discuss progress made over recent years in understanding the solvation and excited state dynamics of the solvated electron and nucleic acid constituents (NACs) using these methods, as well as the prospect for their future.The solvated electron is of particular interest in liquid microjet experiments as it represents the simplest solute system. Despite this simplicity, there were still many unresolved questions about its binding energy and excited state relaxation dynamics that are ideal problems for liquid microjet PES. In the work discussed in this Account, accurate binding energies were measured for the solvated electron in multiple high vapor pressure solvents. The advantages of liquid jet PES were further highlighted in the femtosecond excited state relaxation studies on the solvated electron in water where a 75 ± 20 fs lifetime attributable to internal conversion from the excited p-state to a hot ground state was measured, supporting a nonadiabatic relaxation mechanism.Nucleic acid constituents represent a class of important solutes with several unresolved questions that the liquid microjet PES method is uniquely suited to address. As TRPES is capable of tracking dynamics with state-specificity, it is ideal for instances where there are multiple excited states potentially involved in the dynamics. Time-resolved studies of NAC relaxation after excitation using ultraviolet light identified relaxation lifetimes from multiple excited states. The state-specific nature of the TRPES method allowed us to identify the lack of any signal attributable to the 1nπ* state in thymine derived NACs. The femtosecond time resolution of the technique also aided in identifying differences between the excited state lifetimes of thymidine and thymidine monophosphate. These have been interpreted, aided by molecular dynamics simulations, as an influence of conformational differences leading to a longer excited state lifetime in thymidine monophosphate.Finally, we discuss advances in tabletop light sources extending into the extreme ultraviolet and soft X-ray regimes that allow expansion of liquid jet TRPES to full valence band and potentially core level studies of solutes and pure liquids in liquid microjets. As most solutes have ground state binding energies in the range of 10 eV, observation of both excited state decay and ground state recovery using ultraviolet pump-ultraviolet probe TRPES has been intractable. With high-harmonic generation light sources, it will be possible to not only observe complete relaxation pathways for valence level dynamics but to also track dynamics with element specificity by probing core levels of the solute of interest.
Collapse
Affiliation(s)
- Zachary N Heim
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
6
|
Ahmadi S. Hydrated electrons and cluster science. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Prasselsperger A, Coughlan M, Breslin N, Yeung M, Arthur C, Donnelly H, White S, Afshari M, Speicher M, Yang R, Villagomez-Bernabe B, Currell FJ, Schreiber J, Dromey B. Real-Time Electron Solvation Induced by Bursts of Laser-Accelerated Protons in Liquid Water. PHYSICAL REVIEW LETTERS 2021; 127:186001. [PMID: 34767414 DOI: 10.1103/physrevlett.127.186001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Understanding the mechanisms of proton energy deposition in matter and subsequent damage formation is fundamental to radiation science. Here we exploit the picosecond (10^{-12} s) resolution of laser-driven accelerators to track ultrafast solvation dynamics for electrons due to proton radiolysis in liquid water (H_{2}O). Comparing these results with modeling that assumes initial conditions similar to those found in photolysis reveals that solvation time due to protons is extended by >20 ps. Supported by magnetohydrodynamic theory this indicates a highly dynamic phase in the immediate aftermath of the proton interaction that is not accounted for in current models.
Collapse
Affiliation(s)
- A Prasselsperger
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Coughlan
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - N Breslin
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Yeung
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - C Arthur
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - H Donnelly
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - S White
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Afshari
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Speicher
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - R Yang
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - B Villagomez-Bernabe
- The Dalton Cumbria Facility and the School of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - F J Currell
- The Dalton Cumbria Facility and the School of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - J Schreiber
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - B Dromey
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
8
|
Bahry T, Denisov SA, Moisy P, Ma J, Mostafavi M. Real-Time Observation of Solvation Dynamics of Electron in Actinide Extraction Binary Solutions of Water and n-Tributyl Phosphate. J Phys Chem B 2021; 125:3843-3849. [PMID: 33650867 DOI: 10.1021/acs.jpcb.0c10831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The excess electron in solution is a highly reactive radical involved in various radiation-induced reactions. Its solvation state critically determines the subsequent pathway and rate of transfer. For instance, water plays a dominating role in the electron-induced dealkylation of n-tributyl phosphate in actinide extraction processing. However, the underlying electron solvation processes in such systems are lacking. Herein, we directly observed the solvation dynamics of electrons in H-bonded water and n-tributyl phosphate (TBP) binary solutions with a mole fraction of water (Xw) varying from 0.05 to 0.51 under ambient conditions. Following the evolution of the absorption spectrum of trapped electrons (not fully solvated) with picosecond resolution, we show that electrons statistically distributed would undergo preferential solvation within water molecules extracted in TBP. We determine the time scale of excess electron full solvation from the deconvoluted transient absorption-kinetical data. The process of solvent reorganization accelerates by increasing the water molar fraction, and the rate of this process is 2 orders of magnitude slower compared to bulk water. We assigned the solvation process to hydrogen network reorientation induced by a negative charge of the excess electron that strongly depends on the local water environment. Our findings suggest that water significantly stabilizes the electron in a deeper potential than the pure TBP case. In its new state, the electron is likely to inhibit the dealkylation of extractants in actinide separation.
Collapse
Affiliation(s)
- Teseer Bahry
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China.,Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay 91405, Orsay, Cedex France
| | - Sergey A Denisov
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay 91405, Orsay, Cedex France
| | - Philippe Moisy
- CEA, DES/ISEC/DMRC, Univ. Montpellier, 34090 Marcoule, France
| | - Jun Ma
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay 91405, Orsay, Cedex France
| |
Collapse
|
9
|
Wang F, Fu Y, Ziffer ME, Dai Y, Maehrlein SF, Zhu XY. Solvated Electrons in Solids-Ferroelectric Large Polarons in Lead Halide Perovskites. J Am Chem Soc 2021; 143:5-16. [PMID: 33320656 DOI: 10.1021/jacs.0c10943] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solvation plays a pivotal role in chemistry and biology. A solid-state analogy of solvation is polaron formation, but the magnitude of Coulomb screening is typically an order of magnitude weaker than that of solvation in aqueous solutions. Here, we describe a new class of polarons, the ferroelectric large polaron, proposed initially by Miyata and Zhu in 2018 (Miyata, K.; Zhu, X.-Y. Ferroelectric Large Polarons. Nat. Mater. 2018, 17 (5), 379-381). This type of polaron allows efficient Coulomb screening of an electron or hole by extended ordering of dipoles from symmetry-broken unit cells. The local ordering is reflected in the ferroelectric-like THz dielectric responses of lead halide perovskites (LHPs) and may be partially responsible for their exceptional optoelectronic performances. Despite the likely absence of long-range ferroelectricity in LHPs, a charge carrier may be localized to and/or induce the formation of nanoscale domain boundaries of locally ordered dipoles. Based on the known planar nature of energetically favorable domain boundaries in ferroelectric materials, we propose that a ferroelectric polaron localizes to planar boundaries of transient polar nanodomains. This proposal is supported by dynamic simulations showing sheet-like transient electron or hole wave functions in LHPs. Thus, the Belgian-waffle-shaped ferroelectric polaron in the three-dimensional LHP crystal structure is a large polaron in two dimensions and a small polaron in the perpendicular direction. The ferroelectric large polaron may form in other crystalline solids characterized by dynamic symmetry breaking and polar fluctuations. We suggest that the ability to form ferroelectric large polarons can be a general principle for the efficient screening of charge carriers from scattering with other charge carriers, with charged defects and with longitudinal optical phonons, thus contributing to enhanced optoelectronic properties.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yongping Fu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Mark E Ziffer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yanan Dai
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sebastian F Maehrlein
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - X-Y Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
James Wood R, Sidnell T, Ross I, McDonough J, Lee J, Bussemaker MJ. Ultrasonic degradation of perfluorooctane sulfonic acid (PFOS) correlated with sonochemical and sonoluminescence characterisation. ULTRASONICS SONOCHEMISTRY 2020; 68:105196. [PMID: 32593965 DOI: 10.1016/j.ultsonch.2020.105196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
Sonolysis has been proposed as a promising treatment technology to remove per- and polyfluoroalkyl substances (PFASs) from contaminated water. The mechanism of degradation is generally accepted to be high temperature pyrolysis at the bubble surface with dependency upon surface reaction site availability. However, the parametric effects of the ultrasonic system on PFAS degradation are poorly understood, making upscale challenging and leading to less than optimal use of ultrasonic energy. Hence, a thorough understanding of these parametric effects could lead to improved efficiency and commercial viability. Here, reactor characterisation was performed at 44, 400, 500, and 1000 kHz using potassium iodide (KI) dosimetry, sonochemiluminescence (SCL), and sonoluminescence (SL) in water and a solution of potassium salt of PFOS (hereafter, K-PFOS). Then the degradation of K-PFOS (10 mg L-1 in 200 mL solution) was investigated at these four frequencies. At 44 kHz, no PFOS degradation was observed. At 400, 500, and 1000 kHz the amount of degradation was 96.9, 93.8, and 91.2%, respectively, over four hours and was accompanied by stoichiometric fluoride release, indicating mineralisation of the PFOS molecule. Close correlation of PFOS degradation trends with KI dosimetry and SCL intensity was observed, which suggested degradation occurred under similar conditions to these sonochemical processes. At 1000 kHz, where the overall intensity of collapse was significantly reduced (measured by SL), PFOS degradation was not similarly decreased. Discussion is presented that suggests a hydrated electron degradation mechanism for PFOS may occur in ultrasonic conditions. This mechanism is a novel hypothesis in the field of PFAS sonolysis.
Collapse
Affiliation(s)
- Richard James Wood
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Tim Sidnell
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Ian Ross
- ARCADIS, Global Remediation, 10th Floor, 3 Piccadilly Place, Manchester, Greater Manchester M1 3BN, United Kingdom
| | - Jeffrey McDonough
- ARCADIS US 630 Plaza Drive Suite 200 Highlands Ranch, CO 80129, United States
| | - Judy Lee
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Madeleine J Bussemaker
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
| |
Collapse
|
11
|
Herburger A, Barwa E, Ončák M, Heller J, van der Linde C, Neumark DM, Beyer MK. Probing the Structural Evolution of the Hydrated Electron in Water Cluster Anions (H 2O) n-, n ≤ 200, by Electronic Absorption Spectroscopy. J Am Chem Soc 2019; 141:18000-18003. [PMID: 31651160 PMCID: PMC6856957 DOI: 10.1021/jacs.9b10347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Electronic
absorption spectra of water cluster anions (H2O)n–, n ≤
200, at T = 80 K are obtained by photodissociation
spectroscopy and compared with simulations from literature and experimental
data for bulk hydrated electrons. Two almost isoenergetic electron
binding motifs are seen for cluster sizes 20 ≤ n ≤ 40, which are assigned to surface and partially embedded
isomers. With increasing cluster size, the surface isomer becomes
less populated, and for n ≥ 50, the partially
embedded isomer prevails. The absorption shifts to the blue, reaching
a plateau at n ≈ 100. In this size range,
the absorption spectrum is similar to that of the bulk hydrated electron
but is slightly red-shifted; spectral moment analysis indicates that
these clusters are reasonable model systems for hydrated electrons
near the liquid–vacuum interface.
Collapse
Affiliation(s)
- Andreas Herburger
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Erik Barwa
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Jakob Heller
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Daniel M Neumark
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| |
Collapse
|
12
|
Ma J, Denisov SA, Adhikary A, Mostafavi M. Ultrafast Processes Occurring in Radiolysis of Highly Concentrated Solutions of Nucleosides/Tides. Int J Mol Sci 2019; 20:ijms20194963. [PMID: 31597345 PMCID: PMC6801490 DOI: 10.3390/ijms20194963] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Among the radicals (hydroxyl radical (•OH), hydrogen atom (H•), and solvated electron (esol−)) that are generated via water radiolysis, •OH has been shown to be the main transient species responsible for radiation damage to DNA via the indirect effect. Reactions of these radicals with DNA-model systems (bases, nucleosides, nucleotides, polynucleotides of defined sequences, single stranded (ss) and double stranded (ds) highly polymeric DNA, nucleohistones) were extensively investigated. The timescale of the reactions of these radicals with DNA-models range from nanoseconds (ns) to microseconds (µs) at ambient temperature and are controlled by diffusion or activation. However, those studies carried out in dilute solutions that model radiation damage to DNA via indirect action do not turn out to be valid in dense biological medium, where solute and water molecules are in close contact (e.g., in cellular environment). In that case, the initial species formed from water radiolysis are two radicals that are ultrashort-lived and charged: the water cation radical (H2O•+) and prethermalized electron. These species are captured by target biomolecules (e.g., DNA, proteins, etc.) in competition with their inherent pathways of proton transfer and relaxation occurring in less than 1 picosecond. In addition, the direct-type effects of radiation, i.e., ionization of macromolecule plus excitations proximate to ionizations, become important. The holes (i.e., unpaired spin or cation radical sites) created by ionization undergo fast spin transfer across DNA subunits. The exploration of the above-mentioned ultrafast processes is crucial to elucidate our understanding of the mechanisms that are involved in causing DNA damage via direct-type effects of radiation. Only recently, investigations of these ultrafast processes have been attempted by studying concentrated solutions of nucleosides/tides under ambient conditions. Recent advancements of laser-driven picosecond electron accelerators have provided an opportunity to address some long-term puzzling questions in the context of direct-type and indirect effects of DNA damage. In this review, we have presented key findings that are important to elucidate mechanisms of complex processes including excess electron-mediated bond breakage and hole transfer, occurring at the single nucleoside/tide level.
Collapse
Affiliation(s)
- Jun Ma
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215000, China.
| | - Sergey A Denisov
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, 91405 Orsay, CEDEX, France.
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309, USA.
| | - Mehran Mostafavi
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, 91405 Orsay, CEDEX, France.
| |
Collapse
|
13
|
Kanitz A, Kalus MR, Gurevich EL, Ostendorf A, Barcikowski S, Amans D. Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1361-6595/ab3dbe] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Cheng M, Rivas N, Lim SJ, Pichugin K, Petruk AA, Klinkova A, Smith R, Hopkins WS, Sciaini G. Trapping a Photoelectron behind a Repulsive Coulomb Barrier in Solution. J Phys Chem Lett 2019; 10:5742-5747. [PMID: 31498643 DOI: 10.1021/acs.jpclett.9b01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multiply charged anions (MCAs) display unique photophysics and solvent-stabilizing effects. Well-known aqueous species such as SO42- and PO43- experience spontaneous electron detachment or charge-separation fragmentation in the gas phase owing to the strong Coulomb repulsion arising from the excess of negative charge. Thus, anions often present low photodetachment thresholds and the ability to quickly eject electrons into the solvent via charge-transfer-to-solvent (CTTS) states. Here, we report spectroscopic evidence for the existence of a repulsive Coulomb barrier (RCB) that blocks the ejection of "CTTS-like" electrons of the aqueous B12F122- dianion. Our spectroscopic experimental and theoretical studies indicate that despite the exerted Coulomb repulsion by the nascent radical monoanion B12F12-•aq, the photoexcited electron remains about the B12F12-• core. The RCB is an established feature of the potential energy landscape of MCAs in vacuo, which seems to extend to the liquid phase highlighting recent observations about the dielectric behavior of confined water.
Collapse
Affiliation(s)
- Meixin Cheng
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Nicolás Rivas
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Su Ji Lim
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Kostyantyn Pichugin
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Ariel A Petruk
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Anna Klinkova
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Rodney Smith
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - W Scott Hopkins
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Germán Sciaini
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| |
Collapse
|
15
|
Affiliation(s)
- Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502,
Japan
| |
Collapse
|
16
|
Karashima S, Yamamoto YI, Suzuki T. Ultrafast Internal Conversion and Solvation of Electrons in Water, Methanol, and Ethanol. J Phys Chem Lett 2019; 10:4499-4504. [PMID: 31343891 DOI: 10.1021/acs.jpclett.9b01750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultrafast internal conversion from the first excited state of a solvated electron in water, methanol, and ethanol is investigated using time-resolved photoelectron spectroscopy of liquid microjets and a spectral retrieval method. Photoelectron spectra corrected for inelastic scattering clearly reveal well-separated signals from the excited and ground states, and the latter enables us to analyze the solvation dynamics in the ground state after internal conversion. Measurements with 25 fs time resolution identify a rapid increase in the vertical electron binding energy of the solvated electron owing to nuclear wave packet motions in the excited state and allow us to precisely determine the internal conversion time.
Collapse
Affiliation(s)
- Shutaro Karashima
- Department of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502 , Japan
| | - Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502 , Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502 , Japan
| |
Collapse
|
17
|
Nishitani J, Yamamoto YI, West CW, Karashima S, Suzuki T. Binding energy of solvated electrons and retrieval of true UV photoelectron spectra of liquids. SCIENCE ADVANCES 2019; 5:eaaw6896. [PMID: 31497644 PMCID: PMC6716956 DOI: 10.1126/sciadv.aaw6896] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/24/2019] [Indexed: 05/24/2023]
Abstract
The electronic energy and dynamics of solvated electrons, the simplest yet elusive chemical species, is of interest in chemistry, physics, and biology. Here, we present the electron binding energy distributions of solvated electrons in liquid water, methanol, and ethanol accurately measured using extreme ultraviolet (EUV) photoelectron spectroscopy of liquids with a single-order high harmonic. The distributions are Gaussian in all cases. Using the EUV and UV photoelectron spectra of solvated electrons, we succeeded in retrieving sharp electron kinetic energy distributions from the spectra broadened and energy shifted by inelastic scattering in liquids, overcoming an obstacle in ultrafast UV photoelectron spectroscopy of liquids. The method is demonstrated for the benchmark systems of charge transfer to solvent reaction and ultrafast internal conversion of hydrated electron from the first excited state.
Collapse
|
18
|
Zeng HJ, Yang N, Johnson MA. Introductory lecture: advances in ion spectroscopy: from astrophysics to biology. Faraday Discuss 2019; 217:8-33. [PMID: 31094388 DOI: 10.1039/c9fd00030e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This introduction provides a historical context for the development of ion spectroscopy over the past half century by following the evolution of experimental methods to the present state-of-the-art. Rather than attempt a comprehensive review, we focus on how early work on small ions, carried out with fluorescence, direct absorption, and photoelectron spectroscopy, evolved into powerful technologies that can now address complex chemical problems ranging from catalysis to biophysics. One of these developments is the incorporation of cooling and temperature control to enable the general application of "messenger tagging" vibrational spectroscopy, first carried out using ionized supersonic jets and then with buffer gas cooling in radiofrequency ion traps. Some key advances in the application of time-resolved pump-probe techniques to follow ultrafast dynamics are also discussed, as are significant benchmarks in the refinement of ion mobility to allow spectroscopic investigation of large biopolymers with well-defined shapes. We close with a few remarks on challenges and opportunities to explore molecular level mechanics that drive macroscopic behavior.
Collapse
Affiliation(s)
- Helen J Zeng
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| | - Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Ma J, Kumar A, Muroya Y, Yamashita S, Sakurai T, Denisov SA, Sevilla MD, Adhikary A, Seki S, Mostafavi M. Observation of dissociative quasi-free electron attachment to nucleoside via excited anion radical in solution. Nat Commun 2019; 10:102. [PMID: 30626877 PMCID: PMC6327028 DOI: 10.1038/s41467-018-08005-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/11/2018] [Indexed: 01/28/2023] Open
Abstract
Damage to DNA via dissociative electron attachment has been well-studied in both the gas and condensed phases; however, understanding this process in bulk solution at a fundamental level is still a challenge. Here, we use a picosecond pulse of a high energy electron beam to generate electrons in liquid diethylene glycol and observe the electron attachment dynamics to ribothymidine at different stages of electron relaxation. Our transient spectroscopic results reveal that the quasi-free electron with energy near the conduction band effectively attaches to ribothymidine leading to a new absorbing species that is characterized in the UV-visible region. This species exhibits a nearly concentration-independent decay with a time constant of ~350 ps. From time-resolved studies under different conditions, combined with data analysis and theoretical calculations, we assign this intermediate to an excited anion radical that undergoes N1-C1′ glycosidic bond dissociation rather than relaxation to its ground state. Radiation-induced low-energy electrons in solution are implicated in DNA damage, but their relaxation dynamics are not well understood. Here the authors observe how quasi-free electrons dissociate glycosidic bonds via an excited nucleoside anion radical, whereas solvated electrons reside on the nucleoside as a relatively stable anion radical.
Collapse
Affiliation(s)
- Jun Ma
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Anil Kumar
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI, 48309, USA
| | - Yusa Muroya
- Department of Beam Materials Science, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Shinichi Yamashita
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki, 319-1188, Japan
| | - Tsuneaki Sakurai
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Sergey A Denisov
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, 91405, Orsay, Cedex, France
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI, 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI, 48309, USA
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Mehran Mostafavi
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, 91405, Orsay, Cedex, France.
| |
Collapse
|
20
|
Abstract
A cavity or excluded-volume structure best explains the experimental properties of the aqueous or “hydrated” electron.
Collapse
Affiliation(s)
- John M. Herbert
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
21
|
Lifetimes and energetics of the first electronically excited states of NaH2O from time-resolved photoelectron imaging. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Farr EP, Zho CC, Challa JR, Schwartz BJ. Temperature dependence of the hydrated electron’s excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy. J Chem Phys 2017; 147:074504. [DOI: 10.1063/1.4985906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Erik P. Farr
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Chen-Chen Zho
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Jagannadha R. Challa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Benjamin J. Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| |
Collapse
|
23
|
Zho CC, Farr EP, Glover WJ, Schwartz BJ. Temperature dependence of the hydrated electron’s excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models. J Chem Phys 2017; 147:074503. [DOI: 10.1063/1.4985905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chen-Chen Zho
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| | - Erik P. Farr
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| | - William J. Glover
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- NYU Shanghai, 1555 Century Avenue,
Shanghai 200135, China
| | - Benjamin J. Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| |
Collapse
|
24
|
Borgis D, Rossky PJ, Turi L. Electronic Excited State Lifetimes of Anionic Water Clusters: Dependence on Charge Solvation Motif. J Phys Chem Lett 2017; 8:2304-2309. [PMID: 28475840 DOI: 10.1021/acs.jpclett.7b00555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An ongoing controversy about water cluster anions concerns the electron-binding motif, whether the charge center is localized at the surface or within the cluster interior. Here, mixed quantum-classical dynamics simulations have been carried out for a wide range of cluster sizes (n ≤ 1000) for (H2O)n- and (D2O)n-, based on a nonequilibrium first-order rate constant approach. The computed data are in good general agreement with time-resolved photoelectron imaging results (n ≤ 200). The analysis reveals that, for surface state electrons, the cluster size dependence of the excited state electronic energy gap and the magnitude of the nonadiabatic couplings have compensating influences on the excited state lifetimes: the excited state lifetime for surface states reaches a minimum for n ∼ 150 and then increases for larger clusters. It is concluded that the electron resides in a surface-localized motif in all of these measured clusters, dominating at least up to n = 200.
Collapse
Affiliation(s)
- Daniel Borgis
- Pôle de Chimie Théorique, UMR-CNRS PASTEUR, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France
| | - Peter J Rossky
- Department of Chemistry, Rice University , P.O. Box 1892, MS-60, Houston, Texas 77251-1892, United States
| | - László Turi
- Department of Physical Chemistry, ELTE Eötvös Loránd University , Budapest 112, P.O. Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
25
|
Zho CC, Schwartz BJ. Time-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment. J Phys Chem B 2016; 120:12604-12614. [PMID: 27973828 DOI: 10.1021/acs.jpcb.6b07852] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chen-Chen Zho
- Department of Chemistry and
Biochemistry University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J. Schwartz
- Department of Chemistry and
Biochemistry University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
26
|
Coons MP, You ZQ, Herbert JM. The Hydrated Electron at the Surface of Neat Liquid Water Appears To Be Indistinguishable from the Bulk Species. J Am Chem Soc 2016; 138:10879-86. [DOI: 10.1021/jacs.6b06715] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc P. Coons
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhi-Qiang You
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Elkins MH, Williams HL, Neumark DM. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy. J Chem Phys 2016; 144:184503. [DOI: 10.1063/1.4948546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Madeline H. Elkins
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Holly L. Williams
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
28
|
Karashima S, Yamamoto YI, Suzuki T. Resolving Nonadiabatic Dynamics of Hydrated Electrons Using Ultrafast Photoemission Anisotropy. PHYSICAL REVIEW LETTERS 2016; 116:137601. [PMID: 27082002 DOI: 10.1103/physrevlett.116.137601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Indexed: 05/05/2023]
Abstract
We have studied ultrafast nonadiabatic dynamics of excess electrons trapped in the band gap of liquid water using time- and angle-resolved photoemission spectroscopy. Anisotropic photoemission from the first excited state was discovered, which enabled unambiguous identification of nonadiabatic transition to the ground state in 60 fs in H_{2}O and 100 fs in D_{2}O. The photoelectron kinetic energy distribution exhibited a rapid spectral shift in ca. 20 fs, which is ascribed to the librational response of a hydration shell to electronic excitation. Photoemission anisotropy indicates that the electron orbital in the excited state is depolarized in less than 40 fs.
Collapse
Affiliation(s)
- Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, 606-8502 Kyoto, Japan
| | - Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, 606-8502 Kyoto, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, 606-8502 Kyoto, Japan
| |
Collapse
|
29
|
Elkins MH, Williams HL, Neumark DM. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent. J Chem Phys 2015; 142:234501. [DOI: 10.1063/1.4922441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Madeline H. Elkins
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Holly L. Williams
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
30
|
Dominguez PN, Lehner FT, Michelmann J, Himmelstoss M, Zinth W. A magnetic stirring setup for applications in ultrafast spectroscopy of photo-sensitive solutions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:033101. [PMID: 25832205 DOI: 10.1063/1.4911406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An exchange system is presented, which allows ultrafast experiments with high excitation rates (1 kHz) on samples with reaction cycles in the range of a few seconds and small sample volumes of about 0.3 ml. The exchange is accomplished using a commercially available cuvette by the combination of a special type of magnetic stirring with transverse translational motion of the sample cuvette.
Collapse
Affiliation(s)
- Pablo Nahuel Dominguez
- BioMolekulare Optik and Center of Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Florian T Lehner
- BioMolekulare Optik and Center of Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Jeff Michelmann
- BioMolekulare Optik and Center of Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Matthias Himmelstoss
- BioMolekulare Optik and Center of Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| | - Wolfgang Zinth
- BioMolekulare Optik and Center of Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
| |
Collapse
|
31
|
Abstract
Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron.
Collapse
Affiliation(s)
- Peter Vöhringer
- Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany;
| |
Collapse
|
32
|
Müller JP, Zhavoronkov N, Hertel IV, Schulz CP. Time-resolved excited state energetics of the solvated electron in sodium-doped water clusters. J Phys Chem A 2014; 118:8517-24. [PMID: 24936724 DOI: 10.1021/jp502238c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The energetics and dynamics of the first electronically excited state of solvated electron in sodium-doped water clusters has been studied, by means of time-resolved electron spectra created in a pump-probe fs-laser experiment. The Na ··· (H2O)n clusters were excited by pulses at a wavelength of 795 nm, while ionization was achieved at a wavelength of 398 nm, and the overall cross-correlation fwhm was about 50 fs. Mass-resolved electron spectra were taken using photoelectron-photoion coincidence (PEPICO) spectroscopy for cluster sizes ranging from n = 1 up to 22. The electron spectra give new insights into the dynamics of the excited state of solvated electrons in Na ··· (H2O)n clusters. These dynamics are compared to known results for water cluster anions. In both cases, the observed dynamics are a combination of solvent rearrangement and internal energy conversion.
Collapse
Affiliation(s)
- J P Müller
- Max-Born-Institute , Max-Born-Strasse 2a, 12489 Berlin, Germany
| | | | | | | |
Collapse
|
33
|
Elkins MH, Williams HL, Shreve AT, Neumark DM. Relaxation mechanism of the hydrated electron. Science 2014; 342:1496-9. [PMID: 24357314 DOI: 10.1126/science.1246291] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.
Collapse
Affiliation(s)
- Madeline H Elkins
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
34
|
Casey JR, Kahros A, Schwartz BJ. To be or not to be in a cavity: the hydrated electron dilemma. J Phys Chem B 2013; 117:14173-82. [PMID: 24160853 DOI: 10.1021/jp407912k] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrated electron-the species that results from the addition of a single excess electron to liquid water-has been the focus of much interest both because of its role in radiation chemistry and other chemical reactions, and because it provides for a deceptively simple system that can serve as a means to confront the predictions of quantum molecular dynamics simulations with experiment. Despite all this interest, there is still considerable debate over the molecular structure of the hydrated electron: does it occupy a cavity, have a significant number of interior water molecules, or have a structure somewhere in between? The reason for all this debate is that different computer simulations have produced each of these different structures, yet the predicted properties for these different structures are still in reasonable agreement with experiment. In this Feature Article, we explore the reasons underlying why different structures are produced when different pseudopotentials are used in quantum simulations of the hydrated electron. We also show that essentially all the different models for the hydrated electron, including those from fully ab initio calculations, have relatively little direct overlap of the electron's wave function with the nearby water molecules. Thus, a non-cavity hydrated electron is better thought of as an "inverse plum pudding" model, with interior waters that locally expel the surrounding electron's charge density. Finally, we also explore the agreement between different hydrated electron models and certain key experiments, such as resonance Raman spectroscopy and the temperature dependence and degree of homogeneous broadening of the optical absorption spectrum, in order to distinguish between the different simulated structures. Taken together, we conclude that the hydrated electron likely has a significant number of interior water molecules.
Collapse
Affiliation(s)
- Jennifer R Casey
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| | | | | |
Collapse
|
35
|
Turi L, Rossky PJ. Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem Rev 2012; 112:5641-74. [PMID: 22954423 DOI: 10.1021/cr300144z] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- László Turi
- Department of Physical Chemistry, Eötvös Loránd University, Budapest, Hungary.
| | | |
Collapse
|
36
|
Affiliation(s)
- Ryan M. Young
- Department of Chemistry, University of California, Berkeley, California 94720,
United States
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720,
United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| |
Collapse
|
37
|
Buchner F, Schultz T, Lübcke A. Solvated electrons at the water-air interface: surface versus bulk signal in low kinetic energy photoelectron spectroscopy. Phys Chem Chem Phys 2012; 14:5837-42. [PMID: 22414952 DOI: 10.1039/c2cp23305c] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved photoelectron spectroscopy at low kinetic energies (≲5 eV) is applied to dilute iodide solutions with different surface and bulk contributions. The results indicate a pronounced surface sensitivity. Signals assigned to solvated electrons near the liquid surface decay rapidly on a sub-ps timescale. In contrast to the literature, a long-lived surface solvated electron at 1.6 eV binding energy is not observed.
Collapse
Affiliation(s)
- Franziska Buchner
- Max-Born Institut für nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2A, 12489 Berlin, Germany
| | | | | |
Collapse
|
38
|
Young RM, Yandell MA, King SB, Neumark DM. Thermal effects on energetics and dynamics in water cluster anions (H2O)n−. J Chem Phys 2012; 136:094304. [DOI: 10.1063/1.3689439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Abel B, Buck U, Sobolewski AL, Domcke W. On the nature and signatures of the solvated electron in water. Phys Chem Chem Phys 2012; 14:22-34. [DOI: 10.1039/c1cp21803d] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Ivanov R, Villa J, de la Rosa I, Marín E. An alternative differential method of femtosecond pump-probe examination of materials. OPTICS EXPRESS 2011; 19:11290-11298. [PMID: 21716359 DOI: 10.1364/oe.19.011290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We describe an alternative method for femtosecond pump-probe beam examination of energy transport properties of materials. All already reported techniques have several drawbacks which limit precise measurements of reflection coefficient as function of time. A typical problem is present when rough samples are being studied. In this case the pump-beam polarization changes randomly which may produce a spurious signal, drastically reducing the signal to noise ratio. Some proposals to alleviate such problem have been reported, however, they have not been totally satisfactory. The method presented here consists on measuring the difference between the two delays' signals of the probe-beam. As will be explained, our proposal is free of typical drawbacks. We also propose a numerical method to recover the ΔR(t)/R curve from the measured data. Numerical simulations show that our proposal is a viable alternative.
Collapse
Affiliation(s)
- R Ivanov
- Facultad de Física, Universidad Autónoma de Zacatecas, Zacatecas, Mexico.
| | | | | | | |
Collapse
|
41
|
Siefermann KR, Abel B. The Hydrated Electron: A Seemingly Familiar Chemical and Biological Transient. Angew Chem Int Ed Engl 2011; 50:5264-72. [DOI: 10.1002/anie.201006521] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/15/2011] [Indexed: 11/05/2022]
|
42
|
Siefermann KR, Abel B. Das hydratisierte Elektron - eine scheinbar vertraute transiente Spezies in chemischen und biologischen Systemen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Cavity Model Challenged: The Hydrated Electron is Localized in Regions of Enhanced Water Density. Chemphyschem 2010; 12:75-7. [DOI: 10.1002/cphc.201000810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Indexed: 11/07/2022]
|
44
|
Affiliation(s)
- Kenneth D. Jordan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mark A. Johnson
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
45
|
Affiliation(s)
- Ross E Larsen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA.
| | | | | |
Collapse
|
46
|
|
47
|
Fedorenko S. Two-state model of excess electron relaxation and geminate recombination in water and aqueous solutions. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat Chem 2010; 2:274-9. [PMID: 21124507 DOI: 10.1038/nchem.580] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 01/26/2010] [Indexed: 01/14/2023]
Abstract
Solvated electrons in liquid water are one of the seemingly simplest, but most important, transients in chemistry and biology, but they have resisted disclosing important information about their energetics, binding motifs and dynamics. Here we report the first ultrafast liquid-jet photoelectron spectroscopy measurements of solvated electrons in liquid water. The results prove unequivocally the existence of solvated electrons bound at the water surface and of solvated electrons in the bulk solution, with vertical binding energies of 1.6 eV and 3.3 eV, respectively, and with lifetimes longer than 100 ps. The unexpectedly long lifetime of solvated electrons bound at the water surface is attributed to a free-energy barrier that separates surface and interior states. Beyond constituting important energetic and kinetic benchmark and reference data, the results also help to understand the mechanisms of a number of very efficient electron-transfer processes in nature.
Collapse
|
49
|
|
50
|
Singh J, Bittner ER. Isotopic effect and temperature dependent intramolecular excitation energy transfer in a model donor–acceptor dyad. Phys Chem Chem Phys 2010; 12:7418-26. [DOI: 10.1039/c003113e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|