1
|
Xue P, Huang D, Pu J, Zhou Y. DFT/MM Simulations for Cycloreversion Reaction of Cyclobutane Pyrimidine Dimer with Deprotonated and Protonated E283. J Phys Chem B 2024; 128:6670-6683. [PMID: 38982772 DOI: 10.1021/acs.jpcb.4c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesion─cyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The catalytic mechanism of DNA photolyase and the role of the conserved residue E283 remain subjects of debate. This study employs two-dimensional potential energy surface maps and minimum free energy paths calculated at the ωB97XD/6-31G/MM level to elucidate these mechanisms. Results suggest that the catalytic process follows a sequential, stepwise reaction in which the C5-C5 and C6-C6 bonds are cleaved in order, facilitated by a protonated E283. Activation free energies for these cleavages are calculated at 4.4 and 4.2 kcal·mol-1, respectively. Protonation of E283 reduces electrostatic repulsion with CPD and forms dual hydrogen bonds with it and provides better solvation, stabilizing the CPD radical anion, particularly during intermediate state. This stabilization renders the initial splitting step exergonic, slows reverse reactions of the C5-C5 bond cleavage and electron transfer, and ensures a high quantum yield. Furthermore, the protonation state of E283 significantly affects the type of bond cleavage. Other residues in the active site were also investigated for their roles in the mechanism.
Collapse
Affiliation(s)
- Pei Xue
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, 188 Daxue East Road, Nanning, Guangxi 530006, China
| | - Donglian Huang
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, 188 Daxue East Road, Nanning, Guangxi 530006, China
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, Indiana 46202, United States
| | - Yan Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, 188 Daxue East Road, Nanning, Guangxi 530006, China
| |
Collapse
|
2
|
Huang D, Chen S, Pu J, Tan X, Zhou Y. Exploring Cycloreversion Reaction of Cyclobutane Pyrimidine Dimers Quantum Mechanically. J Phys Chem A 2019; 123:2025-2039. [PMID: 30776239 DOI: 10.1021/acs.jpca.8b12345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyclobutane pyrimidine dimer (CPD) is a major photoproduct of deoxyribonucleic acid (DNA) that is damaged by ultraviolet light. This DNA lesion can be repaired by DNA photolyase with the aid of UV light and two cofactors. To understand the repair mechanism of CPD and whether protonation of CPD participates in the DNA repair process, the cycloreversion reactions of four CPD models and proton transfers between the adjacent residue Glu283 and CPD models were explored through the quantum mechanical method. Two-dimensional maps of potential energy surface in a vacuum and in implicit water solution were calculated at the ωB97XD/6-311++G(2df,2pd) level. One-dimensional potential energy profiles were computed for proton transfer reactions. Among the models that have been considered, both in a vacuum and in water solution, the results indicate that the most likely repair mechanism involves CPD•2- radical anion splitting in a stepwise manner. C5-C5' splits first, and C6-C6' splits later. The computed free energies of activation of the two splitting steps are 0.9 and 3.1 kcal/mol, respectively. The adjacent Glu283 may stabilize the CPD•2- radical anion through hydrogen bond and increase the quantum yield; however, protonating the CPD radical anion by Glu283 cannot accelerate the rate of ring opening.
Collapse
Affiliation(s)
- Donglian Huang
- School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , 188 Daxue East Road , Nanning , Guangxi 530006 , China
| | - Shanfeng Chen
- School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , 188 Daxue East Road , Nanning , Guangxi 530006 , China
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology , Indiana University-Purdue University Indianapolis , 402 N. Blackford St. , Indianapolis , Indiana 46202 , United States
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , 188 Daxue East Road , Nanning , Guangxi 530006 , China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , 188 Daxue East Road , Nanning , Guangxi 530006 , China
| |
Collapse
|
3
|
Xiang D, Noel J, Shao H, Dupas G, Merbouh N, Yu HZ. Unique Intramolecular Electronic Communications in Mono-ferrocenylpyrimidine Derivatives: Correlation between Redox Properties and Structural Nature. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.10.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Ebrahimi A, Habibi-Khorassani M, Shahraki A. The radical cationic repair pathway of cyclobutane pyrimidine dimer: the effect of sugar-phosphate backbone. Photochem Photobiol 2012; 89:74-82. [PMID: 22827513 DOI: 10.1111/j.1751-1097.2012.01206.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/13/2012] [Indexed: 12/01/2022]
Abstract
Radical cationic repair process of cis-syn thymine dimer has been investigated when (1) sugar-phosphate backbones were substituted by hydrogen atoms, (2) phosphate group was substituted by two hydrogen atoms each on a sugar ring and (3) sugar-phosphate backbone was taken into account. The effect of the interactions between N1 and N1' lone pairs and the C6-C6' antibonding orbital are the most important evidences for the cleavage of the C6-C6' bond in the first step of radical cationic repair mechanism in the absence of the sugar-phosphate backbone. The impact of the N1 and N1' lone pairs on the C6-C6' bond cleavage decreases and the energy barrier of the cleavage of that bond significantly increases in the presence of the deoxynucleoside sugars and the sugar-phosphate backbone.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | | | |
Collapse
|
5
|
Deng ZP, Kang W, Zhu ZB, Huo LH, Zhao H, Gao S. Cation radii induced structural variation in fluorescent alkaline earth networks constructed from tautomers of a nucleobase analogue. Dalton Trans 2012; 41:8354-60. [PMID: 22635055 DOI: 10.1039/c2dt12353c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleobase tautomers and their metal complexes have attracted considerable attention due to their fascinating architectures along with wide applications. In this paper, 4,6-dihydroxypyrimidine (H(2)DHP), an analogue of uracil and thymine, was employed to react with the vital elements of alkaline earth metals in an aqueous solution and lead to the formation of four novel complexes, [Mg(HDHP)(2) (H(2)O)(4)] (1), [Ca(HDHP)(2)(H(2)O)(3)](n)·nH(2)O (2), [Sr(HDHP)(2)(H(2)O)(3)](n)·nH(2)O (3), and [Ba(HDHP)(2)(H(2)O)(2)](n)·nH(2)O (4), which have been characterized by elemental analysis, IR, TG, UV-Vis, PL, powder and single-crystal X-ray diffraction and progressively evolve from zero-dimensional (0D) mononuclear, one-dimensional (1D) zig-zag double chain, two-dimensional (2D) double layer, to a three-dimensional (3D) porous network along with the increase of cation radii. This tendency in dimensionality follows salient crystal engineering principles and can be explained by considering factors such as hard-soft acid-base principles and cation radii. The deprotonated H(2)DHP ligand exhibits four new coordination modes, namely, O-monodentate (complex 1), N,O-chelating (complexes 2 and 3), O,O-bridging (complexes 2 and 3), and κ(1)O:κ(2)O-bridging mode (complex 4). Interestingly, the structural investigation indicates that the HDHP(-) monoanion shows three unusual types of tautomers, which are essential for the diagnosis of disease and investigation of medicine. Furthermore, the four complexes exhibit strong blue emission compared to free H(2)DHP ligand at room temperature and may be potential candidates for blue fluorescent biological materials used in organisms.
Collapse
Affiliation(s)
- Zhao-Peng Deng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Cho DW, Lee CW, Park JG, Oh SW, Sung NK, Park HJ, Kim KM, Mariano PS, Yoon UC. Exploration of photochemical reactions of N-trimethylsilylmethyl-substituted uracil, pyridone, and pyrrolidone derivatives. Photochem Photobiol Sci 2011; 10:1169-80. [PMID: 21472163 DOI: 10.1039/c0pp00372g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemical reactions of N-trimethylsilylmethyl-substituted uracil, pyridone and pyrrolidone derivatives were carried out to determine if silicone containing substituents have an impact on excited state reaction profiles. The results show that ultraviolet irradiation of N-trimethylsilylmethyl substituted uracils in the presence of substituted alkenes leads to efficient formation of both dimeric and cross [2+2]-cycloaddition products. Qualitatively similar observations were made in a study of the photochemistry of N-trimethylsilylmethyl-2-pyridone. The combined results demonstrate that [2+2]-photocycloaddition is a more efficient excited state reaction pathway for the uracil and pyridone substrates as compared to other processes, such as ylide-forming trimethylsilyl group C-to-O migration. Finally, photoreactions of N-trimethylsilylmethyl-2-pyrrolidone in solutions containing dipolarophiles, such as methyl acrylate, lead to the formation of the desilylation product, N-methyl-2-pyrrolidone by way of a simple, non-ylide generating, protodesilylation process. In addition, observations were made which show that orbital symmetry allowed photocycloreversion reactions of dimeric uracil derivatives, involving cyclobutane ring splitting, to take place. These processes, which lead to the formation of monomeric uracils, appear to be stimulated by the presence of electron donor groups on the cyclobutane ring, a likely result of a new SET promoted cyclobutane ring cleavage pathway. In the cases of N-trimethylsilylmethyl-substituted cyclobutane derivatives that possess phthalimide groups, highly efficient excited state cleavage of the cyclobutane moiety occurs to produce uracil derivatives and corresponding vinyl phthalimide.
Collapse
Affiliation(s)
- Dae Won Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 609-735, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Masson F, Laino T, Rothlisberger U, Hutter J. A QM/MM Investigation of Thymine Dimer Radical Anion Splitting Catalyzed by DNA Photolyase. Chemphyschem 2009; 10:400-10. [DOI: 10.1002/cphc.200800624] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Zhang RB, Eriksson LA. A triplet mechanism for the formation of cyclobutane pyrimidine dimers in UV-irradiated DNA. J Phys Chem B 2007; 110:7556-62. [PMID: 16599537 DOI: 10.1021/jp060196a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction pathways for the photochemical formation of cyclobutane thymine dimers in DNA are explored using hybrid density functional theory techniques. It is concluded that the thymine-thymine [2 + 2] cycloaddition displays favorable energy barriers and reaction energies in both the triplet and the singlet excited states. The stepwise cycloaddition in the triplet excited state involves the initial formation of a diradical followed by ring closure via singlet-triplet interaction. The triplet mechanism is thus completely different from the concerted singlet state cycloaddition processes. The key geometric features and electron spin densities are also discussed. Bulk solvation has a major effect by reducing the barriers and increasing the diradical stabilities. The present results provide a rationale for the faster cycloreaction observed in the singlet excited states than in the triplet excited states.
Collapse
Affiliation(s)
- Ru Bo Zhang
- Department of Natural Sciences and Orebro Life Science Center, Orebro University, 70182 Orebro, Sweden
| | | |
Collapse
|
9
|
Durbeej B, Eriksson LA. On the Formation of Cyclobutane Pyrimidine Dimers in UV-irradiated DNA: Why are Thymines More Reactive?¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780159otfocp2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
|
11
|
Mees A, Klar T, Gnau P, Hennecke U, Eker APM, Carell T, Essen LO. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 2004; 306:1789-93. [PMID: 15576622 DOI: 10.1126/science.1101598] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
DNA photolyases use light energy to repair DNA that comprises ultraviolet-induced lesions such as the cis-syn cyclobutane pyrimidine dimers (CPDs). Here we report the crystal structure of a DNA photolyase bound to duplex DNA that is bent by 50 degrees and comprises a synthetic CPD lesion. This CPD lesion is flipped into the active site and split there into two thymines by synchrotron radiation at 100 K. Although photolyases catalyze blue light-driven CPD cleavage only above 200 K, this structure apparently mimics a structural substate during light-driven DNA repair in which back-flipping of the thymines into duplex DNA has not yet taken place.
Collapse
Affiliation(s)
- Alexandra Mees
- Department of Chemistry and Biochemistry, Butenandt-Strasse 5-13, Ludwig Maximilians University, D-81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Durbeej B, Eriksson LA. On the formation of cyclobutane pyrimidine dimers in UV-irradiated DNA: why are thymines more reactive? Photochem Photobiol 2003; 78:159-67. [PMID: 12945584 DOI: 10.1562/0031-8655(2003)078<0159:otfocp>2.0.co;2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The reaction pathways for thermal and photochemical formation of cyclobutane pyrimidine dimers in DNA are explored using density functional theory techniques. Although it is found that the thermal [2 + 2] cycloadditions of thymine + thymine (T + T --> T x T), cytosine + cytosine (C + C --> C x C) and cytosine + thymine (C + T --> C x T) all are similarly unfavorable in terms of energy barriers and reaction energies, the excited-state energy curves associated with the corresponding photochemical cycloadditions display differences that--in line with experimental findings--unanimously point to the predominance of T x T in UV-irradiated DNA. It is shown that the photocycloaddition of thymines is facilitated by the fact that the S1 state of the corresponding reactant complex lies comparatively high in energy. Moreover, at a nuclear configuration coinciding with the ground-state transition structure, the excited-state energy curve displays an absolute minimum only for the T + T system. Finally, the T + T system is also associated with the most favorable excited-state energy barriers and has the smallest S2-S0 energy gap at the ground-state transition structure.
Collapse
Affiliation(s)
- Bo Durbeej
- Department of Quantum Chemistry, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
13
|
Saettel NJ, Wiest O. DFT study of the [2+2] cycloreversion of uracil dimer anion radical: waters matter. J Am Chem Soc 2001; 123:2693-4. [PMID: 11456951 DOI: 10.1021/ja005775m] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Durbeej B, Eriksson LA. Thermodynamics of the Photoenzymic Repair Mechanism Studied by Density Functional Theory. J Am Chem Soc 2000. [DOI: 10.1021/ja000929j] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Durbeej
- Contribution from the Department of Quantum Chemistry, Uppsala University, Box 518, S-751 20 Uppsala, Sweden
| | - Leif A. Eriksson
- Contribution from the Department of Quantum Chemistry, Uppsala University, Box 518, S-751 20 Uppsala, Sweden
| |
Collapse
|