1
|
Rich CC, Frontiera RR. Uncovering the Functional Role of Coherent Phonons during the Photoinduced Phase Transition in a Molecular Crystal. J Phys Chem Lett 2020; 11:7502-7509. [PMID: 32845635 DOI: 10.1021/acs.jpclett.0c01834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The atomic motions that make up phonons and molecular vibrations in molecular crystals influence their photophysical and electronic properties, including polaron formation, carrier mobility, and phase transitions. Discriminating between spectator and driving motions is a significant challenge hindering optimization. Unlocking this information and developing fine-tuned controls over actively participating phonon modes would not only lead to a stronger understanding of photochemistry but also provide a significant new tool in controlling solid state chemistry. We present a strategy using rationally designed double pulses to unveil the unique function of specific excited state phonon modes. Using ultrafast spectroscopy, we identified 50 and 90 cm-1 phonons involved in modulating the photoinduced spin-Peierls melting of potassium tetracyanoquinodimethane crystals. We show that the 50 cm-1 phonon specifically corresponds to the coherent nuclear wavepacket involved in the charge transfer component of the overall spin-Peierls phase melting process, while the 90 cm-1 phonon facilitates the phase transition component.
Collapse
Affiliation(s)
- Christopher C Rich
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Ma X, Dostál J, Brixner T. Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression. OPTICS EXPRESS 2016; 24:20781-91. [PMID: 27607681 DOI: 10.1364/oe.24.020781] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data.
Collapse
|
3
|
Johnson PJM, Halpin A, Morizumi T, Prokhorenko VI, Ernst OP, Miller RJD. Local vibrational coherences drive the primary photochemistry of vision. Nat Chem 2015; 7:980-6. [DOI: 10.1038/nchem.2398] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/15/2015] [Indexed: 01/06/2023]
|
4
|
Cho HS, Schotte F, Dashdorj N, Kyndt J, Anfinrud PA. Probing anisotropic structure changes in proteins with picosecond time-resolved small-angle X-ray scattering. J Phys Chem B 2013; 117:15825-32. [PMID: 24125473 DOI: 10.1021/jp407593j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have exploited the principle of photoselection and the method of time-resolved small-angle X-ray scattering (SAXS) to investigate protein size and shape changes following photoactivation of photoactive yellow protein (PYP) in solution with ∼150 ps time resolution. This study partially overcomes the orientational average intrinsic to solution scattering methods and provides structural information at a higher level of detail. Photoactivation of the p-coumaric acid (pCA) chromophore in PYP produces a highly contorted, short-lived, red-shifted intermediate (pR0), and triggers prompt, protein compaction of approximately 0.3% along the direction defined by the electronic transition dipole moment of the chromophore. Contraction along this dimension is accompanied by expansion along the orthogonal directions, with the net protein volume change being approximately -0.25%. More than half the strain arising from formation of pR0 is relieved by the pR0 to pR1 structure transition (1.8 ± 0.2 ns), with the persistent strain presumably contributing to the driving force needed to generate the spectroscopically blue-shifted pB signaling state. The results reported here are consistent with the near-atomic resolution structural dynamics reported in a recent time-resolved Laue crystallography study of PYP crystals and suggest that the early time structural dynamics in the crystalline state carry over to proteins in solution.
Collapse
Affiliation(s)
- Hyun Sun Cho
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | | | | | |
Collapse
|
5
|
Mukherjee SS, Skoff DR, Middleton CT, Zanni MT. Fully absorptive 3D IR spectroscopy using a dual mid-infrared pulse shaper. J Chem Phys 2013; 139:144205. [PMID: 24116612 PMCID: PMC4108792 DOI: 10.1063/1.4824638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/25/2013] [Indexed: 12/27/2022] Open
Abstract
This paper presents the implementation of 3D IR spectroscopy by adding a second pump beam to a two-beam 2D IR spectrometer. An independent mid-IR pulse shaper is used for each pump beam, which can be programmed to collect its corresponding dimension in either the frequency or time-domains. Due to the phase matching geometry employed here, absorptive 3D IR spectra are automatically obtained, since all four of the rephasing and non-rephasing signals necessary to generate absorptive spectra are collected simultaneously. Phase cycling is used to isolate the fifth-order from the third-order signals. The method is demonstrated on tungsten hexacarbonyl (W(CO)6) and dicarbonylacetylacetonato rhodium (I), for which the eigenstates are extracted up to the third excited state. Pulse shaping affords a high degree of control over 3D IR experiments by making possible mixed time- and frequency-domain experiments, fast data acquisition and straightforward implementation.
Collapse
Affiliation(s)
- Sudipta S Mukherjee
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
6
|
Eom I, Ahn SH, Rhee H, Cho M. Broadband near UV to visible optical activity measurement using self-heterodyned method. OPTICS EXPRESS 2011; 19:10017-10028. [PMID: 21643260 DOI: 10.1364/oe.19.010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We demonstrate that broadband electronic optical activity can be measured with supercontinuum light pulse generated by a femtosecond pump (800 nm). It is the self-heterodyned detection technique that enables us to selectively measure the real (optical rotatory dispersion, ORD) or imaginary (circular dichroism, CD) part of the chiroptical susceptibility by controlling the incident polarization state. The single-shot-based measurement that is capable of correcting power fluctuations of the continuum light is realized by using a fast CCD detector and a polarizing beam splitter. Particularly, non-differential scheme used does not rely on any polarization-switching components. We anticipate that this broadband CD/ORD spectrometry with intrinsically ultrafast time-resolution will be applied to a variety of ultrafast chiroptical dynamics studies.
Collapse
Affiliation(s)
- Intae Eom
- Korea Basic Science Institute, Seoul 136-713, South Korea
| | | | | | | |
Collapse
|
7
|
Park S, Kim J, Moran AM, Scherer NF. Solvent structural relaxation dynamics in dipolar solvation studied by resonant pump polarizability response spectroscopy. Phys Chem Chem Phys 2011; 13:214-23. [DOI: 10.1039/c0cp01252a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Miller RJD, Ernstorfer R, Harb M, Gao M, Hebeisen CT, Jean-Ruel H, Lu C, Moriena G, Sciaini G. `Making the molecular movie': first frames. Acta Crystallogr A 2010; 66:137-56. [DOI: 10.1107/s0108767309053926] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/14/2009] [Indexed: 11/10/2022] Open
Abstract
Recent advances in high-intensity electron and X-ray pulsed sources now make it possible to directly observe atomic motions as they occur in barrier-crossing processes. These rare events require the structural dynamics to be triggered by femtosecond excitation pulses that prepare the system above the barrier or access new potential energy surfaces that drive the structural changes. In general, the sampling process modifies the system such that the structural probes should ideally have sufficient intensity to fully resolve structures near the single-shot limit for a given time point. New developments in both source intensity and temporal characterization of the pulsed sampling mode have made it possible to make so-called `molecular movies',i.e.measure relative atomic motions faster than collisions can blur information on correlations. Strongly driven phase transitions from thermally propagated melting to optically modified potential energy surfaces leading to ballistic phase transitions and bond stiffening are given as examples of the new insights that can be gained from an atomic level perspective of structural dynamics. The most important impact will likely be made in the fields of chemistry and biology where the central unifying concept of the transition state will come under direct observation and enable a reduction of high-dimensional complex reaction surfaces to the key reactive modes, as long mastered by Mother Nature.
Collapse
|
9
|
Ammend MJ, Blank DA. Passive optical interferometer without spatial overlap between the local oscillator and signal generation. OPTICS LETTERS 2009; 34:548-550. [PMID: 19373370 DOI: 10.1364/ol.34.000548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A passively stabilized third-order optical interferometer that spatially separates the local oscillator and signal generation is demonstrated with long-term phase stability. The lack of spatial overlap eliminates unwanted contamination of either field. Fully independent optical control over both fields is exerted after the sample. This independence is taken advantage of with what we believe to be a new approach to scanning the relative phase between the local oscillator and signal that has very high precision and reproducibility. The independence of the fields is also exploited in a flexible balanced heterodyne detection scheme.
Collapse
Affiliation(s)
- Matthew J Ammend
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
10
|
Moran AM, Nome RA, Scherer NF. Field-resolved measurement of reaction-induced spectral densities by polarizability response spectroscopy. J Chem Phys 2007; 127:184505. [DOI: 10.1063/1.2792943] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
11
|
|
12
|
Szöcs V, Pálszegi T, Lukes V, Sperling J, Milota F, Jakubetz W, Kauffmann HF. Two-dimensional electronic spectra of symmetric dimers: Intermolecular coupling and conformational states. J Chem Phys 2006; 124:124511. [PMID: 16599701 DOI: 10.1063/1.2180783] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the information content of two-dimensional (2D) electronic photon-echo (PE) spectra, with special emphasis on their potential to distinguish, for waiting times T=0, between different conformations of electronically coupled symmetric dimers. The analysis is performed on the basis of an analytical formula for the frequency-domain 2D PE signal. The symmetric dimers are modeled in terms of two identical, energy-degenerate, excitonically coupled pairs of electronic states in the site representation. The spectra of conformationally weighted ensembles, composed of either two or four dimers, are compared with their one-dimensional linear absorption counterparts. In order to provide a realistic coupling pattern for the ensemble consisting of four dimers, excitonic couplings are estimated on the basis of optimized geometries and site-transition dipole moments, calculated by standard semiempirical methods for the bridged bithiophene structure 1,2-bithiophene-2-yl-ethane-1,2-dion (T2[CO]2). In the framework of our model, the highly readable 2D PE spectra can unambiguously identify spectral doublets, by relating peak heights and positions with mutual orientations of site-localized transition dipoles.
Collapse
Affiliation(s)
- V Szöcs
- Institute of Chemistry, Comenius University, Mlynská dolina CH2, 842 15 Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Dwyer JR, Hebeisen CT, Ernstorfer R, Harb M, Deyirmenjian VB, Jordan RE, Miller RJD. Femtosecond electron diffraction: 'making the molecular movie'. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2006; 364:741-78. [PMID: 16483961 DOI: 10.1098/rsta.2005.1735] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Femtosecond electron diffraction (FED) has the potential to directly observe transition state processes. The relevant motions for this barrier-crossing event occur on the hundred femtosecond time-scale. Recent advances in the development of high-flux electron pulse sources with the required time resolution and sensitivity to capture barrier-crossing processes are described in the context of attaining atomic level details of such structural dynamics-seeing chemical events as they occur. Initial work focused on the ordered-to-disordered phase transition of Al under strong driving conditions for which melting takes on nm or molecular scale dimensions. This work has been extended to Au, which clearly shows a separation in time-scales for lattice heating and melting. It also demonstrates that superheated face-centred cubic (FCC) metals melt through thermal mechanisms involving homogeneous nucleation to propagate the disordering process. A new concept exploiting electron-electron correlation is introduced for pulse characterization and determination of t=0 to within 100fs as well as for spatial manipulation of the electron beam. Laser-based methods are shown to provide further improvements in time resolution with respect to pulse characterization, absolute t=0 determination, and the potential for electron acceleration to energies optimal for time-resolved diffraction.
Collapse
Affiliation(s)
- Jason R Dwyer
- University of Toronto Institute for Optical Sciences and Departments of Chemistry and Physics Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Simonov AN, Akhzar-Mehr O, Vdovin G. Light scanner based on a viscoelastic stretchable grating. OPTICS LETTERS 2005; 30:949-51. [PMID: 15906966 DOI: 10.1364/ol.30.000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings with triangular and rectangular profiles have been characterized at lambda = 633 nm. It is demonstrated that the reversible elongation can exceed 20% of the initial length. For the triangular profile grating, the diffraction angle of the first order changed from 6.6 degrees to 5.4 degrees while the diffraction efficiency remained almost constant at approximately 17%. Dynamic scanning of a laser beam at frequencies of approximately 1 kHz is demonstrated by use of electromechanically driven viscoelastic gratings.
Collapse
Affiliation(s)
- A N Simonov
- Electronic Instrumentation Laboratory, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
| | | | | |
Collapse
|
15
|
Cowan M, Ogilvie J, Miller R. Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.01.027] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Fujiyoshi S, Ishibashi TA, Onishi H. Time-Domain Raman Measurement of Molecular Submonolayers by Time-Resolved Reflection Spectroscopy. J Phys Chem B 2004. [DOI: 10.1021/jp037240w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Satoru Fujiyoshi
- Surface Chemistry Laboratory, Kanagawa Academy of Science and Technology (KAST), KSP East 404, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honmachi, Kawaguchi 332-0012, Japan
| | - Taka-aki Ishibashi
- Surface Chemistry Laboratory, Kanagawa Academy of Science and Technology (KAST), KSP East 404, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honmachi, Kawaguchi 332-0012, Japan
| | - Hiroshi Onishi
- Surface Chemistry Laboratory, Kanagawa Academy of Science and Technology (KAST), KSP East 404, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honmachi, Kawaguchi 332-0012, Japan
| |
Collapse
|
17
|
Yamaguchi M, Katayama K, Sawada T. Lens-free heterodyne transient grating method for dynamics measurement of photoexcited species in liquid. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(03)01188-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Gensch T, Viappiani C. Time-resolved photothermal methods: accessing time-resolved thermodynamics of photoinduced processes in chemistry and biology. Photochem Photobiol Sci 2003; 2:699-721. [PMID: 12911218 DOI: 10.1039/b303177b] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal methods are currently being employed in a variety of research areas, ranging from materials science to environmental monitoring. Despite the common term which they are collected under, the implementations of these techniques are as diverse as the fields of application. In this review, we concentrate on the recent applications of time-resolved methods in photochemistry and photobiology.
Collapse
Affiliation(s)
- Thomas Gensch
- Forschungszentrum Jülich, Institut für Biologische Informationsverarbeitung 1, 52425 Jülich, Germany.
| | | |
Collapse
|
19
|
Armstrong MR, Ogilvie JP, Cowan ML, Nagy AM, Miller RJD. Observation of the cascaded atomic-to-global length scales driving protein motion. Proc Natl Acad Sci U S A 2003; 100:4990-4. [PMID: 12697894 PMCID: PMC154285 DOI: 10.1073/pnas.0936507100] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Model studies of the ligand photodissociation process of carboxymyoglobin have been conducted by using amplified few-cycle laser pulses short enough in duration (<10 fs) to capture the phase of the induced nuclear motions. The reaction-driven modes are observed directly in real time and depict the pathway by which energy liberated in the localized reaction site is efficiently channeled to functionally relevant mesoscale motions of the protein.
Collapse
Affiliation(s)
- M R Armstrong
- Department of Physics and Astronomy, University of Rochester, Bausch & Lomb Hall, Rochester, NY 14627-0171, USA
| | | | | | | | | |
Collapse
|
20
|
Ogilvie JP, Plazanet M, Dadusc G, Miller RJD. Dynamics of Ligand Escape in Myoglobin: Q-Band Transient Absorption and Four-Wave Mixing Studies. J Phys Chem B 2002. [DOI: 10.1021/jp014477o] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jennifer P. Ogilvie
- Departments of Physics and Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario M5S 3H6, Canada and Department of Physics, University of Rochester, Rochester, New York 14627
| | - Marie Plazanet
- Departments of Physics and Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario M5S 3H6, Canada and Department of Physics, University of Rochester, Rochester, New York 14627
| | - Gami Dadusc
- Departments of Physics and Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario M5S 3H6, Canada and Department of Physics, University of Rochester, Rochester, New York 14627
| | - R. J. Dwayne Miller
- Departments of Physics and Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario M5S 3H6, Canada and Department of Physics, University of Rochester, Rochester, New York 14627
| |
Collapse
|
21
|
Xu QH, Ma YZ, Stiopkin IV, Fleming GR. Wavelength-dependent resonant homodyne and heterodyne transient grating spectroscopy with a diffractive optics method: Solvent effect on the third-order signal. J Chem Phys 2002. [DOI: 10.1063/1.1473653] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Armstrong MR, Plachta P, Ponomarev EA, Miller RJ. Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics. OPTICS LETTERS 2001; 26:1152-1154. [PMID: 18049546 DOI: 10.1364/ol.26.001152] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We have compressed the output from a beta-barium borate noncollinear optical parametric amplifier to ~7-fs pulse durations, using a micromachined deformable mirror with an efficient search algorithm. This compression method allows phase compensation of both material and gain dispersion, which produces an optimized wavelength-tunable pulse shape for ultrahigh-resolution time-domain spectroscopy.
Collapse
|
23
|
Cho M. Two-dimensional vibrational spectroscopy. VIII. Infrared optical Kerr effect and two-color infrared pump–probe measurements. J Chem Phys 2001. [DOI: 10.1063/1.1370960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
|
25
|
Kaufman LJ, Heo J, Fleming GR, Sung J, Cho M. Fifth-order electronically non-resonant Raman scattering: two-dimensional Fourier deconvolution. Chem Phys 2001. [DOI: 10.1016/s0301-0104(01)00251-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Xu QH, Ma YZ, Fleming GR. Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00281-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Astinov V, Kubarych K, Milne C, Miller R. Diffractive optics based two-color six-wave mixing: phase contrast heterodyne detection of the fifth order Raman response of liquids. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)00819-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Asplund MC, Zanni MT, Hochstrasser RM. Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes. Proc Natl Acad Sci U S A 2000; 97:8219-24. [PMID: 10890905 PMCID: PMC26927 DOI: 10.1073/pnas.140227997] [Citation(s) in RCA: 388] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-dimensional infrared spectra of peptides are introduced that are the direct analogues of two- and three-pulse multiple quantum NMR. Phase matching and heterodyning are used to isolate the phase and amplitudes of the electric fields of vibrational photon echoes as a function of multiple pulse delays. Structural information is made available on the time scale of a few picoseconds. Line narrowed spectra of acyl-proline-NH(2) and cross peaks implying the coupling between its amide-I modes are obtained, as are the phases of the various contributions to the signals. Solvent-sensitive structural differences are seen for the dipeptide. The methods show great promise to measure structure changes in biology on a wide range of time scales.
Collapse
Affiliation(s)
- M C Asplund
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
29
|
Goodno GD, Astinov V, Miller RJD. Femtosecond Heterodyne-Detected Four-Wave-Mixing Studies of Deterministic Protein Motions. 2. Protein Response. J Phys Chem A 1999. [DOI: 10.1021/jp993559y] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregory D. Goodno
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
| | - Vladimir Astinov
- Departments of Chemistry and Physics, 80 St. George Street, University of Toronto, Toronto, Ontario M5S 3H6 Canada
| | - R. J. Dwayne Miller
- Departments of Chemistry and Physics, 80 St. George Street, University of Toronto, Toronto, Ontario M5S 3H6 Canada
| |
Collapse
|