1
|
Zhao X, Li J, Luo J, Liu J. Significant Acceleration of E-Z Photoisomerization induced by Molecular Planarity Breaking. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
2
|
Mix LT, Hara M, Fuzell J, Kumauchi M, Kaledhonkar S, Xie A, Hoff WD, Larsen DS. Not All Photoactive Yellow Proteins Are Built Alike: Surprises and Insights into Chromophore Photoisomerization, Protonation, and Thermal Reisomerization of the Photoactive Yellow Protein Isolated from Salinibacter ruber. J Am Chem Soc 2021; 143:19614-19628. [PMID: 34780163 DOI: 10.1021/jacs.1c08910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We demonstrate that the Halorhodospira halophila (Hhal) photoactive yellow protein (PYP) is not representative of the greater PYP family. The photodynamics of the PYP isolated from Salinibacter ruber (Srub) is characterized with a comprehensive range of spectroscopic techniques including ultrafast transient absorption, photostationary light titrations, Fourier transform infrared, and cryokinetics spectroscopies. We demonstrate that the dark-adapted pG state consists of two subpopulations differing in the protonation state of the chromophore and that both are photoactive, with the protonated species undergoing excited-state proton transfer. However, the primary I0 photoproduct observed in the Hhal PYP photocycle is absent in the Srub PYP photodynamics, which indicates that this intermediate, while important in Hhal photodynamics, is not a critical intermediate in initiating all PYP photocycles. The excited-state lifetime of Srub PYP is the longest of any PYP resolved to date (∼30 ps), which we ascribe to the more constrained chromophore binding pocket of Srub PYP and the absence of the critical Arg52 residue found in Hhal PYP. The final stage of the Srub PYP photocycle involves the slowest known thermal dark reversion of a PYP (∼40 min vs 350 ms in Hhal PYP). This property allowed the characterization of a pH-dependent equilibrium between the light-adapted pB state with a protonated cis chromophore and a newly resolved pG' intermediate with a deprotonated cis chromophore and pG-like protein conformation. This result demonstates that protein conformational changes and chromophore deprotonation precede chromophore reisomerization during the thermal recovery of the PYP photocycle.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jack Fuzell
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sandip Kaledhonkar
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Aihua Xie
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
3
|
Kuramochi H, Takeuchi S, Kamikubo H, Kataoka M, Tahara T. Skeletal Structure of the Chromophore of Photoactive Yellow Protein in the Excited State Investigated by Ultraviolet Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2021; 125:6154-6161. [PMID: 34102843 DOI: 10.1021/acs.jpcb.1c02828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied ultrafast structural dynamics of photoactive yellow protein (PYP) using ultraviolet femtosecond stimulated Raman spectroscopy. By employing the Raman pump and probe pulses in the ultraviolet region, resonantly enhanced, rich vibrational features of the excited-state chromophore were observed in the fingerprint region. In contrast to the marked spectral change reported for the excited-state chromophore in solution, in the protein, all of the observed Raman bands in the fingerprint region did not show any noticeable spectral shifts nor band shape changes during the excited-state lifetime of PYP. This indicates that the significant skeletal change does not occur on the chromophore in the excited state of PYP and that the trans conformation is retained in its lifetime. Based on the femtosecond Raman data of PYP obtained so far, we discuss a comprehensive picture of the excited-state structural dynamics of PYP.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
4
|
Romei MG, Lin CY, Mathews II, Boxer SG. Electrostatic control of photoisomerization pathways in proteins. Science 2020; 367:76-79. [PMID: 31896714 DOI: 10.1126/science.aax1898] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/04/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022]
Abstract
Rotation around a specific bond after photoexcitation is central to vision and emerging opportunities in optogenetics, super-resolution microscopy, and photoactive molecular devices. Competing roles for steric and electrostatic effects that govern bond-specific photoisomerization have been widely discussed, the latter originating from chromophore charge transfer upon excitation. We systematically altered the electrostatic properties of the green fluorescent protein chromophore in a photoswitchable variant, Dronpa2, using amber suppression to introduce electron-donating and electron-withdrawing groups to the phenolate ring. Through analysis of the absorption (color), fluorescence quantum yield, and energy barriers to ground- and excited-state isomerization, we evaluate the contributions of sterics and electrostatics quantitatively and demonstrate how electrostatic effects bias the pathway of chromophore photoisomerization, leading to a generalized framework to guide protein design.
Collapse
Affiliation(s)
- Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Mix LT, Carroll EC, Morozov D, Pan J, Gordon WR, Philip A, Fuzell J, Kumauchi M, van Stokkum I, Groenhof G, Hoff WD, Larsen DS. Excitation-Wavelength-Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila. Biochemistry 2018; 57:1733-1747. [PMID: 29465990 DOI: 10.1021/acs.biochem.7b01114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photoactive yellow proteins (PYPs) make up a diverse class of blue-light-absorbing bacterial photoreceptors. Electronic excitation of the p-coumaric acid chromophore covalently bound within PYP results in triphasic quenching kinetics; however, the molecular basis of this behavior remains unresolved. Here we explore this question by examining the excitation-wavelength dependence of the photodynamics of the PYP from Halorhodospira halophila via a combined experimental and computational approach. The fluorescence quantum yield, steady-state fluorescence emission maximum, and cryotrapping spectra are demonstrated to depend on excitation wavelength. We also compare the femtosecond photodynamics in PYP at two excitation wavelengths (435 and 475 nm) with a dual-excitation-wavelength-interleaved pump-probe technique. Multicompartment global analysis of these data demonstrates that the excited-state photochemistry of PYP depends subtly, but convincingly, on excitation wavelength with similar kinetics with distinctly different spectral features, including a shifted ground-state beach and altered stimulated emission oscillator strengths and peak positions. Three models involving multiple excited states, vibrationally enhanced barrier crossing, and inhomogeneity are proposed to interpret the observed excitation-wavelength dependence of the data. Conformational heterogeneity was identified as the most probable model, which was supported with molecular mechanics simulations that identified two levels of inhomogeneity involving the orientation of the R52 residue and different hydrogen bonding networks with the p-coumaric acid chromophore. Quantum calculations were used to confirm that these inhomogeneities track to altered spectral properties consistent with the experimental results.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Elizabeth C Carroll
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Dmitry Morozov
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Jie Pan
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | | | | | - Jack Fuzell
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Ivo van Stokkum
- Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Gerrit Groenhof
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Delmar S Larsen
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
6
|
Mix LT, Kirpich J, Kumauchi M, Ren J, Vengris M, Hoff WD, Larsen DS. Bifurcation in the Ultrafast Dynamics of the Photoactive Yellow Proteins from Leptospira biflexa and Halorhodospira halophila. Biochemistry 2016; 55:6138-6149. [DOI: 10.1021/acs.biochem.6b00547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- L. Tyler Mix
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Julia Kirpich
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Masato Kumauchi
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jie Ren
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Mikas Vengris
- Faculty
of Physics, Laser Research Centre, Vilnius University, Sauletekio
10, LT-10233 Vilnius, Lithuania
| | - Wouter D. Hoff
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Delmar S. Larsen
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
7
|
Zhu J, Vreede J, Hospes M, Arents J, Kennis JTM, van Stokkum IHM, Hellingwerf KJ, Groot ML. Short Hydrogen Bonds and Negative Charge in Photoactive Yellow Protein Promote Fast Isomerization but not High Quantum Yield. J Phys Chem B 2014; 119:2372-83. [DOI: 10.1021/jp506785q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jingyi Zhu
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | - John T. M. Kennis
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | - Marie Louise Groot
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Mendonça L, Hache F, Changenet-Barret P, Plaza P, Chosrowjan H, Taniguchi S, Imamoto Y. Ultrafast Carbonyl Motion of the Photoactive Yellow Protein Chromophore Probed by Femtosecond Circular Dichroism. J Am Chem Soc 2013; 135:14637-43. [DOI: 10.1021/ja404503q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lucille Mendonça
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique/CNRS/INSERM, 91128 Palaiseau cedex, France
| | - François Hache
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique/CNRS/INSERM, 91128 Palaiseau cedex, France
| | | | - Pascal Plaza
- Ecole Normale Supérieure,
Département de Chimie, UMR 8640 CNRS-ENS-UPMC, 24 rue Lhomond,
75005 Paris, France
| | - Haik Chosrowjan
- Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiji Taniguchi
- Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Imamoto
- Department
of Biophysics, Graduate School of Sciences, Kyoto University, Kyoto 6068502, Japan
| |
Collapse
|
9
|
Abstract
Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have become a popular tool for investigating chemical reactions in condensed phases. In QM/MM methods, the region of the system in which the chemical process takes place is treated at an appropriate level of quantum chemistry theory, while the remainder is described by a molecular mechanics force field. Within this approach, chemical reactivity can be studied in large systems, such as enzymes. In the first part of this contribution, the basic methodology is briefly reviewed. The two most common approaches for partitioning the two subsystems are presented, followed by a discussion on the different ways of treating interactions between the subsystems. Special attention is given on how to deal with situations in which the boundary between the QM and MM subsystems runs through one or more chemical bonds. The second part of this contribution discusses what properties of larger system can be obtained within the QM/MM framework and how. Finally, as an example of a QM/MM application in practice, the third part presents an overview of recent QM/MM molecular dynamics simulations on photobiological systems. In addition to providing quantities that are experimentally accessible, such as structural intermediates, fluorescence lifetimes, quantum yields and spectra, the QM/MM simulations also provide information that is much more difficult to measure experimentally, such as reaction mechanisms and the influence of individual amino acid residues.
Collapse
Affiliation(s)
- Gerrit Groenhof
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
10
|
Gromov EV, Burghardt I, Köppel H, Cederbaum LS. Native hydrogen bonding network of the photoactive yellow protein (PYP) chromophore: Impact on the electronic structure and photoinduced isomerization. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Boggio-Pasqua M, Burmeister CF, Robb MA, Groenhof G. Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations. Phys Chem Chem Phys 2012; 14:7912-28. [DOI: 10.1039/c2cp23628a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Loukou C, Changenet-Barret P, Rager MN, Plaza P, Martin MM, Mallet JM. The design, synthesis and photochemical study of a biomimetic cyclodextrin model of photoactive yellow protein (PYP). Org Biomol Chem 2011; 9:2209-18. [PMID: 21301710 DOI: 10.1039/c0ob00646g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The design, synthesis and study of the photophysical and photochemical properties of the first biomimetic cyclodextrin (CD) model of photoactive yellow protein (PYP) are described. This model bears a deprotonated trans-p-coumaric acid chromophore, covalently linked via a cysteine moiety to a permethylated 6-monoamino β-CD. NMR and UV/Visible spectroscopy studies showed the formation of strong self-inclusion complexes in water at basic pH. Steady-state photolysis demonstrated that, unlike the free chromophore in solution, excitation of the model molecule leads to the formation of a photoproduct identified as the cis isomer by NMR spectroscopy. These observations provide evidence that the restricted CD cavity offers a promising framework for the design of biomimetic models of the PYP hydrophobic pocket.
Collapse
Affiliation(s)
- Christina Loukou
- Département de Chimie, UMR-CNRS 7203, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, Cedex 05, France
| | | | | | | | | | | |
Collapse
|
13
|
Changenet-Barret P, Loukou C, Ley C, Lacombat F, Plaza P, Mallet JM, Martin MM. Primary photodynamics of a biomimetic model of photoactive yellow protein (PYP). Phys Chem Chem Phys 2010; 12:13715-23. [DOI: 10.1039/c0cp00618a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Computer Simulations of Photobiological Processes: The Effect of the Protein Environment. ADVANCES IN QUANTUM CHEMISTRY 2010. [DOI: 10.1016/s0065-3276(10)59006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
|
15
|
Boggio-Pasqua M, Robb MA, Groenhof G. Hydrogen bonding controls excited-state decay of the photoactive yellow protein chromophore. J Am Chem Soc 2009; 131:13580-1. [PMID: 19728705 PMCID: PMC2749550 DOI: 10.1021/ja904932x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We have performed excited-state dynamics simulations of a Photoactive Yellow Protein chromophore analogue in water. The results of the simulations demonstrate that in water the chromophore predominantly undergoes single-bond photoisomerization, rather than double-bond photoisomerization. Despite opposite charge distributions in the chromophore, excited-state decay takes place very efficiently from both single- and double-bond twisted minima in water. Radiationless decay is facilitated by ultrafast solvent reorganization, which stabilizes both minima by specific hydrogen bond interactions. Changing the solvent to the slightly more viscous D2O leads to an increase of the excited-state lifetime. Together with previous simulations, the present results provide a complete picture of the effect of the protein on the photoisomerization of the chromophore in PYP: the positive guanidinium group of Arg52 favors double-bond isomerization over single-bond isomerization by lowering the barrier for double-bond isomerization, while the hydrogen bonds with Tyr42 and Glu46 enhance deactivation from the double-bond twisted minimum.
Collapse
Affiliation(s)
- Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, IRSAMC, CNRS et Universite de Toulouse, Toulouse, France
| | | | | |
Collapse
|
16
|
Gromov EV, Burghardt I, Hynes JT, Köppel H, Cederbaum LS. Electronic structure of the photoactive yellow protein chromophore: Ab initio study of the low-lying excited singlet states. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2007.04.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Imamoto Y, Kataoka M. Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily. Photochem Photobiol 2007; 83:40-9. [PMID: 16939366 DOI: 10.1562/2006-02-28-ir-827] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photoactive yellow protein (PYP) is a water-soluble photosensor protein found in purple photosynthetic bacteria. Unlike bacterial rhodopsins, photosensor proteins composed of seven transmembrane helices and a retinal chromophore in halophilic archaebacteria, PYP is a highly soluble globular protein. The alpha/beta fold structure of PYP is a structural prototype of the PAS domain superfamily, many members of which function as sensors for various kinds of stimuli. To absorb a photon in the visible region, PYP has a p-coumaric acid chromophore binding to the cysteine residue via a thioester bond. It exists in a deprotonated trans form in the dark. The primary photochemical event is photo-isomerization of the chromophore from trans to cis form. The twisted cis chromophore in early intermediates is relaxed and finally protonated. Consequently, the chromophore becomes electrostatically neutral and rearrangement of the hydrogen-bonding network triggers overall structural change of the protein moiety, in which local conformational change around the chromophore is propagated to the N-terminal region. Thus, it is an ideal model for protein conformational changes that result in functional change, responding to stimuli and expressing physiological activity. In this paper, recent progress in investigation of the photoresponse of PYP is reviewed.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | | |
Collapse
|
18
|
Gromov EV, Burghardt I, Köppel H, Cederbaum LS. Electronic Structure of the PYP Chromophore in Its Native Protein Environment. J Am Chem Soc 2007; 129:6798-806. [PMID: 17474743 DOI: 10.1021/ja069185l] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on supermolecular ab initio calculations which clarify the role of the local amino acid environment in determining the unique electronic structure properties of the photoactive yellow protein (PYP) chromophore. The extensive ab initio calculations, at the level of the CC2 and EOM-CCSD methods, allow us to explicitly address how the interactions between the deprotonated p-coumaric thio-methyl ester (pCTM-) chromophore and the surrounding amino acids act together to create a specifically stabilized pCTM- species. Particularly noteworthy is the role of the Arg52 amino acid in stabilizing the chromophore against autoionization, and the role of the Tyr42 and Glu46 amino acids in determining the hydrogen-bonding properties that carry the dominant energetic effects.
Collapse
Affiliation(s)
- Evgeniy V Gromov
- Theoretische Chemie, Physikalisch-Chemisches Institut Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
19
|
Spezia R, Burghardt I, Hynes JT. Conical intersections in solution: non-equilibrium versus equilibrium solvation. Mol Phys 2007. [DOI: 10.1080/00268970500417895] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Riccardo Spezia
- a Département de Chimie , Ecole Normale Supérieure , 24 rue Lhomond, F-75231 Paris cedex 05, France
| | - Irene Burghardt
- a Département de Chimie , Ecole Normale Supérieure , 24 rue Lhomond, F-75231 Paris cedex 05, France
| | - James T. Hynes
- a Département de Chimie , Ecole Normale Supérieure , 24 rue Lhomond, F-75231 Paris cedex 05, France
- b Department of Chemistry and Biochemistry , University of Colorado , Boulder, CO 80309-0215, USA
| |
Collapse
|
20
|
Changenet-Barret P, Plaza P, Martin MM, Chosrowjan H, Taniguchi S, Mataga N, Imamoto Y, Kataoka M. Role of arginine 52 on the primary photoinduced events in the PYP photocycle. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2006.12.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Berná J, Brouwer AM, Fazio SM, Haraszkiewicz N, Leigh DA, Lennon CM. A rotaxane mimic of the photoactive yellow protein chromophore environment: effects of hydrogen bonding and mechanical interlocking on a coumaric amide derivative. Chem Commun (Camb) 2007:1910-2. [PMID: 17695226 DOI: 10.1039/b618781a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonding in a [2]rotaxane is shown to stabilise the phenolate anion of a coumaric amide chromophore by almost 3 pKa units; however, the effect on the UV spectral shift in the anion is small and, significantly given the photochemistry of PYP, despite the hydrogen bonding olefin photoisomerisation in the anionic rotaxane remains heavily suppressed.
Collapse
Affiliation(s)
- José Berná
- Van 't Hqff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Brouwer AM, Fazio SM, Haraszkiewicz N, Leigh DA, Lennon CM. Coumaric amide rotaxanes: effects of hydrogen bonding and mechanical interlocking on the photochemistry and photophysics. Photochem Photobiol Sci 2007; 6:480-6. [PMID: 17404644 DOI: 10.1039/b618795a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Secondary amide derivatives of coumaric and ferulic acid are shown to undergo photoisomerization, forming a photostationary mixture of E- and Z-isomers. When the same chromophores are incorporated in rotaxanes, the extent of conversion to the Z-isomers is much smaller. Low temperature fluorescence experiments show that the energy barrier for non-radiative decay of the excited state is higher in the rotaxanes than in the corresponding threads, but the barriers are low in all cases.
Collapse
Affiliation(s)
- Albert M Brouwer
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018, WS Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Espagne A, Paik DH, Changenet-Barret P, Plaza P, Martin MM, Zewail AH. Ultrafast light-induced response of photoactive yellow protein chromophore analogues. Photochem Photobiol Sci 2007; 6:780-7. [PMID: 17609772 DOI: 10.1039/b700927e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The fluorescence decays of several analogues of the photoactive yellow protein (PYP) chromophore in aqueous solution have been measured by femtosecond fluorescence up-conversion and the corresponding time-resolved fluorescence spectra have been reconstructed. The native chromophore of PYP is a thioester derivative of p-coumaric acid in its trans deprotonated form. Fluorescence kinetics are reported for a thioester phenyl analogue and for two analogues where the thioester group has been changed to amide and carboxylate groups. The kinetics are compared to those we previously reported for the analogues bearing ketone and ester groups. The fluorescence decays of the full series are found to lie in the 1-10 ps range depending on the electron-acceptor character of the substituent, in good agreement with the excited-state relaxation kinetics extracted from transient absorption measurements. Steady-state photolysis is also examined and found to depend strongly on the nature of the substituent. While it has been shown that the ultrafast light-induced response of the chromophore in PYP is controlled by the properties of the protein nanospace, the present results demonstrate that, in solution, the relaxation dynamics and pathway of the chromophore is controlled by its electron donor-acceptor structure: structures of stronger electron donor-acceptor character lead to faster decays and less photoisomerisation.
Collapse
Affiliation(s)
- Agathe Espagne
- UMR CNRS-ENS 8640 PASTEUR, Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
24
|
Usman A, Masuhara H, Asahi T. trans−cis Photoisomerization of a Photoactive Yellow Protein Model Chromophore in Crystalline Phase. J Phys Chem B 2006; 110:20085-8. [PMID: 17034177 DOI: 10.1021/jp064984b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the photoinduced trans/cis isomerization of the protonated form of p-hydroxycinnamic thiophenyl ester, a model chromophore of the photoactive yellow protein (PYP), in crystalline phase, by both fluorescence and infrared spectroscopies. The conversion from trans to cis configuration is revealed by a shift of the fluorescence peak and by inspection of the infrared maker bands. The crystal packing apparently stabilizes the cis photoproduct, suggesting different environmental effects from the solvent molecules for this model chromophore in liquid solutions or from the amino acid residues for the PYP chromophore.
Collapse
|
25
|
Espagne A, Paik DH, Changenet-Barret P, Martin MM, Zewail AH. Ultrafast Photoisomerization of Photoactive Yellow Protein Chromophore Analogues in Solution: Influence of the Protonation State. Chemphyschem 2006; 7:1717-26. [PMID: 16847839 DOI: 10.1002/cphc.200600137] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigate solvent viscosity and polarity effects on the photoisomerization of the protonated and deprotonated forms of two analogues of the photoactive yellow protein (PYP) chromophore. These are trans-p-hydroxybenzylidene acetone and trans-p-hydroxyphenyl cinnamate, studied in solutions of different polarity and viscosity at room temperature, by means of femtosecond fluorescence up-conversion. The fluorescence lifetimes of the protonated forms are found to be barely sensitive to solvent viscosity, and to increase with increasing solvent polarity. In contrast, the fluorescence decays of the deprotonated forms are significantly slowed down in viscous media and accelerated in polar solvents. These results elucidate the dramatic influence of the protonation state of the PYP chromophore analogues on their photoinduced dynamics. The viscosity and polarity effects are, respectively, interpreted in terms of different isomerization coordinates and charge redistribution in S(1). A trans-to-cis isomerization mechanism involving mainly the ethylenic double-bond torsion and/or solvation is proposed for the anionic forms, whereas "concerted" intramolecular motions are proposed for the neutral forms.
Collapse
Affiliation(s)
- Agathe Espagne
- UMR CNRS-ENS 8640 Pasteur, Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
26
|
Abstract
The photoactive yellow protein (PYP) is the photoreceptor protein responsible for initiating the blue-light repellent response of the Halorhodospira halophila bacterium. Optical excitation of the intrinsic chromophore in PYP, p-coumaric acid, leads to the initiation of a photocycle that comprises several distinct intermediates. The dynamical processes responsible for the initiation of the PYP photocycle have been explored with several time-resolved techniques, which include ultrafast electronic and vibrational spectroscopies. Ultrafast electronic spectroscopies, such as pump-visible probe, pump-dump-visible probe, and fluorescence upconversion, are useful in identifying the timescales and connectivity of the transient intermediates, while ultrafast vibrational spectroscopies link these intermediates to dynamic structures. Herein, we present the use of these techniques for exploring the initial dynamics of PYP, and show how these techniques provide the basis for understanding the complex relationship between protein and chromophore, which ultimately results in biological function.
Collapse
Affiliation(s)
- Delmar S Larsen
- Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
27
|
Espagne A, Changenet-Barret P, Plaza P, Martin MM. Solvent Effect on the Excited-State Dynamics of Analogues of the Photoactive Yellow Protein Chromophore. J Phys Chem A 2006; 110:3393-404. [PMID: 16526618 DOI: 10.1021/jp0563843] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported that two analogues of the Photoactive Yellow Protein chromophore, trans-p-hydroxycinnamic acid (pCA(2-)) and its amide derivative (pCM-) in their deprotonated forms, undergo a trans-cis photoisomerization whereas the thioester derivative, trans-p-hydroxythiophenyl cinnamate (pCT-), does not. pCT- is also the only one to exhibit a short-lived intermediate on its excited-state deactivation pathway. We here further stress the existence of two different relaxation mechanisms for these molecules and examine the reaction coordinates involved. We looked at the effect of the solvent properties (viscosity, polarity, solvation dynamics) on their excited-state relaxation dynamics, probed by ultrafast transient absorption spectroscopy. Sensitivity to the solvent properties is found to be larger for pCT- than for pCA(2-) and pCM-. This difference is considered to reveal that either the relaxation pathway or the reaction coordinate is different for these two classes of analogues. It is also found to be correlated to the electron donor-acceptor character of the molecule. We attribute the excited-state deactivation of analogues bearing a weaker acceptor group, pCA(2-) and pCM-, to a stilbene-like photoisomerization mechanism with the concerted rotation of the ethylenic bond and one adjacent single bond. For pCT-, which contains a stronger acceptor group, we consider a photoisomerization mechanism mainly involving the single torsion of the ethylenic bond. The excited-state deactivation of pCT- would lead to the formation of a ground-state intermediate at the "perp" geometry, which would return to the initial trans conformation without net isomerization.
Collapse
Affiliation(s)
- Agathe Espagne
- Département de Chimie, Ecole Normale Supérieure (UMR CNRS 8640 PASTEUR), 24 rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | |
Collapse
|
28
|
Vengris M, van der Horst MA, Zgrablic G, van Stokkum IHM, Haacke S, Chergui M, Hellingwerf KJ, van Grondelle R, Larsen DS. Contrasting the excited-state dynamics of the photoactive yellow protein chromophore: protein versus solvent environments. Biophys J 2005; 87:1848-57. [PMID: 15345563 PMCID: PMC1304589 DOI: 10.1529/biophysj.104.043224] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wavelength- and time-resolved fluorescence experiments have been performed on the photoactive yellow protein, the E46Q mutant, the hybrids of these proteins containing a nonisomerizing "locked" chromophore, and the native and locked chromophores in aqueous solution. The ultrafast dynamics of these six systems is compared and spectral signatures of isomerization and solvation are discussed. We find that the ultrafast red-shifting of fluorescence is associated mostly with solvation dynamics, whereas isomerization manifests itself as quenching of fluorescence. The observed multiexponential quenching of the protein samples differs from the single-exponential lifetimes of the chromophores in solution. The locked chromophore in the protein environment decays faster than in solution. This is due to additional channels of excited-state energy dissipation via the covalent and hydrogen bonds with the protein environment. The observed large dispersion of quenching timescales observed in the protein samples that contain the native pigment favors both an inhomogeneous model and an excited-state barrier for isomerization.
Collapse
Affiliation(s)
- Mikas Vengris
- Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Changenet-Barret P, Espagne A, Plaza P, Hellingwerf KJ, Martin MM. Investigations of the primary events in a bacterial photoreceptor for photomotility: photoactive yellow protein (PYP). NEW J CHEM 2005. [DOI: 10.1039/b418134d] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Chromophore vibrations during isomerization of photoactive yellow protein: analysis of normal modes and energy transfer. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.04.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Premvardhan LL, Buda F, van der Horst MA, Lührs DC, Hellingwerf KJ, van Grondelle R. Impact of Photon Absorption on the Electronic Properties of p-Coumaric Acid Derivatives of the Photoactive Yellow Protein Chromophore. J Phys Chem B 2004. [DOI: 10.1021/jp037469b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lavanya L. Premvardhan
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands, and Laboratory for Microbiology, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Francesco Buda
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands, and Laboratory for Microbiology, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Michael A. van der Horst
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands, and Laboratory for Microbiology, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Daniel C. Lührs
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands, and Laboratory for Microbiology, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Klaas J. Hellingwerf
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands, and Laboratory for Microbiology, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands, and Laboratory for Microbiology, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| |
Collapse
|
32
|
Glasbeek M, Zhang H. Femtosecond Studies of Solvation and Intramolecular Configurational Dynamics of Fluorophores in Liquid Solution. Chem Rev 2004; 104:1929-54. [PMID: 15080717 DOI: 10.1021/cr0206723] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Max Glasbeek
- Laboratory for Physical Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands.
| | | |
Collapse
|
33
|
Chosrowjan H, Taniguchi S, Mataga N, Unno M, Yamauchi S, Hamada N, Kumauchi M, Tokunaga F. Low-Frequency Vibrations and Their Role in Ultrafast Photoisomerization Reaction Dynamics of Photoactive Yellow Protein. J Phys Chem B 2004. [DOI: 10.1021/jp031126w] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haik Chosrowjan
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Nishiku, Osaka 550-0004, Japan, Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan, and Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 550-0043, Japan
| | - Seiji Taniguchi
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Nishiku, Osaka 550-0004, Japan, Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan, and Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 550-0043, Japan
| | - Noboru Mataga
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Nishiku, Osaka 550-0004, Japan, Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan, and Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 550-0043, Japan
| | - Masashi Unno
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Nishiku, Osaka 550-0004, Japan, Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan, and Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 550-0043, Japan
| | - Seigo Yamauchi
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Nishiku, Osaka 550-0004, Japan, Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan, and Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 550-0043, Japan
| | - Norio Hamada
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Nishiku, Osaka 550-0004, Japan, Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan, and Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 550-0043, Japan
| | - Masato Kumauchi
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Nishiku, Osaka 550-0004, Japan, Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan, and Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 550-0043, Japan
| | - Fumio Tokunaga
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Nishiku, Osaka 550-0004, Japan, Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan, and Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 550-0043, Japan
| |
Collapse
|
34
|
Mataga N, Taniguchi S, Chosrowjan H, Osuka A, Yoshida N. Ultrafast charge transfer and radiationless relaxations from higher excited state (S2) of directly linked Zn-porphyrin (ZP)-acceptor dyads: investigations into fundamental problems of exciplex chemistry. Chem Phys 2003. [DOI: 10.1016/j.chemphys.2003.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Premvardhan LL, van der Horst MA, Hellingwerf KJ, van Grondelle R. Stark spectroscopy on photoactive yellow protein, E46Q, and a nonisomerizing derivative, probes photo-induced charge motion. Biophys J 2003; 84:3226-39. [PMID: 12719252 PMCID: PMC1302883 DOI: 10.1016/s0006-3495(03)70047-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The change in the electrostatic properties on excitation of the cofactor of wild-type photoactive yellow protein (WT-PYP) have been directly determined using Stark-effect spectroscopy. We find that, instantaneously on photon absorption, there is a large change in the permanent dipole moment, /Delta(-->)mu/, (26 Debye) and in the polarizability, (-)Deltaalpha, (1000 A(3)). We expect such a large degree of charge motion to have a significant impact on the photocycle that is associated with the important blue-light negative phototactic response of Halorhodospira halophila. Furthermore, changing E46 to Q in WT-PYP does not significantly alter its electrostatic properties, whereas, altering the chromophore to prevent it from undergoing trans-cis isomerization results in a significant diminution of /Delta(-->)mu/ and (-)Deltaalpha. We propose that the enormous charge motion that occurs on excitation of 4-hydroxycinnamyl thioester, the chromophore in WT-PYP, plays a crucial role in initiating the photocycle by translocation of the negative charge, localized on the phenolate oxygen in the ground state, across the chromophore. We hypothesize that this charge motion would consequently increase the flexibility of the thioester tail thereby decreasing the activation barrier for the rotation of this moiety in the excited state.
Collapse
Affiliation(s)
- L L Premvardhan
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, de Boelelaan, 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Haker A, Hendriks J, van Stokkum IHM, Heberle J, Hellingwerf KJ, Crielaard W, Gensch T. The two photocycles of photoactive yellow protein from Rhodobacter sphaeroides. J Biol Chem 2003; 278:8442-51. [PMID: 12496261 DOI: 10.1074/jbc.m209343200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The absorption spectrum of the photoactive yellow protein from Rhodobacter sphaeroides (R-PYP) shows two maxima, absorbing at 360 nm (R-PYP(360)) and 446 nm (R-PYP(446)), respectively. Both forms are photoactive and part of a temperature- and pH-dependent equilibrium (Haker, A., Hendriks, J., Gensch, T., Hellingwerf, K. J., and Crielaard, W. (2000) FEBS Lett. 486, 52-56). At 20 degrees C, for PYP characteristic, the 446-nm absorbance band displays a photocycle, in which the depletion of the 446-nm ground state absorption occurs in at least three phases, with time constants of <30 ns, 0.5 micros, and 17 micros. Intermediates with both blue- and red-shifted absorption maxima are transiently formed, before a blue-shifted intermediate (pB(360), lambda(max) = 360 nm) is established. The photocycle is completed with a monophasic recovery of the ground state with a time constant of 2.5 ms. At 7 degrees C these photocycle transitions are slowed down 2- to 3-fold. Upon excitation of R-PYP(360) with a UV-flash (330 +/- 50 nm) a species with a difference absorption maximum at approximately 435 nm is observed that returns to R-PYP(360) on a minute time scale. Recovery can be accelerated by a blue light flash (450 nm). R-PYP(360) and R-PYP(446) differ in their overall protein conformation, as well as in the isomerization and protonation state of the chromophore, as determined with the fluorescent polarity probe Nile Red and Fourier Transform Infrared spectroscopy, respectively.
Collapse
Affiliation(s)
- Andrea Haker
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Hellingwerf KJ, Hendriks J, Gensch T. Photoactive Yellow Protein, A New Type of Photoreceptor Protein: Will This “Yellow Lab” Bring Us Where We Want to Go? J Phys Chem A 2003. [DOI: 10.1021/jp027005y] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Klaas J. Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences (SILS), BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, and Institute of Biological Information Processing 1, Research Centre Jülich, D-52425 Jülich, Germany
| | - Johnny Hendriks
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences (SILS), BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, and Institute of Biological Information Processing 1, Research Centre Jülich, D-52425 Jülich, Germany
| | - Thomas Gensch
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences (SILS), BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, and Institute of Biological Information Processing 1, Research Centre Jülich, D-52425 Jülich, Germany
| |
Collapse
|
38
|
Coherent Oscillations in Photoisomerization Reaction Dynamics of Photoactive Yellow Protein (PYP) and Related Systems. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-3-642-59319-2_199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Gensch T, Gradinaru C, van Stokkum I, Hendriks J, Hellingwerf K, van Grondelle R. The primary photoreaction of photoactive yellow protein (PYP): anisotropy changes and excitation wavelength dependence. Chem Phys Lett 2002. [DOI: 10.1016/s0009-2614(02)00344-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Kandori H, Tomioka H, Sasabe H. Excited-State Dynamics of pharaonis Phoborhodopsin Probed by Femtosecond Fluorescence Spectroscopy. J Phys Chem A 2002. [DOI: 10.1021/jp012447f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hideki Kandori
- Department of Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroaki Tomioka
- Department of Chemistry, Faculty of Education, Saitama University, 255 Shimo-Ohokubo, Saitama 338-8570, Japan
| | - Hiroyuki Sasabe
- Department of Photonics Materials Science, Chitose Institute of Science & Technology, 758-65 Bibi, Chitose, Hokkaido 066-8655, Japan
| |
Collapse
|
41
|
Mataga N, Chosrowjan H, Shibata Y, Imamoto Y, Kataoka M, Tokunaga F. Ultrafast photoinduced reaction dynamics of photoactive yellow protein (PYP): observation of coherent oscillations in the femtosecond fluorescence decay dynamics. Chem Phys Lett 2002. [DOI: 10.1016/s0009-2614(01)01448-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Changenet-Barret P, Plaza P, Martin MM. Primary events in the photoactive yellow protein chromophore in solution. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00137-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Kandori H, Furutani Y, Nishimura S, Shichida Y, Chosrowjan H, Shibata Y, Mataga N. Excited-state dynamics of rhodopsin probed by femtosecond fluorescence spectroscopy. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(00)01457-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Mataga N, Chosrowjan H, Shibata Y, Tanaka F, Nishina Y, Shiga K. Dynamics and Mechanisms of Ultrafast Fluorescence Quenching Reactions of Flavin Chromophores in Protein Nanospace. J Phys Chem B 2000. [DOI: 10.1021/jp002145y] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Fumio Tanaka
- Mie Prefectural College of Nursing, Yumegaoka, 1-1-1, Tsu 514-0116, Japan
| | | | | |
Collapse
|