Breault-Turcot J, Masson JF. Nanostructured substrates for portable and miniature SPR biosensors.
Anal Bioanal Chem 2012;
403:1477-84. [PMID:
22526642 DOI:
10.1007/s00216-012-5963-1]
[Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/21/2012] [Accepted: 03/21/2012] [Indexed: 12/30/2022]
Abstract
Surface plasmon resonance (SPR) biosensing has matured into a valuable analytical technique for measurements related to biomolecules, environmental contaminants, and the food industry. Contemporary SPR instruments are mainly suitable for laboratory-based measurements. However, several point-of-measurement applications would benefit from simple, small, portable and inexpensive sensors to assess the health condition of a patient, potential environmental contamination, or food safety issues. This Trend article explores nanostructured substrates for improving the sensitivity of classical SPR instruments and nanoparticle (NP)-based colorimetric substrates that may provide a solution to the development of point-of-measurement SPR techniques. Novel nanomaterials and methodology capable of enhancing the sensitivity of classical SPR sensors are destined to improve the limits of detection of miniature SPR instruments to the level required for most applications. In a different approach, paper or substrate-based SPR assays based on NPs, are a highly promising topic of research that may facilitate the widespread use of a novel class of miniature and portable SPR instruments.
Collapse