1
|
Zhang X, Dai X, Gao L, Xu D, Wan H, Wang Y, Yan LT. The entropy-controlled strategy in self-assembling systems. Chem Soc Rev 2023; 52:6806-6837. [PMID: 37743794 DOI: 10.1039/d3cs00347g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.
Collapse
Affiliation(s)
- Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
|
3
|
Zhang F, Yang Z, Hao J, Zhao K, Hua M, Yang Y, Wei J. Dynamic covalent chemistry steers synchronizing nanoparticle self-assembly with interfacial polymerization. Commun Chem 2019. [DOI: 10.1038/s42004-019-0222-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Precise organization of matter across multiple length scales is of particular interest because of its great potential with advanced functions and properties. Here we demonstrate a simple yet versatile strategy that enables the organization of hydrophobic nanoparticles within the covalent organic framework (COF) in an emulsion droplet. The interfacial polymerization takes place upon the addition of Lewis acid in the aqueous phase, which allows the formation of COF after a crystallization process. Meanwhile, the interaction between nanoparticles and COF is realized by the use of amine-aldehyde reactions in the nearest loci of the nanoparticles. Importantly, the competition between the nanoparticle self-assembly and interfacial polymerization allows control over the spatial distribution of nanoparticles within COF. As a general strategy, a wide variety of COF-wrapped nanoparticle assemblies can be synthesized and these hybridized nanomaterials could find applications in optoelectronics, heterogeneous catalysis and energy chemistry.
Collapse
|
4
|
Eslami H, Khanjari N, Müller-Plathe F. Self-Assembly Mechanisms of Triblock Janus Particles. J Chem Theory Comput 2018; 15:1345-1354. [DOI: 10.1021/acs.jctc.8b00713] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hossein Eslami
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermo-Fluids & Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Neda Khanjari
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermo-Fluids & Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| |
Collapse
|
5
|
Yang Y, Chen P, Cao Y, Huang Z, Zhu G, Xu Z, Dai X, Chen S, Miao B, Yan LT. How Implementation of Entropy in Driving Structural Ordering of Nanoparticles Relates to Assembly Kinetics: Insight into Reaction-Induced Interfacial Assembly of Janus Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9477-9488. [PMID: 30016871 DOI: 10.1021/acs.langmuir.8b01378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability to understand and exploit entropic contributions to ordering transition is of essential importance in the design of self-assembling systems with well-controlled structures. However, much less is known about the role of assembly kinetics in entropy-driven phase behaviors. Here, by combining computer simulations and theoretical analysis, we report that the implementation of entropy in driving phase transition significantly depends on the kinetic process in the reaction-induced self-assembly of newly designed nanoparticle systems. In particular, such systems comprise binary Janus nanoparticles at the fluid-fluid interface and undergo phase transition driven by entropy and controlled by the polymerization reaction initiated from the surfaces of just one component of nanoparticles. Our simulations demonstrate that the competition between the reaction rate and the diffusive dynamics of nanoparticles governs the implementation of entropy in driving the phase transition from randomly mixed phase to intercalated phase in these interfacial nanoparticle mixtures, which thereby results in diverse kinetic pathways. At low reaction rates, the transition exhibits abrupt jump in the mixing parameter, in a similar way to first-order, equilibrium phase transition. Increasing the reaction rate diminishes the jumps until the transitions become continuous, behaving as a second-order-like phase transition, where a critical exponent, characterizing the transition, can be identified. We finally develop an analytical model of the blob theory of polymer chains to complement the simulation results and reveal essential scaling laws of the entropy-driven phase behaviors. In effect, our results allow for further opportunities to amplify the entropic contributions to the materials design via kinetic control.
Collapse
Affiliation(s)
- Ye Yang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Pengyu Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yufei Cao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Zihan Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Guolong Zhu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Shi Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Bing Miao
- College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
6
|
Shi Q, Dong D, Si KJ, Sikdar D, Yap LW, Premaratne M, Cheng W. Shape Transformation of Constituent Building Blocks within Self-Assembled Nanosheets and Nano-origami. ACS NANO 2018; 12:1014-1022. [PMID: 29303252 DOI: 10.1021/acsnano.7b08334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembly of nanoparticles represents a simple yet efficient route to synthesize designer materials with unusual properties. However, the previous assembled structures whether by surfactants, polymer, or DNA ligands are "static" or "frozen" building block structures. Here, we report the growth of transformable self-assembled nanosheets which could enable reversible switching between two types of nanosheets and even evolving into diverse third generation nanosheet structures without losing pristine periodicity. Such in situ transformation of nanoparticle building blocks can even be achieved in a free-standing two-dimensional system and three-dimensional origami. The success in such in situ nanocrystal transformation is attributed to robust "plant-cell-wall-like" ion-permeable reactor arrays from densely packed polymer ligands, which spatially define and confine nanoscale nucleation/growth/etching events. Our strategy enables efficient fabrication of nanocrystal nanosheets with programmable building blocks for innovative applications in adaptive tactile metamaterials, optoelectronic devices, and sensors.
Collapse
Affiliation(s)
- Qianqian Shi
- Department of Chemical Engineering, Faculty of Engineering, Monash University , Clayton 3800, Victoria, Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road, Clayton 3168, Victoria, Australia
| | - Dashen Dong
- Department of Chemical Engineering, Faculty of Engineering, Monash University , Clayton 3800, Victoria, Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road, Clayton 3168, Victoria, Australia
| | - Kae Jye Si
- Department of Chemical Engineering, Faculty of Engineering, Monash University , Clayton 3800, Victoria, Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road, Clayton 3168, Victoria, Australia
| | - Debabrata Sikdar
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Faculty of Engineering, Monash University , Clayton 3800, Victoria, Australia
- Faculty of Natural Sciences, Department of Chemistry, Imperial College London , South Kensington, London SW72AZ, United Kingdom
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati , Guwahati, India 781039
| | - Lim Wei Yap
- Department of Chemical Engineering, Faculty of Engineering, Monash University , Clayton 3800, Victoria, Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road, Clayton 3168, Victoria, Australia
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Faculty of Engineering, Monash University , Clayton 3800, Victoria, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering, Monash University , Clayton 3800, Victoria, Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road, Clayton 3168, Victoria, Australia
| |
Collapse
|
7
|
Sun S, Guo M, Yi X, Zhang Z. Reaction-mediated entropic effect on phase separation in a binary polymer system. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Li Y, Zhao K, Yang W, Chen G, Zhang X, Zhao Y, Liu L, Chen M. Efficient removal of Cd 2+ ion from water by calcium alginate hydrogel filtration membrane. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:2322-2330. [PMID: 28541940 DOI: 10.2166/wst.2017.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Calcium alginate (CaAlg) hydrogel filtration membrane was prepared using urea as pore-forming agent. The effects of preparation and operating conditions on the removal rate of Cd2+ were researched. The removal mechanism of Cd2+ and the anti-fouling property of CaAlg membrane were investigated. The removal rate of the CaAlg filtration membrane reached over 99.5% within 120 min when 20 mg/L Cd2+ was used, and the flux was 15.5 L/m2h at 0.1 MPa when the thickness of the membrane was 0.28 ± 0.08 mm. However, the removal rate of Cd2+ was below 10.0% when the same concentration Cd2+ solution was adsorbed by CaAlg membrane with the same size. Energy dispersive spectroscope analysis demonstrated that the removal of Cd2+ depended on the adsorption and ion exchange of Ca2+ by Cd2+. CaAlg membrane exhibited a higher removal rate for Cd2+ (almost 100%). It was the filtration process that promoted the adsorption and ion exchange of Cd2+ in CaAlg hydrogel.
Collapse
Affiliation(s)
- Ye Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China E-mail: ; Tianjin Eco-City Environmental Protection Co. Ltd, Tianjin 300467, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Wei Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China E-mail: ; Tianjin Eco-City Environmental Protection Co. Ltd, Tianjin 300467, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China E-mail:
| | - Xinxin Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yujie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
| | - Liang Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Min Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
9
|
Xu G, Huang Z, Chen P, Cui T, Zhang X, Miao B, Yan LT. Optimal Reactivity and Improved Self-Healing Capability of Structurally Dynamic Polymers Grafted on Janus Nanoparticles Governed by Chain Stiffness and Spatial Organization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603155. [PMID: 28092430 DOI: 10.1002/smll.201603155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/04/2016] [Indexed: 06/06/2023]
Abstract
Structurally dynamic polymers are recognized as a key potential to revolutionize technologies ranging from design of self-healing materials to numerous biomedical applications. Despite intense research in this area, optimizing reactivity and thereby improving self-healing ability at the most fundamental level pose urgent issue for wider applications of such emerging materials. Here, the authors report the first mechanistic investigation of the fundamental principle for the dependence of reactivity and self-healing capabilities on the properties inherent to dynamic polymers by combining large-scale computer simulation, theoretical analysis, and experimental discussion. The results allow to reveal how chain stiffness and spatial organization regulate reactivity of dynamic polymers grafted on Janus nanoparticles and mechanically mediated reaction in their reverse chemistry, and, particularly, identify that semiflexible dynamic polymers possess the optimal reactivity and self-healing ability. The authors also develop an analytical model of blob theory of polymer chains to complement the simulation results and reveal essential scaling laws for optimal reactivity. The findings offer new insights into the physical mechanism in various systems involving reverse/dynamic chemistry. These studies highlight molecular engineering of polymer architecture and intrinsic property as a versatile strategy in control over the structural responses and functionalities of emerging materials with optimized self-healing capabilities.
Collapse
Affiliation(s)
- Guoxi Xu
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zihan Huang
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Pengyu Chen
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianqi Cui
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xinghua Zhang
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Bing Miao
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Tang Yan
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Chen P, Yang Y, Dong B, Huang Z, Zhu G, Cao Y, Yan LT. Polymerization-Induced Interfacial Self-Assembly of Janus Nanoparticles in Block Copolymers: Reaction-Mediated Entropy Effects, Diffusion Dynamics, and Tailorable Micromechanical Behaviors. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pengyu Chen
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ye Yang
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Bojun Dong
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zihan Huang
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Guolong Zhu
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yufei Cao
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
11
|
Chen P, Yan LT. Physical principles of graphene cellular interactions: computational and theoretical accounts. J Mater Chem B 2017; 5:4290-4306. [DOI: 10.1039/c6tb03310e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Clarifying the physical principles of graphene cellular interactions is critical for the wider application of graphene-based nanomaterials in nanomedicine. This review highlights the advances in computational and theoretical accounts for this emerging field.
Collapse
Affiliation(s)
- Pengyu Chen
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Li-Tang Yan
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
12
|
Chen P, Huang Z, Liang J, Cui T, Zhang X, Miao B, Yan LT. Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane. ACS NANO 2016; 10:11541-11547. [PMID: 27936576 DOI: 10.1021/acsnano.6b07563] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Diffusion dynamics of charged nanoparticles on the lipid membrane is of essential importance to cellular functioning. Yet a fundamental insight into electrostatics-mediated diffusion dynamics of charged nanoparticles on the membrane is lacking and remains to be an urgent issue. Here we present the computational investigation to uncover the pivotal role of electrostatics in the diffusion dynamics of charged nanoparticles on the lipid membrane. Our results demonstrate diffusive behaviors and directional transport of a charged nanoparticle, significantly depending on the sign and spatial distribution of charges on its surface. In contrast to the Fickian diffusion of neutral nanoparticles, randomly charged nanoparticles undergo superdiffusive transport with directionality. However, the dynamics of uniformly charged nanoparticles favors Fickian diffusion that is significantly enhanced. Such observations can be explained in term of electrostatics-induced surface reconstruction and fluctuation of lipid membrane. We finally present an analytical model connecting surface reconstruction and local deformation of the membrane. Our findings bear wide implications for the understanding and control of the transport of charged nanoparticles on the cell membrane.
Collapse
Affiliation(s)
- Pengyu Chen
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | - Zihan Huang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | - Junshi Liang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | - Tianqi Cui
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | - Xinghua Zhang
- School of Science, Beijing Jiaotong University , Beijing 100044, China
| | - Bing Miao
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Li-Tang Yan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| |
Collapse
|
13
|
Li Y, Jiang T, Wang L, Lin S, Lin J. Self-assembly of rod-coil-rod triblock copolymers: A route toward hierarchical liquid crystalline structures. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1091] [Impact Index Per Article: 121.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
15
|
Huang Z, Chen P, Yang Y, Yan LT. Shearing Janus Nanoparticles Confined in Two-Dimensional Space: Reshaped Cluster Configurations and Defined Assembling Kinetics. J Phys Chem Lett 2016; 7:1966-1971. [PMID: 27164289 DOI: 10.1021/acs.jpclett.6b00724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The self-assembly of anisotropic nanoparticles (ANPs) possesses a wide array of potential applications in various fields, ranging from nanotechnology to material science. Despite intense research of the thermodynamic self-assembly of ANPs, elucidating their nonequilibrium behaviors under confinement still remains an urgent issue. Here, by performing simulation and theoretical justification, we present for the first time a study of the shear-induced behaviors of Janus spheres (the most elementary ANPs) confined in two-dimensional space. Our results demonstrate that the collective effects of shear and bonding structures can give rise to reshaped cluster configurations, featured by the chiral transition of clusters. Scaling analysis and numerical modeling are performed to quantitatively capture the assembling kinetics of dispersed Janus spheres, thereby suggesting an exotic way to bridge the gap between anisotropic and isotropic particles. The findings highlight confinement and shearing engineering as a versatile strategy to tailor the superstructures formed by ANPs toward unique properties.
Collapse
Affiliation(s)
- Zihan Huang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Pengyu Chen
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Ye Yang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Li-Tang Yan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, P. R. China
| |
Collapse
|
16
|
Liang J, Chen P, Dong B, Huang Z, Zhao K, Yan LT. Ligand-Receptor Interaction-Mediated Transmembrane Transport of Dendrimer-like Soft Nanoparticles: Mechanisms and Complicated Diffusive Dynamics. Biomacromolecules 2016; 17:1834-44. [PMID: 27049403 DOI: 10.1021/acs.biomac.6b00241] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications.
Collapse
Affiliation(s)
- Junshi Liang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Pengyu Chen
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Bojun Dong
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Zihan Huang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University , Tianjin 300387, China
| | - Li-Tang Yan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, P. R. China
| |
Collapse
|
17
|
Lewandowski W, Łojewska T, Szustakiewicz P, Mieczkowski J, Pociecha D. Reversible switching of structural and plasmonic properties of liquid-crystalline gold nanoparticle assemblies. NANOSCALE 2016; 8:2656-63. [PMID: 26758794 DOI: 10.1039/c5nr08406g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hybrid materials built of spherical gold nanoparticles with three different sizes covered with (pro)mesogenic molecules have been prepared. Small-angle X-ray diffraction studies showed that after thermal annealing most of the obtained materials formed long-range ordered assemblies. Variation of the (pro)mesogenic ligand architecture enabled us to achieve a switchable material, which could be reversibly reconfigured between 3D long-range ordered structures with tetragonal and face centred cubic symmetries. This structural reconfiguration induces changes to the plasmonic response of the material. This work demonstrates that it is possible to use LC-based self-assembling phenomena to prepare dynamic materials with structural properties important for the development of active plasmonic metamaterials.
Collapse
Affiliation(s)
- W Lewandowski
- Faculty of Chemistry, University of Warsaw, 1 Pasteura st., 02-093 Warsaw, Poland.
| | - T Łojewska
- Faculty of Chemistry, University of Warsaw, 1 Pasteura st., 02-093 Warsaw, Poland.
| | - P Szustakiewicz
- Faculty of Chemistry, University of Warsaw, 1 Pasteura st., 02-093 Warsaw, Poland.
| | - J Mieczkowski
- Faculty of Chemistry, University of Warsaw, 1 Pasteura st., 02-093 Warsaw, Poland.
| | - D Pociecha
- Faculty of Chemistry, University of Warsaw, 1 Pasteura st., 02-093 Warsaw, Poland.
| |
Collapse
|
18
|
Abstract
Two kinds of cone-shaped particles are designed: one with a Janus structure and the other with a sandwich structure. The effects of the cone angle and particle structure (i.e. AB type and BAB type) on the kinetic pathway and assembled structures are discussed.
Collapse
Affiliation(s)
- Yali Wang
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300350
- China
| | - Xuehao He
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300350
- China
| |
Collapse
|
19
|
Wang L, Liu H, Li F, Shen J, Zheng Z, Gao Y, Liu J, Wu Y, Zhang L. Stress–strain behavior of block-copolymers and their nanocomposites filled with uniform or Janus nanoparticles under shear: a molecular dynamics simulation. Phys Chem Chem Phys 2016; 18:27232-27244. [DOI: 10.1039/c6cp05853a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We adopted molecular dynamics simulation to study the relation between the ordered structures and the resulting mechanical properties of block copolymers filled with uniform or Janus nanoparticles.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- People's Republic of China
| | - Hongji Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- People's Republic of China
| | - Fanzhu Li
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- People's Republic of China
| | - Jianxiang Shen
- College of Materials and Textile Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| | - Zijian Zheng
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources
| | - Yangyang Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources
| | - Youping Wu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources
| |
Collapse
|
20
|
Cervantes-Salguero K, Hamada S, Nomura SIM, Murata S. Polymorphic Ring-Shaped Molecular Clusters Made of Shape-Variable Building Blocks. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:208-217. [PMID: 28347006 PMCID: PMC5312864 DOI: 10.3390/nano5010208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 01/19/2023]
Abstract
Self-assembling molecular building blocks able to dynamically change their shapes, is a concept that would offer a route to reconfigurable systems. Although simulation studies predict novel properties useful for applications in diverse fields, such kinds of building blocks, have not been implemented thus far with molecules. Here, we report shape-variable building blocks fabricated by DNA self-assembly. Blocks are movable enough to undergo shape transitions along geometrical ranges. Blocks connect to each other and assemble into polymorphic ring-shaped clusters via the stacking of DNA blunt-ends. Reconfiguration of the polymorphic clusters is achieved by the surface diffusion on mica substrate in response to a monovalent salt concentration. This work could inspire novel reconfigurable self-assembling systems for applications in molecular robotics.
Collapse
Affiliation(s)
| | - Shogo Hamada
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| | - Shin-Ichiro M Nomura
- Department of Bioengineering and Robotics, Tohoku University, Sendai 980-8579, Japan.
| | - Satoshi Murata
- Department of Bioengineering and Robotics, Tohoku University, Sendai 980-8579, Japan.
| |
Collapse
|
21
|
Ruiz L, Keten S. Thermodynamics versus Kinetics Dichotomy in the Linear Self-Assembly of Mixed Nanoblocks. J Phys Chem Lett 2014; 5:2021-2026. [PMID: 26273889 DOI: 10.1021/jz500776g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report classical and replica exchange molecular dynamics simulations that establish the mechanisms underpinning the growth kinetics of a binary mix of nanorings that form striped nanotubes via self-assembly. A step-growth coalescence model captures the growth process of the nanotubes, which suggests that high aspect ratio nanostructures can grow by obeying the universal laws of self-similar coarsening, contrary to systems that grow through nucleation and elongation. Notably, striped patterns do not depend on specific growth mechanisms, but are governed by tempering conditions that control the likelihood of depropagation and fragmentation.
Collapse
|
22
|
Kujawa P, Winnik FM. Materials nanoarchitectonics: a conspectus for polymer scientists. POLYM INT 2013. [DOI: 10.1002/pi.4663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Piotr Kujawa
- World Premier International (WPI) Research Center Initiative; International Center for Materials Nanoarchitectonics (MANA) and National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
| | - Françoise M. Winnik
- World Premier International (WPI) Research Center Initiative; International Center for Materials Nanoarchitectonics (MANA) and National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
- Laboratory of Polymer Chemistry, Department of Chemistry and Faculty of Pharmacy; University of Helsinki; 00014 Helsinki Finland
| |
Collapse
|
23
|
Affiliation(s)
- Wei Li
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Bojun Dong
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|