1
|
Zakutauskaitė K, Mačernis M, Nguyen HH, Ogilvie JP, Abramavičius D. Extracting the excitonic Hamiltonian of a chlorophyll dimer from broadband two-dimensional electronic spectroscopy. J Chem Phys 2023; 158:015103. [PMID: 36610982 DOI: 10.1063/5.0108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We apply Frenkel exciton theory to model the entire Q-band of a tightly bound chlorophyll dimer inspired by the photosynthetic reaction center of photosystem II. The potential of broadband two-dimensional electronic spectroscopy experiment spanning the Qx and Qy regions to extract the parameters of the model dimer Hamiltonian is examined through theoretical simulations of the experiment. We find that the local nature of Qx excitation enables identification of molecular properties of the delocalized Qy excitons. Specifically, we demonstrate that the cross-peak region, where excitation energy is resonant with Qy while detection is at Qx, contains specific spectral signatures that can reveal the full real-space molecular Hamiltonian, a task that is impossible by considering the Qy transitions alone. System-bath coupling and site energy disorder in realistic systems may limit the resolution of these spectral signatures due to spectral congestion.
Collapse
Affiliation(s)
- Kristina Zakutauskaitė
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| | - Mindaugas Mačernis
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| | - Hoang H Nguyen
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Darius Abramavičius
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| |
Collapse
|
2
|
Sato H, Yamagishi A, Shimizu M, Watanabe K, Koshoubu J, Yoshida J, Kawamura I. Mapping of Supramolecular Chirality in Insect Wings by Microscopic Vibrational Circular Dichroism Spectroscopy: Heterogeneity in Protein Distribution. J Phys Chem Lett 2021; 12:7733-7737. [PMID: 34355918 DOI: 10.1021/acs.jpclett.1c01949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The supramolecular chirality of the hindwing of Anomala albopilosa (male) was investigated using a microscopic vibrational circular dichroism (VCD) system, denoted as MultiD-VCD. The source of intense infrared (IR) light for the system was a quantum cascade laser. Two-dimensional maps of IR and VCD spectra were taken by scanning the surface area (ca. 2 mm × 2 mm) of the insect hindwing tissue. The spectra ranged from 1500 to 1700 cm-1, and the maps have a spatial resolution of 100 μm. The distribution of proteins, including their supramolecular structures, was analyzed from the location-dependent spectral shape of the VCD bands assigned to amides I and II. The results revealed that the hindwing consists of segregated domains of proteins with different secondary structures: an α-helix (in one part of the membrane), a hybrid of α-helix and β-sheet (in another part of the membrane), and a coil (in a vein).
Collapse
Affiliation(s)
- Hisako Sato
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-chou, Matsuyama, Ehime 790-8577, Japan
| | - Akihiko Yamagishi
- Department of Medicine, Faculty of Medicine, Toho University, Ota-ku 143-8540, Japan
| | - Masaru Shimizu
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Keisuke Watanabe
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Jun Koshoubu
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Jun Yoshida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
3
|
Xue RJ, Grofe A, Yin H, Qu Z, Gao J, Li H. Perturbation Approach for Computing Infrared Spectra of the Local Mode of Probe Molecules. J Chem Theory Comput 2017; 13:191-201. [PMID: 28068771 DOI: 10.1021/acs.jctc.6b00733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Linear and two-dimensional infrared (IR) spectroscopy of site-specific probe molecules provides an opportunity to gain a molecular-level understanding of the local hydrogen-bonding network, conformational dynamics, and long-range electrostatic interactions in condensed-phase and biological systems. A challenge in computation is to determine the time-dependent vibrational frequencies that incorporate explicitly both nuclear quantum effects of vibrational motions and an electronic structural representation of the potential energy surface. In this paper, a nuclear quantum vibrational perturbation (QVP) method is described for efficiently determining the instantaneous vibrational frequency of a chromophore in molecular dynamics simulations. Computational efficiency is achieved through the use of (a) discrete variable representation of the vibrational wave functions, (b) a perturbation theory to evaluate the vibrational energy shifts due to solvent dynamic fluctuations, and (c) a combined QM/MM potential for the systems. It was found that first-order perturbation is sufficiently accurate, enabling time-dependent vibrational frequencies to be obtained on the fly in molecular dynamics. The QVP method is illustrated in the mode-specific linear and 2D-IR spectra of the H-Cl stretching frequency in the HCl-water clusters and the carbonyl stretching vibration of acetone in aqueous solution. To further reduce computational cost, a hybrid strategy was proposed, and it was found that the computed vibrational spectral peak position and line shape are in agreement with experimental results. In addition, it was found that anharmonicity is significant in the H-Cl stretching mode, and hydrogen-bonding interactions further enhance anharmonic effects. The present QVP method complements other computational approaches, including path integral-based molecular dynamics, and represents a major improvement over the electrostatics-based spectroscopic mapping procedures.
Collapse
Affiliation(s)
- Rui-Jie Xue
- Institute of Theoretical Chemistry, Jilin University , 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Adam Grofe
- Department of Chemistry and Supercomputing Institute, University of Minnesota , 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| | - He Yin
- Institute of Theoretical Chemistry, Jilin University , 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Zexing Qu
- Institute of Theoretical Chemistry, Jilin University , 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Jiali Gao
- Institute of Theoretical Chemistry, Jilin University , 2519 Jiefang Road, Changchun 130023, People's Republic of China.,Department of Chemistry and Supercomputing Institute, University of Minnesota , 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| | - Hui Li
- Institute of Theoretical Chemistry, Jilin University , 2519 Jiefang Road, Changchun 130023, People's Republic of China
| |
Collapse
|
4
|
Lai Z, Jiang J, Mukamel S, Wang J. Exploring the Protein Folding Dynamics of Beta3s with Two-Dimensional Ultraviolet (2DUV) Spectroscopy. Isr J Chem 2014. [DOI: 10.1002/ijch.201300141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Jiang J, Lai Z, Wang J, Mukamel S. Signatures of the Protein Folding Pathway in Two-Dimensional Ultraviolet Spectroscopy. J Phys Chem Lett 2014; 5:1341-1346. [PMID: 24803996 PMCID: PMC3999791 DOI: 10.1021/jz5002264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/19/2014] [Indexed: 05/24/2023]
Abstract
The function of protein relies on their folding to assume the proper structure. Probing the structural variations during the folding process is crucial for understanding the underlying mechanism. We present a combined quantum mechanics/molecular dynamics simulation study that demonstrates how coherent resonant nonlinear ultraviolet spectra can be used to follow the fast folding dynamics of a mini-protein, Trp-cage. Two dimensional ultraviolet signals of the backbone transitions carry rich information of both local (secondary) and global (tertiary) structures. The complexity of signals decreases as the conformational entropy decreases in the course of the folding process. We show that the approximate entropy of the signals provides a quantitative marker of protein folding status, accessible by both theoretical calculations and experiments.
Collapse
Affiliation(s)
- Jun Jiang
- Department
of Chemical Physics, University of Science
and Technology of China, No. 96, JinZhai Road Baohe District, Hefei 230026, China
- Chemistry
Department, University of California Irvine, 433A Rowland Hall, Irvine, California 92697, United States
| | - Zaizhi Lai
- Department
of Chemistry and Physics, University of
New York at Stony Brook, Stony
Brook, New York 11794, United States
| | - Jin Wang
- Department
of Chemistry and Physics, University of
New York at Stony Brook, Stony
Brook, New York 11794, United States
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625, Ren
Min Street, Changchun, Jilin 130021, China
| | - Shaul Mukamel
- Chemistry
Department, University of California Irvine, 433A Rowland Hall, Irvine, California 92697, United States
| |
Collapse
|