1
|
Wang W, Wang Q, Xu J, Deng F. Understanding Heterogeneous Catalytic Hydrogenation by Parahydrogen-Induced Polarization NMR Spectroscopy. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Weiyu Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
2
|
Salnikov OG, Burueva DB, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Koptyug IV. Mechanisms of Methylenecyclobutane Hydrogenation over Supported Metal Catalysts Studied by Parahydrogen-Induced Polarization Technique. Chemphyschem 2022; 23:e202200072. [PMID: 35099100 DOI: 10.1002/cphc.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/08/2022]
Abstract
In this work the mechanism of methylenecyclobutane hydrogenation over titania-supported Rh, Pt and Pd catalysts was investigated using parahydrogen-induced polarization (PHIP) technique. It was found that methylenecyclobutane hydrogenation leads to formation of a mixture of reaction products including cyclic (1-methylcyclobutene, methylcyclobutane), linear (1-pentene, cis-2-pentene, trans-2-pentene, pentane) and branched (isoprene, 2-methyl-1-butene, 2-methyl-2-butene, isopentane) compounds. Generally, at lower temperatures (150-350 °C) the major reaction product was methylcyclobutane while higher temperature of 450 °C favors formation of branched products isoprene, 2-methyl-1-butene and 2-methyl-2-butene. PHIP effects were detected for all reaction products except methylenecyclobutane isomers 1-methylcyclobutene and isoprene implying that the corresponding compounds can incorporate two atoms from the same parahydrogen molecule in a pairwise manner in the course of the reaction in particular positions. The mechanisms were proposed for the formation of these reaction products based on PHIP results.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, Laboratory of Magnetic Resonance Microimaging, 3A Institutskaya street, 630090, Novosibirsk, RUSSIAN FEDERATION
| | - Dudari B Burueva
- International Tomography Center SB RAS: Mezdunarodnyj tomograficeskij centr SO RAN, Laboratory of magnetic resonance microimaging, 630090, Novosibirsk, RUSSIAN FEDERATION
| | - Larisa M Kovtunova
- Boreskov Institute of Catalysis SB RAS: FGBUN Institut kataliza im G K Boreskova Sibirskogo otdelenia Rossijskoj akademii nauk, Department of physico-chemical methods of research, Novosibirsk, RUSSIAN FEDERATION
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS: FGBUN Institut kataliza im G K Boreskova Sibirskogo otdelenia Rossijskoj akademii nauk, Administration, Novosibirsk, RUSSIAN FEDERATION
| | - Kirill V Kovtunov
- International Tomography Center SB RAS: Mezdunarodnyj tomograficeskij centr SO RAN, Laboratory of magnetic resonance microimaging, Novosibirsk, RUSSIAN FEDERATION
| | - Igor V Koptyug
- International Tomography Center SB RAS: Mezdunarodnyj tomograficeskij centr SO RAN, Laboratory of magnetic resonance microimaging, Novosibirsk, RUSSIAN FEDERATION
| |
Collapse
|
3
|
Rodin BA, Kozinenko VP, Kiryutin AS, Yurkovskaya AV, Eills J, Ivanov KL. Constant-adiabaticity pulse schemes for manipulating singlet order in 3-spin systems with weak magnetic non-equivalence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106978. [PMID: 33957556 DOI: 10.1016/j.jmr.2021.106978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Parahydrogen-induced polarization (PHIP) is a source of nuclear spin hyperpolarization, and this technique allows for the preparation of biomolecules for in vivo metabolic imaging. PHIP delivers hyperpolarization in the form of proton singlet order to a molecule, but most applications require that a heteronuclear (e.g. 13C or 15N) spin in the molecule is hyperpolarized. Here we present high field pulse methods to manipulate proton singlet order in the [1-13C]fumarate, and in particular to transfer the proton singlet order into 13C magnetization. We exploit adiabatic pulses, i.e., pulses with slowly ramped amplitude, and use constant-adiabaticity variants: the spin Hamiltonian is varied in such a way that the generalized adiabaticity parameter is time-independent. This allows for faster polarization transfer, and we achieve 96.2% transfer efficiency in thermal equilibrium experiments. We demonstrate this in experiments using hyperpolarization, and obtain 6.8% 13C polarization. This work paves the way for efficient hyperpolarization of nuclear spins in a variety of biomolecules, since the high-field pulse sequences allow individual spins to be addressed.
Collapse
Affiliation(s)
- Bogdan A Rodin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Vitaly P Kozinenko
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexey S Kiryutin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - James Eills
- Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Konstantin L Ivanov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Zhukov I, Kiryutin A, Wang Z, Zachrdla M, Yurkovskaya A, Ivanov K, Ferrage F. Surprising absence of strong homonuclear coupling at low magnetic field explored by two-field nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:237-246. [PMID: 38111910 PMCID: PMC10726027 DOI: 10.5194/mr-1-237-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2023]
Abstract
Strong coupling of nuclear spins, which is achieved when their scalar coupling 2 π J is greater than or comparable to the difference Δ ω in their Larmor precession frequencies in an external magnetic field, gives rise to efficient coherent longitudinal polarization transfer. The strong coupling regime can be achieved when the external magnetic field is sufficiently low, as Δ ω is reduced proportional to the field strength. In the present work, however, we demonstrate that in heteronuclear spin systems these simple arguments may not hold, since heteronuclear spin-spin interactions alter the Δ ω value. The experimental method that we use is two-field nuclear magnetic resonance (NMR), exploiting sample shuttling between the high field, at which NMR spectra are acquired, and the low field, where strong couplings are expected and at which NMR pulses can be applied to affect the spin dynamics. By using this technique, we generate zero-quantum spin coherences by means of a nonadiabatic passage through a level anticrossing and study their evolution at the low field. Such zero-quantum coherences mediate the polarization transfer under strong coupling conditions. Experiments performed with a 13 C -labeled amino acid clearly show that the coherent polarization transfer at the low field is pronounced in the 13 C spin subsystem under proton decoupling. However, in the absence of proton decoupling, polarization transfer by coherent processes is dramatically reduced, demonstrating that heteronuclear spin-spin interactions suppress the strong coupling regime, even when the external field is low. A theoretical model is presented, which can model the reported experimental results.
Collapse
Affiliation(s)
- Ivan V. Zhukov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexey S. Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ziqing Wang
- Laboratoire des Biomolécules (LBM), Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Milan Zachrdla
- Laboratoire des Biomolécules (LBM), Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Alexandra V. Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Fabien Ferrage
- Laboratoire des Biomolécules (LBM), Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
5
|
Eills J, Blanchard JW, Wu T, Bengs C, Hollenbach J, Budker D, Levitt MH. Polarization transfer via field sweeping in parahydrogen-enhanced nuclear magnetic resonance. J Chem Phys 2019; 150:174202. [PMID: 31067882 DOI: 10.1063/1.5089486] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that in a spin system of two magnetically inequivalent protons coupled to a heteronucleus such as 13C, an adiabatic magnetic field sweep, passing through zero field, transfers the proton singlet order into magnetization of the coupled heteronucleus. This effect is potentially useful in parahydrogen-enhanced nuclear magnetic resonance and is demonstrated on singlet-hyperpolarized [1-13C]maleic acid, which is prepared via the reaction between [1-13C]acetylene dicarboxylic acid and para-enriched hydrogen gas. The magnetic field sweeps are of microtesla amplitudes and have durations on the order of seconds. We show a polarization enhancement by a factor of 104 in the 13C spectra of [1-13C]maleic acid in a 1.4 T magnetic field.
Collapse
Affiliation(s)
- James Eills
- University of Southampton, Southampton, United Kingdom
| | - John W Blanchard
- Helmholtz Institute, Johannes-Gutenberg University, Mainz, Germany
| | - Teng Wu
- Helmholtz Institute, Johannes-Gutenberg University, Mainz, Germany
| | | | | | - Dmitry Budker
- Helmholtz Institute, Johannes-Gutenberg University, Mainz, Germany
| | | |
Collapse
|
6
|
Kiryutin AS, Rodin BA, Yurkovskaya AV, Ivanov KL, Kurzbach D, Jannin S, Guarin D, Abergel D, Bodenhausen G. Transport of hyperpolarized samples in dissolution-DNP experiments. Phys Chem Chem Phys 2019; 21:13696-13705. [DOI: 10.1039/c9cp02600b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetic field strength during sample transfer in dissolution dynamic nuclear polarization influences the resulting spectra.
Collapse
Affiliation(s)
- Alexey S. Kiryutin
- International Tomography Center SB RAS
- Institutskaya 3A
- Novosibirsk
- Russia
- Novosibirsk State University
| | - Bogdan A. Rodin
- International Tomography Center SB RAS
- Institutskaya 3A
- Novosibirsk
- Russia
- Novosibirsk State University
| | - Alexandra V. Yurkovskaya
- International Tomography Center SB RAS
- Institutskaya 3A
- Novosibirsk
- Russia
- Novosibirsk State University
| | - Konstantin L. Ivanov
- International Tomography Center SB RAS
- Institutskaya 3A
- Novosibirsk
- Russia
- Novosibirsk State University
| | - Dennis Kurzbach
- University Vienna
- Faculty of Chemistry
- Institute of Biological Chemistry
- Währinger Straße 38
- 1090 Vienna
| | - Sami Jannin
- Université de Lyon
- Centre de RMN à Très Hauts Champs (FRE2034 CNRS/UCBL/ENS Lyon)
- 5 rue de la Doua
- 69100 Villeurbanne
- France
| | - David Guarin
- Laboratoire des biomolécules
- LBM, Département de chimie, École normale supérieure
- PSL University
- Sorbonne Université
- CNRS
| | - Daniel Abergel
- Laboratoire des biomolécules
- LBM, Département de chimie, École normale supérieure
- PSL University
- Sorbonne Université
- CNRS
| | - Geoffrey Bodenhausen
- Laboratoire des biomolécules
- LBM, Département de chimie, École normale supérieure
- PSL University
- Sorbonne Université
- CNRS
| |
Collapse
|
7
|
Zhukov IV, Kiryutin AS, Yurkovskaya AV, Grishin YA, Vieth HM, Ivanov KL. Field-cycling NMR experiments in an ultra-wide magnetic field range: relaxation and coherent polarization transfer. Phys Chem Chem Phys 2018; 20:12396-12405. [PMID: 29623979 DOI: 10.1039/c7cp08529j] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.
Collapse
Affiliation(s)
- Ivan V Zhukov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
8
|
Kiryutin AS, Pravdivtsev AN, Ivanov KL, Grishin YA, Vieth HM, Yurkovskaya AV. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 263:79-91. [PMID: 26773525 DOI: 10.1016/j.jmr.2015.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100μT up to 7T) within less than 0.3s; progress in NMR probe design provides NMR linewidths of about 10(-3)ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| | - Andrey N Pravdivtsev
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Yuri A Grishin
- Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, Institutskaya 3, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Ivanov KL. RF-SABRE: A Way to Continuous Spin Hyperpolarization at High Magnetic Fields. J Phys Chem B 2015; 119:13619-29. [DOI: 10.1021/acs.jpcb.5b03032] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Andrey N. Pravdivtsev
- International
Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk, 630090, Russia
| | - Alexandra V. Yurkovskaya
- International
Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk, 630090, Russia
| | - Hans-Martin Vieth
- Institut
für Experimentalphysik, Freie Universität of Berlin, Arnimallee
14, Berlin, 14195, Germany
| | - Konstantin L. Ivanov
- International
Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk, 630090, Russia
| |
Collapse
|
10
|
Barskiy DA, Salnikov OG, Kovtunov KV, Koptyug IV. NMR Signal Enhancement for Hyperpolarized Fluids Continuously Generated in Hydrogenation Reactions with Parahydrogen. J Phys Chem A 2015; 119:996-1006. [DOI: 10.1021/jp510572d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Danila A. Barskiy
- International
Tomography Center, Siberian Branch of the Russian Academy of Sciences, 3A Institutskaya Street, Novosibirsk, Russia, 630090
- Novosibirsk State University, 2 Pirogova
Street, Novosibirsk, Russia, 630090
| | - Oleg G. Salnikov
- International
Tomography Center, Siberian Branch of the Russian Academy of Sciences, 3A Institutskaya Street, Novosibirsk, Russia, 630090
- Novosibirsk State University, 2 Pirogova
Street, Novosibirsk, Russia, 630090
| | - Kirill V. Kovtunov
- International
Tomography Center, Siberian Branch of the Russian Academy of Sciences, 3A Institutskaya Street, Novosibirsk, Russia, 630090
- Novosibirsk State University, 2 Pirogova
Street, Novosibirsk, Russia, 630090
| | - Igor V. Koptyug
- International
Tomography Center, Siberian Branch of the Russian Academy of Sciences, 3A Institutskaya Street, Novosibirsk, Russia, 630090
- Novosibirsk State University, 2 Pirogova
Street, Novosibirsk, Russia, 630090
| |
Collapse
|
11
|
Pravdivtsev AN, Yurkovskaya AV, Lukzen NN, Ivanov KL, Vieth HM. Highly Efficient Polarization of Spin-1/2 Insensitive NMR Nuclei by Adiabatic Passage through Level Anticrossings. J Phys Chem Lett 2014; 5:3421-3426. [PMID: 26278456 DOI: 10.1021/jz501754j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A method is proposed to transfer spin order from para-hydrogen, that is, the H2 molecule in its singlet state, to spin-1/2 heteronuclei of a substrate molecule. The method is based on adiabatic passage through nuclear spin level anticrossings (LACs) in the doubly rotating frame of reference; the LAC conditions are fulfilled by applying resonant RF excitation at the NMR frequencies of protons and the heteronuclei. Efficient conversion of the para-hydrogen-induced polarization into net polarization of the heteronuclei is demonstrated; the achieved signal enhancements are about 6400 for (13)C nuclei at natural abundance. The theory behind the technique is described; advantages of the method are discussed in detail.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- †International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
- ‡Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- †International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
- ‡Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Nikita N Lukzen
- †International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
- ‡Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- †International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
- ‡Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- §Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| |
Collapse
|
12
|
Ivanov KL, Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Kaptein R. The role of level anti-crossings in nuclear spin hyperpolarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 81:1-36. [PMID: 25142733 DOI: 10.1016/j.pnmrs.2014.06.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 05/22/2023]
Abstract
Nuclear spin hyperpolarization is an important resource for increasing the sensitivity of NMR spectroscopy and MRI. Signal enhancements can be as large as 3-4 orders of magnitude. In hyperpolarization experiments, it is often desirable to transfer the initial polarization to other nuclei of choice, either protons or insensitive nuclei such as (13)C and (15)N. This situation arises primarily in Chemically Induced Dynamic Nuclear Polarization (CIDNP), Para-Hydrogen Induced Polarization (PHIP), and the related Signal Amplification By Reversible Exchange (SABRE). Here we review the recent literature on polarization transfer mechanisms, in particular focusing on the role of Level Anti-Crossings (LACs) therein. So-called "spontaneous" polarization transfer may occur both at low and high magnetic fields. In addition, transfer of spin polarization can be accomplished by using especially designed pulse sequences. It is now clear that at low field spontaneous polarization transfer is primarily due to coherent spin-state mixing under strong coupling conditions. However, thus far the important role of LACs in this process has not received much attention. At high magnetic field, polarization may be transferred by cross-relaxation effects. Another promising high-field technique is to generate the strong coupling condition by spin locking using strong radio-frequency fields. Here, an analysis of polarization transfer in terms of LACs in the rotating frame is very useful to predict which spin orders are transferred depending on the strength and frequency of the B1 field. Finally, we will examine the role of strong coupling and LACs in magnetic-field dependent nuclear spin relaxation and the related topic of long-lived spin-states.
Collapse
Affiliation(s)
- Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| | - Andrey N Pravdivtsev
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, Berlin 14195, Germany
| | - Robert Kaptein
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| |
Collapse
|
13
|
Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Ivanov KL. Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible. Phys Chem Chem Phys 2014; 16:24672-5. [DOI: 10.1039/c4cp03765k] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new technique is proposed to carry out Signal Amplification By Reversible Exchange (SABRE) experiments at high magnetic fields.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- International Tomography Center
- Siberian Branch of the Russian Academy of Science
- Novosibirsk, Russia
- Novosibirsk State University
- Novosibirsk, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center
- Siberian Branch of the Russian Academy of Science
- Novosibirsk, Russia
- Novosibirsk State University
- Novosibirsk, Russia
| | - Hans-Martin Vieth
- Institut für Experimentalphysik
- Freie Universität Berlin
- Berlin, Germany
| | - Konstantin L. Ivanov
- International Tomography Center
- Siberian Branch of the Russian Academy of Science
- Novosibirsk, Russia
- Novosibirsk State University
- Novosibirsk, Russia
| |
Collapse
|
14
|
Pravdivtsev AN, Yurkovskaya AV, Lukzen NN, Vieth HM, Ivanov KL. Exploiting level anti-crossings (LACs) in the rotating frame for transferring spin hyperpolarization. Phys Chem Chem Phys 2014; 16:18707-19. [DOI: 10.1039/c4cp01445f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method of transferring hyperpolarization among scalar-coupled nuclear spins is proposed, which is based on spin mixing at energy level anti-crossing (LAC) regions.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- International Tomography Center
- Siberian Branch of the Russian Academy of Science
- Novosibirsk, Russia
- Novosibirsk State University
- Novosibirsk, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center
- Siberian Branch of the Russian Academy of Science
- Novosibirsk, Russia
- Novosibirsk State University
- Novosibirsk, Russia
| | - Nikita N. Lukzen
- International Tomography Center
- Siberian Branch of the Russian Academy of Science
- Novosibirsk, Russia
- Novosibirsk State University
- Novosibirsk, Russia
| | - Hans-Martin Vieth
- Institut für Experimentalphysik
- Freie Universität Berlin
- Berlin, Germany
| | - Konstantin L. Ivanov
- International Tomography Center
- Siberian Branch of the Russian Academy of Science
- Novosibirsk, Russia
- Novosibirsk State University
- Novosibirsk, Russia
| |
Collapse
|
15
|
Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Ivanov KL. Coherent transfer of nuclear spin polarization in field-cycling NMR experiments. J Chem Phys 2013; 139:244201. [DOI: 10.1063/1.4848699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|