1
|
Lee Y, Ki H, Im D, Eom S, Gu J, Lee S, Kim J, Cha Y, Lee KW, Zerdane S, Levantino M, Ihee H. Cerium Photocatalyst in Action: Structural Dynamics in the Presence of Substrate Visualized via Time-Resolved X-ray Liquidography. J Am Chem Soc 2023; 145:23715-23726. [PMID: 37856865 PMCID: PMC10623567 DOI: 10.1021/jacs.3c08166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Indexed: 10/21/2023]
Abstract
[Ce(III)Cl6]3-, with its earth-abundant metal element, is a promising photocatalyst facilitating carbon-halogen bond activation. Still, the structure of the reaction intermediate has yet to be explored. Here, we applied time-resolved X-ray liquidography (TRXL), which allows for direct observation of the structural details of reaction intermediates, to investigate the photocatalytic reaction of [Ce(III)Cl6]3-. Structural analysis of the TRXL data revealed that the excited state of [Ce(III)Cl6]3- has Ce-Cl bonds that are shorter than those of the ground state and that the Ce-Cl bond further contracts upon oxidation. In addition, this study represents the first application of TRXL to both photocatalyst-only and photocatalyst-and-substrate samples, providing insights into the substrate's influence on the photocatalyst's reaction dynamics. This study demonstrates the capability of TRXL in elucidating the reaction dynamics of photocatalysts under various conditions and highlights the importance of experimental determination of the structures of reaction intermediates to advance our understanding of photocatalytic mechanisms.
Collapse
Affiliation(s)
- Yunbeom Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hosung Ki
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Donghwan Im
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunghwan Eom
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jain Gu
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonggon Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungmin Kim
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yongjun Cha
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kyung Won Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Serhane Zerdane
- European
Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Matteo Levantino
- European
Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Hyotcherl Ihee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Oang KY, Park S, Moon J, Park E, Lee HK, Sato T, Nozawa S, Adachi SI, Kim J, Kim J, Sohn JH, Ihee H. Extracting Kinetics and Thermodynamics of Molecules without Heavy Atoms via Time-Resolved Solvent Scattering Signals. J Phys Chem Lett 2023; 14:3103-3110. [PMID: 36951437 DOI: 10.1021/acs.jpclett.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Time-resolved X-ray liquidography (TRXL) has emerged as a powerful technique for studying the structural dynamics of small molecules and macromolecules in liquid solutions. However, TRXL has limited sensitivity for small molecules containing light atoms only, whose signal has lower contrast compared with the signal from solvent molecules. Here, we present an alternative approach to bypass this limitation by detecting the change in solvent temperature resulting from a photoinduced reaction. Specifically, we analyzed the heat dynamics of TRXL data obtained from p-hydroxyphenacyl diethyl phosphate (HPDP). This analysis enabled us to experimentally determine the number of intermediates and their respective enthalpy changes, which can be compared to theoretical enthalpies to identify the intermediates. This work demonstrates that TRXL can be used to uncover the kinetics and reaction pathways for small molecules without heavy atoms even if the scattering signal from the solute molecules is buried under the strong solvent scattering signal.
Collapse
Affiliation(s)
- Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Republic of Korea
| | - Sungjun Park
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jiwon Moon
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Eunji Park
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyun Kyung Lee
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jeong-Hun Sohn
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Jeong H, Ki H, Kim JG, Kim J, Lee Y, Ihee H. Sensitivity of
time‐resolved
diffraction data to changes in internuclear distances and atomic positions. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Haeyun Jeong
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Jungmin Kim
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| |
Collapse
|
4
|
Choi EH, Lee Y, Heo J, Ihee H. Reaction dynamics studied via femtosecond X-ray liquidography at X-ray free-electron lasers. Chem Sci 2022; 13:8457-8490. [PMID: 35974755 PMCID: PMC9337737 DOI: 10.1039/d2sc00502f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses suitable for pump–probe time-resolved studies with a femtosecond time resolution. Since the advent of the first XFEL in 2009, recent years have witnessed a great number of applications with various pump–probe techniques at XFELs. Among these, time-resolved X-ray liquidography (TRXL) is a powerful method for visualizing structural dynamics in the liquid solution phase. Here, we classify various chemical and biological molecular systems studied via femtosecond TRXL (fs-TRXL) at XFELs, depending on the focus of the studied process, into (i) bond cleavage and formation, (ii) charge distribution and electron transfer, (iii) orientational dynamics, (iv) solvation dynamics, (v) coherent nuclear wavepacket dynamics, and (vi) protein structural dynamics, and provide a brief review on each category. We also lay out a plausible roadmap for future fs-TRXL studies for areas that have not been explored yet. Femtosecond X-ray liquidography using X-ray free-electron lasers (XFELs) visualizes various aspects of reaction dynamics.![]()
Collapse
Affiliation(s)
- Eun Hyuk Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jun Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Bacellar C, Kinschel D, Cannelli O, Sorokin B, Katayama T, Mancini GF, Rouxel JR, Obara Y, Nishitani J, Ito H, Ito T, Kurahashi N, Higashimura C, Kudo S, Cirelli C, Knopp G, Nass K, Johnson PJM, Wach A, Szlachetko J, Lima FA, Milne CJ, Yabashi M, Suzuki T, Misawa K, Chergui M. Femtosecond X-ray spectroscopy of haem proteins. Faraday Discuss 2021; 228:312-328. [PMID: 33565544 DOI: 10.1039/d0fd00131g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss our recently reported femtosecond (fs) X-ray emission spectroscopy results on the ligand dissociation and recombination in nitrosylmyoglobin (MbNO) in the context of previous studies on ferrous haem proteins. We also present a preliminary account of femtosecond X-ray absorption studies on MbNO, pointing to the presence of more than one species formed upon photolysis.
Collapse
Affiliation(s)
- Camila Bacellar
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Dominik Kinschel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Oliviero Cannelli
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Boris Sorokin
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Giulia F Mancini
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jeremy R Rouxel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yuki Obara
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Junichi Nishitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hironori Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Terumasa Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Naoya Kurahashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, 7-1, Chiyoda, 102-8554 Tokyo, Japan
| | - Chika Higashimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Shotaro Kudo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Claudio Cirelli
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | | | - Anna Wach
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | | | | | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kazuhiko Misawa
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Choi M, Kim JG, Muniyappan S, Kim H, Kim TW, Lee Y, Lee SJ, Kim SO, Ihee H. Effect of the abolition of intersubunit salt bridges on allosteric protein structural dynamics. Chem Sci 2021; 12:8207-8217. [PMID: 34194711 PMCID: PMC8208487 DOI: 10.1039/d1sc01207j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/08/2021] [Indexed: 12/22/2022] Open
Abstract
A salt bridge, one of the representative structural factors established by non-covalent interactions, plays a crucial role in stabilizing the structure and regulating the protein function, but its role in dynamic processes has been elusive. Here, to scrutinize the structural and functional roles of the salt bridge in the process of performing the protein function, we investigated the effects of salt bridges on the allosteric structural transition of homodimeric hemoglobin (HbI) by applying time-resolved X-ray solution scattering (TRXSS) to the K30D mutant, in which the interfacial salt bridges of the wild type (WT) are abolished. The TRXSS data of K30D are consistent with the kinetic model that requires one monomer intermediate in addition to three structurally distinct dimer intermediates (I1, I2, and I3) observed in WT and other mutants. The kinetic and structural analyses show that K30D has an accelerated biphasic transition from I2 to I3 by more than nine times compared to WT and lacks significant structural changes in the transition from R-like I2 to T-like I3 observed in WT, unveiling that the loss of the salt bridges interrupts the R-T allosteric transition of HbI. Besides, the correlation between the bimolecular CO recombination rates in K30D, WT, and other mutants reveals that the bimolecular CO recombination is abnormally decelerated in K30D, indicating that the salt bridges also affect the cooperative ligand binding in HbI. These comparisons of the structural dynamics and kinetics of K30D and WT show that the interfacial salt bridges not only assist the physical connection of two subunits but also play a critical role in the global structural signal transduction of one subunit to the other subunit via a series of well-organized structural transitions.
Collapse
Affiliation(s)
- Minseo Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Jong Goo Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Srinivasan Muniyappan
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Hanui Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Tae Wu Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sang Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seong Ok Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
7
|
Henry L, Panman MR, Isaksson L, Claesson E, Kosheleva I, Henning R, Westenhoff S, Berntsson O. Real-time tracking of protein unfolding with time-resolved x-ray solution scattering. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:054702. [PMID: 32984436 PMCID: PMC7511240 DOI: 10.1063/4.0000013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/17/2020] [Indexed: 05/14/2023]
Abstract
The correct folding of proteins is of paramount importance for their function, and protein misfolding is believed to be the primary cause of a wide range of diseases. Protein folding has been investigated with time-averaged methods and time-resolved spectroscopy, but observing the structural dynamics of the unfolding process in real-time is challenging. Here, we demonstrate an approach to directly reveal the structural changes in the unfolding reaction. We use nano- to millisecond time-resolved x-ray solution scattering to probe the unfolding of apomyoglobin. The unfolding reaction was triggered using a temperature jump, which was induced by a nanosecond laser pulse. We demonstrate a new strategy to interpret time-resolved x-ray solution scattering data, which evaluates ensembles of structures obtained from molecular dynamics simulations. We find that apomyoglobin passes three states when unfolding, which we characterize as native, molten globule, and unfolded. The molten globule dominates the population under the conditions investigated herein, whereas native and unfolded structures primarily contribute before the laser jump and 30 μs after it, respectively. The molten globule retains much of the native structure but shows a dynamic pattern of inter-residue contacts. Our study demonstrates a new strategy to directly observe structural changes over the cause of the unfolding reaction, providing time- and spatially resolved atomic details of the folding mechanism of globular proteins.
Collapse
Affiliation(s)
- L. Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - M. R. Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - L. Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - E. Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - I. Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - R. Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - S. Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | | |
Collapse
|
8
|
Yang C, Choi M, Kim JG, Kim H, Muniyappan S, Nozawa S, Adachi SI, Henning R, Kosheleva I, Ihee H. Protein Structural Dynamics of Wild-Type and Mutant Homodimeric Hemoglobin Studied by Time-Resolved X-Ray Solution Scattering. Int J Mol Sci 2018; 19:ijms19113633. [PMID: 30453670 PMCID: PMC6274816 DOI: 10.3390/ijms19113633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/30/2023] Open
Abstract
The quaternary transition between the relaxed (R) and tense (T) states of heme-binding proteins is a textbook example for the allosteric structural transition. Homodimeric hemoglobin (HbI) from Scapharca inaequivalvis is a useful model system for investigating the allosteric behavior because of the relatively simple quaternary structure. To understand the cooperative transition of HbI, wild-type and mutants of HbI have been studied by using time-resolved X-ray solution scattering (TRXSS), which is sensitive to the conformational changes. Herein, we review the structural dynamics of HbI investigated by TRXSS and compare the results of TRXSS with those of other techniques.
Collapse
Affiliation(s)
- Cheolhee Yang
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Center for Nanomaterials and Chemical Reactions, Institute of Basic Science (IBS), Daejeon 34141, Korea.
| | - Minseo Choi
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Center for Nanomaterials and Chemical Reactions, Institute of Basic Science (IBS), Daejeon 34141, Korea.
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Center for Nanomaterials and Chemical Reactions, Institute of Basic Science (IBS), Daejeon 34141, Korea.
| | - Hanui Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Center for Nanomaterials and Chemical Reactions, Institute of Basic Science (IBS), Daejeon 34141, Korea.
| | - Srinivasan Muniyappan
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Center for Nanomaterials and Chemical Reactions, Institute of Basic Science (IBS), Daejeon 34141, Korea.
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA.
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA.
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Center for Nanomaterials and Chemical Reactions, Institute of Basic Science (IBS), Daejeon 34141, Korea.
| |
Collapse
|
9
|
Rimmerman D, Leshchev D, Hsu DJ, Hong J, Abraham B, Kosheleva I, Henning R, Chen LX. Insulin hexamer dissociation dynamics revealed by photoinduced T-jumps and time-resolved X-ray solution scattering. Photochem Photobiol Sci 2018; 17:874-882. [PMID: 29855030 DOI: 10.1039/c8pp00034d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structural dynamics of insulin hexamer dissociation were studied by the photoinduced temperature jump technique and monitored by time-resolved X-ray scattering. The process of hexamer dissociation was found to involve several transient intermediates, including an expanded hexamer and an unstable tetramer. Our findings provide insights into the mechanisms of protien-protein association.
Collapse
Affiliation(s)
- Dolev Rimmerman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Marcellini M, Nasedkin A, Zietz B, Petersson J, Vincent J, Palazzetti F, Malmerberg E, Kong Q, Wulff M, van der Spoel D, Neutze R, Davidsson J. Transient isomers in the photodissociation of bromoiodomethane. J Chem Phys 2018; 148:134307. [PMID: 29626862 DOI: 10.1063/1.5005595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The photochemistry of halomethanes is fascinating for the complex cascade reactions toward either the parent or newly synthesized molecules. Here, we address the structural rearrangement of photodissociated CH2IBr in methanol and cyclohexane, probed by time-resolved X-ray scattering in liquid solution. Upon selective laser cleavage of the C-I bond, we follow the reaction cascade of the two geminate geometrical isomers, CH2I-Br and CH2Br-I. Both meta-stable isomers decay on different time scales, mediated by solvent interaction, toward the original parent molecule. We observe the internal rearrangement of CH2Br-I to CH2I-Br in cyclohexane by extending the time window up to 3 μs. We track the photoproduct kinetics of CH2Br-I in methanol solution where only one isomer is observed. The effect of the polarity of solvent on the geminate recombination pathways is discussed.
Collapse
Affiliation(s)
- Moreno Marcellini
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Alexandr Nasedkin
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Burkhard Zietz
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Jonas Petersson
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Jonathan Vincent
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Federico Palazzetti
- Universitá di Perugia, Dipartimento di Chimica, Biologia e Biotecnologie, 06123 Perugia, Italy
| | - Erik Malmerberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Qingyu Kong
- Argonne National Laboratory's, Xray Science Division, 9700 S Cass Ave., Argonne, Illinois 60439, USA
| | - Michael Wulff
- European Synchrotron Radiation Facility, B.P. 220, F-380 43 Grenoble Cedex, France
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, P.O. Box 596, SE-751 24 Uppsala, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jan Davidsson
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| |
Collapse
|
11
|
Rimmerman D, Leshchev D, Hsu DJ, Hong J, Kosheleva I, Chen LX. Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering. J Phys Chem Lett 2017; 8:4413-4418. [PMID: 28853898 PMCID: PMC5804350 DOI: 10.1021/acs.jpclett.7b01720] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ∼8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two-state kinetics. Our results show that the combination of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.
Collapse
Affiliation(s)
- Dolev Rimmerman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Darren J. Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiyun Hong
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lin X. Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Corresponding Author, ,
| |
Collapse
|
12
|
Chergui M, Collet E. Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem Rev 2017; 117:11025-11065. [DOI: 10.1021/acs.chemrev.6b00831] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Majed Chergui
- Laboratoire
de Spectroscopie Ultrarapide (LSU), ISIC, and Lausanne Centre for
Ultrafast Science (LACUS), Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Eric Collet
- Univ Rennes 1, CNRS, Institut de Physique de Rennes, UMR 6251, UBL, Rennes F-35042, France
| |
Collapse
|
13
|
Oang KY, Yang C, Muniyappan S, Kim J, Ihee H. SVD-aided pseudo principal-component analysis: A new method to speed up and improve determination of the optimum kinetic model from time-resolved data. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044013. [PMID: 28405591 PMCID: PMC5382018 DOI: 10.1063/1.4979854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/24/2017] [Indexed: 05/22/2023]
Abstract
Determination of the optimum kinetic model is an essential prerequisite for characterizing dynamics and mechanism of a reaction. Here, we propose a simple method, termed as singular value decomposition-aided pseudo principal-component analysis (SAPPA), to facilitate determination of the optimum kinetic model from time-resolved data by bypassing any need to examine candidate kinetic models. We demonstrate the wide applicability of SAPPA by examining three different sets of experimental time-resolved data and show that SAPPA can efficiently determine the optimum kinetic model. In addition, the results of SAPPA for both time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) data of the same protein reveal that global structural changes of protein, which is probed by TRXSS, may occur more slowly than local structural changes around the chromophore, which is probed by TA spectroscopy.
Collapse
Affiliation(s)
| | | | | | - Jeongho Kim
- Department of Chemistry, Inha University , Incheon 22212, South Korea
| | | |
Collapse
|
14
|
Abstract
Time-resolved X-ray diffraction provides direct information on three-dimensional structures of reacting molecules and thus can be used to elucidate structural dynamics of chemical and biological reactions. In this review, we discuss time-resolved X-ray diffraction on small molecules and proteins with particular emphasis on its application to crystalline (crystallography) and liquid-solution (liquidography) samples. Time-resolved X-ray diffraction has been used to study picosecond and slower dynamics at synchrotrons and can now access even femtosecond dynamics with the recent arrival of X-ray free-electron lasers.
Collapse
Affiliation(s)
- Hosung Ki
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea; , , .,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, South Korea
| | - Key Young Oang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea; , , .,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, South Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon 402-751, South Korea;
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea; , , .,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, South Korea
| |
Collapse
|
15
|
Kim TW, Yang C, Kim Y, Kim JG, Kim J, Jung YO, Jun S, Lee SJ, Park S, Kosheleva I, Henning R, van Thor JJ, Ihee H. Combined probes of X-ray scattering and optical spectroscopy reveal how global conformational change is temporally and spatially linked to local structural perturbation in photoactive yellow protein. Phys Chem Chem Phys 2017; 18:8911-8919. [PMID: 26960811 DOI: 10.1039/c6cp00476h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Real-time probing of structural transitions of a photoactive protein is challenging owing to the lack of a universal time-resolved technique that can probe the changes in both global conformation and light-absorbing chromophores of the protein. In this work, we combine time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) spectroscopy to investigate how the global conformational changes involved in the photoinduced signal transduction of photoactive yellow protein (PYP) is temporally and spatially related to the local structural change around the light-absorbing chromophore. In particular, we examine the role of internal proton transfer in developing a signaling state of PYP by employing its E46Q mutant (E46Q-PYP), where the internal proton transfer is inhibited by the replacement of a proton donor. The comparison of TRXSS and TA spectroscopy data directly reveals that the global conformational change of the protein, which is probed by TRXSS, is temporally delayed by tens of microseconds from the local structural change of the chromophore, which is probed by TA spectroscopy. The molecular shape of the signaling state reconstructed from the TRXSS curves directly visualizes the three-dimensional conformations of protein intermediates and reveals that the smaller structural change in E46Q-PYP than in wild-type PYP suggested by previous studies is manifested in terms of much smaller protrusion, confirming that the signaling state of E46Q-PYP is only partially developed compared with that of wild-type PYP. This finding provides direct evidence of how the environmental change in the vicinity of the chromophore alters the conformational change of the entire protein matrix.
Collapse
Affiliation(s)
- Tae Wu Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Cheolhee Yang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Youngmin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Jong Goo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Yang Ouk Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Sunhong Jun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Sang Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Sungjun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago IL 60637, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago IL 60637, USA
| | - Jasper J van Thor
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| |
Collapse
|
16
|
Kim J, Kim KH, Oang KY, Lee JH, Hong K, Cho H, Huse N, Schoenlein RW, Kim TK, Ihee H. Tracking reaction dynamics in solution by pump–probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering). Chem Commun (Camb) 2016; 52:3734-49. [DOI: 10.1039/c5cc08949b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TRXL and TRXAS are powerful techniques for real-time probing of structural and electronic dynamics of photoinduced reactions in solution phase.
Collapse
|
17
|
NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy. Proc Natl Acad Sci U S A 2015; 112:12922-7. [PMID: 26438842 DOI: 10.1073/pnas.1424446112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein's function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼ 200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump-probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center.
Collapse
|
18
|
Yang C, Choi J, Ihee H. The time scale of the quaternary structural changes in hemoglobin revealed using the transient grating technique. Phys Chem Chem Phys 2015; 17:22571-5. [PMID: 26272458 DOI: 10.1039/c5cp03059e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quaternary structural transition between the R and T states of human hemoglobin was investigated using the transient grating technique. The results presented herein reveal that the quaternary structural change accompanied by the R-T transition occurs within a few microseconds.
Collapse
Affiliation(s)
- Cheolhee Yang
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea.
| | | | | |
Collapse
|
19
|
Levantino M, Schirò G, Lemke HT, Cottone G, Glownia JM, Zhu D, Chollet M, Ihee H, Cupane A, Cammarata M. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser. Nat Commun 2015; 6:6772. [PMID: 25832715 PMCID: PMC4396393 DOI: 10.1038/ncomms7772] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/25/2015] [Indexed: 11/26/2022] Open
Abstract
Light absorption can trigger biologically relevant protein conformational changes. The light-induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such 'proteinquake' observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.
Collapse
Affiliation(s)
- Matteo Levantino
- Department of Physics and Chemistry, University of Palermo, Palermo 90128, Italy
| | - Giorgio Schirò
- CNRS, Université Grenoble Alpes, CEA—Institut de Biologie Structurale, Grenoble 38044, France
| | - Henrik Till Lemke
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Grazia Cottone
- Department of Physics and Chemistry, University of Palermo, Palermo 90128, Italy
| | | | - Diling Zhu
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mathieu Chollet
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Hyotcherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Antonio Cupane
- Department of Physics and Chemistry, University of Palermo, Palermo 90128, Italy
| | - Marco Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, Rennes 35042, France
| |
Collapse
|
20
|
Yu TQ, Lapelosa M, Vanden-Eijnden E, Abrams CF. Full kinetics of CO entry, internal diffusion, and exit in myoglobin from transition-path theory simulations. J Am Chem Soc 2015; 137:3041-50. [PMID: 25664858 PMCID: PMC5508993 DOI: 10.1021/ja512484q] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We use Markovian milestoning molecular dynamics (MD) simulations on a tessellation of the collective variable space for CO localization in myoglobin to estimate the kinetics of entry, exit, and internal site-hopping. The tessellation is determined by analysis of the free-energy surface in that space using transition-path theory (TPT), which provides criteria for defining optimal milestones, allowing short, independent, cell-constrained MD simulations to provide properly weighted kinetic data. We coarse grain the resulting kinetic model at two levels: first, using crystallographically relevant internal cavities and their predicted interconnections and solvent portals; and second, as a three-state side-path scheme inspired by similar models developed from geminate recombination experiments. We show semiquantitative agreement with experiment on entry and exit rates and in the identification of the so-called "histidine gate" at position 64 through which ≈90% of flux between solvent and the distal pocket passes. We also show with six-dimensional calculations that the minimum free-energy pathway of escape through the histidine gate is a "knock-on" mechanism in which motion of the ligand and the gate are sequential and interdependent. In total, these results suggest that such TPT simulations are indeed a promising approach to overcome the practical time-scale limitations of MD to allow reliable estimation of transition mechanisms and rates among metastable states.
Collapse
Affiliation(s)
- Tang-Qing Yu
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
| | - Mauro Lapelosa
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Eric Vanden-Eijnden
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
21
|
Oang KY, Kim KH, Jo J, Kim Y, Kim JG, Kim TW, Jun S, Kim J, Ihee H. Sub-100-ps structural dynamics of horse heart myoglobin probed by time-resolved X-ray solution scattering. Chem Phys 2014; 422:137-142. [PMID: 25678733 PMCID: PMC4323384 DOI: 10.1016/j.chemphys.2014.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we report sub-100-ps structural dynamics of horse heart myoglobin revealed by time-resolved X-ray solution scattering. By applying the time-slicing scheme to the measurement and subsequent deconvolution, we investigate the protein structural dynamics that occur faster than the X-ray temporal pulse width of synchrotrons (~100 ps). The singular value decomposition analysis of the experimental data suggests that two structurally distinguishable intermediates are formed within 100 ps. In particular, the global structural change occurring on the time scale of 70 ps is identified.
Collapse
Affiliation(s)
- Key Young Oang
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Kyung Hwan Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Junbeom Jo
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Youngmin Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Jong Goo Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Tae Wu Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Sunhong Jun
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon 402-751, Republic of Korea
| | - Hyotcherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| |
Collapse
|