1
|
Raposo DJ. Effect of Conformational Equilibrium on Solvation Properties of 1,2-DCE in Water: A Solvation Thermodynamics and 3D-RISM Study. J Phys Chem B 2023; 127:757-765. [PMID: 36626710 DOI: 10.1021/acs.jpcb.2c07836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The contributions of the enthalpy and entropy of solvation for the study of chemical and biological systems are important in the prediction, interpretation, and manipulation of these processes. The relation between solvation Gibbs energies, enthalpies, and entropies of solvation, and their rigorous relation with the conformational equilibrium, are derived for the first time and applied with a computational method, in accordance with the Solvation Thermodynamics previous results, to 1,2-dichloroethane solvation in water. The rigid conformer calculations in solution were performed by using PC+/3D-RISM approach, with the conformational averaged results for enthalpy and solvation Gibbs energy reproducing the experimental results quite successfully. A qualitative agreement in the entropy of solvation predictions was also observed.
Collapse
Affiliation(s)
- Diego J Raposo
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco50740-560, Brazil
| |
Collapse
|
2
|
Casillas L, Grigorian VM, Luchko T. Identifying Systematic Force Field Errors Using a 3D-RISM Element Counting Correction. Molecules 2023; 28:molecules28030925. [PMID: 36770599 PMCID: PMC9921782 DOI: 10.3390/molecules28030925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Hydration free energies of small molecules are commonly used as benchmarks for solvation models. However, errors in predicting hydration free energies are partially due to the force fields used and not just the solvation model. To address this, we have used the 3D reference interaction site model (3D-RISM) of molecular solvation and existing benchmark explicit solvent calculations with a simple element count correction (ECC) to identify problems with the non-bond parameters in the general AMBER force field (GAFF). 3D-RISM was used to calculate hydration free energies of all 642 molecules in the FreeSolv database, and a partial molar volume correction (PMVC), ECC, and their combination (PMVECC) were applied to the results. The PMVECC produced a mean unsigned error of 1.01±0.04kcal/mol and root mean squared error of 1.44±0.07kcal/mol, better than the benchmark explicit solvent calculations from FreeSolv, and required less than 15 s of computing time per molecule on a single CPU core. Importantly, parameters for PMVECC showed systematic errors for molecules containing Cl, Br, I, and P. Applying ECC to the explicit solvent hydration free energies found the same systematic errors. The results strongly suggest that some small adjustments to the Lennard-Jones parameters for GAFF will lead to improved hydration free energy calculations for all solvent models.
Collapse
|
3
|
Cao S, Qiu Y, Unarta IC, Goonetilleke EC, Huang X. The Ion-Dipole Correction of the 3DRISM Solvation Model to Accurately Compute Water Distributions around Negatively Charged Biomolecules. J Phys Chem B 2022; 126:8632-8645. [PMID: 36282904 DOI: 10.1021/acs.jpcb.2c04431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The 3D reference interaction site model (3DRISM) provides an efficient grid-based solvation model to compute the structural and thermodynamic properties of biomolecules in aqueous solutions. However, it remains challenging for existing 3DRISM methods to correctly predict water distributions around negatively charged solute molecules. In this paper, we first show that this challenge is mainly due to the orientation of water molecules in the first solvation shell of the negatively charged solute molecules. To properly consider this orientational preference, position-dependent two-body intramolecular correlations of solvent need to be included in the 3DRISM theory, but direct evaluations of these position-dependent two-body intramolecular correlations remain numerically intractable. To address this challenge, we introduce the Ion-Dipole Correction (IDC) to the 3DRISM theory, in which we incorporate the orientation preference of water molecules via an additional solute-solvent interaction term (i.e., the ion-dipole interaction) while keeping the formulism of the 3DRISM equation unchanged. We prove that this newly introduced IDC term is equivalent to an effective direct correlation function which can effectively consider the orientation effect that arises from position dependent two-body correlations. We first quantitatively validate our 3DRISM-IDC theory combined with the PSE3 closure on Cl-, [ClO]- (a two-site anion), and [NO2]- (a three-site anion). For all three anions, we show that our 3DRISM-IDC theory significantly outperforms the 3DRISM theory in accurately predicting the solvation structures in comparison to MD simulations, including RDFs and 3D water distributions. Furthermore, we have also demonstrated that the 3DRISM-IDC can improve the accuracy of hydration free-energy calculation for Cl-. We further demonstrate that our 3DRISM-IDC theory yields significant improvements over the 3DRISM theory when applied to compute the solvation structures for various negatively charged solute molecules, including adenosine triphosphate (ATP), a short peptide containing 19 residues, a DNA hairpin containing 24 nucleotides, and a riboswitch RNA molecule with 77 nucleotides. We expect that our 3DRISM-IDC-PSE3 solvation model holds great promise to be widely applied to study solvation properties for nucleic acids and other biomolecules containing negatively charged functional groups.
Collapse
Affiliation(s)
- Siqin Cao
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53706, United States
| | - Yunrui Qiu
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53706, United States
| | - Ilona C Unarta
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53706, United States
| | - Eshani C Goonetilleke
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53706, United States
| | - Xuhui Huang
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53706, United States
| |
Collapse
|
4
|
Reimann M, Kaupp M. Reaction Entropies in Solution from Analytical Three-Dimensional Reference Interaction Site Model Derivatives with Application to Redox and Spin-Crossover Processes. J Phys Chem A 2022; 126:3708-3716. [PMID: 35652546 DOI: 10.1021/acs.jpca.2c02317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An analytical approach to compute the excess entropy of solvation at constant pressure in three-dimensional reference interaction site model (3D-RISM) calculations is presented. It includes the changes in the macroscopic dielectric constant of the solvent upon variation of temperature and density. The approach is exact within the framework of force-field descriptions of the solute and gives reasonable results for self-consistently determined electrostatics as used in the 3D-RISM-self-consistent field approach, particularly for entropy differences. The new method is applied to simple examples of reaction entropies of iron complexes in aqueous solution, for which simple gas-phase calculations and many other approaches give unreliable estimates. For both redox half-reactions and spin-crossover processes, (semi)quantitative agreement with experimental reaction entropies can be achieved out of the box.
Collapse
Affiliation(s)
- Marc Reimann
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17.Juni 135, Berlin D-10623, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17.Juni 135, Berlin D-10623, Germany
| |
Collapse
|
5
|
Zhao L, Zhang J. Intermolecular interaction of diamine-diol binary system: A mini-review. Adv Colloid Interface Sci 2022; 304:102662. [PMID: 35453067 DOI: 10.1016/j.cis.2022.102662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/01/2022]
Abstract
The highly selective chemical reaction of carbon dioxide with organic amines is considered to a mature technology and a feasible initial path for carbon capture. In order to solve the disadvantages of high volatility, equipment corrosion and high energy consumption of traditional organic amines, amine alcohol "mixture based" solution has been developed and showed excellent carbon dioxide absorption capacity, which is due to the positive effect of intermolecular interaction in amine alcohol "mixture based" solution system on thermodynamic properties. However, the influencing factors of the intermolecular force in multicomponent solution system are complex, including the chemical, physical, structural effects. Therefore, it is necessary to comprehensively use a variety of characterization methods to systematically understand the form of intermolecular interaction in multicomponent solution system. This review systematically discusses the determination of intermolecular interactions in diamine-diol multicomponent solutions by three mainstream research methods, theoretical calculation method, spectral method, and thermodynamic method, aiming to provide a theoretical reference for the industrial production, the supplement to experimental data, and construction and understanding of theoretical models of multicomponent solution system.
Collapse
|
6
|
Wilson L, Krasny R, Luchko T. Accelerating the 3D reference interaction site model theory of molecular solvation with treecode summation and cut-offs. J Comput Chem 2022; 43:1251-1270. [PMID: 35567580 DOI: 10.1002/jcc.26889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/07/2022]
Abstract
The 3D reference interaction site model (3D-RISM) of molecular solvation is a powerful tool for computing the equilibrium thermodynamics and density distributions of solvents, such as water and co-ions, around solute molecules. However, 3D-RISM solutions can be expensive to calculate, especially for proteins and other large molecules where calculating the potential energy between solute and solvent requires more than half the computation time. To address this problem, we have developed and implemented treecode summation for long-range interactions and analytically corrected cut-offs for short-range interactions to accelerate the potential energy and long-range asymptotics calculations in non-periodic 3D-RISM in the AmberTools molecular modeling suite. For the largest single protein considered in this work, tubulin, the total computation time was reduced by a factor of 4. In addition, parallel calculations with these new methods scale almost linearly and the iterative solver remains the largest impediment to parallel scaling. To demonstrate the utility of our approach for large systems, we used 3D-RISM to calculate the solvation thermodynamics and density distribution of 7-ring microtubule, consisting of 910 tubulin dimers, over 1.2 million atoms.
Collapse
Affiliation(s)
- Leighton Wilson
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert Krasny
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | - Tyler Luchko
- Department of Physics and Astronomy, California State University, Los Angeles, California, USA
| |
Collapse
|
7
|
Ganyecz Á, Kállay M. Implementation and Optimization of the Embedded Cluster Reference Interaction Site Model with Atomic Charges. J Phys Chem A 2022; 126:2417-2429. [PMID: 35394778 PMCID: PMC9036516 DOI: 10.1021/acs.jpca.1c07904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this work, we
implemented the embedded cluster reference interaction
site model (EC-RISM) originally developed by Kloss, Heil, and Kast
(J. Phys. Chem. B2008, 112, 4337–4343).
This method combines quantum mechanical calculations with the 3D reference
interaction site model (3D-RISM). Numerous options, such as buffer,
grid space, basis set, charge model, water model, closure relation,
and so forth, were investigated to find the best settings. Additionally,
the small point charges, which are derived from the solvent distribution
from the 3D-RISM solution to represent the solvent in the QM calculation,
were neglected to reduce the overhead without the loss of accuracy.
On the MNSOL[a], MNSOL, and FreeSolv databases, our implemented and
optimized method provides solvation free energies in water with 5.70,
6.32, and 6.44 kJ/mol root-mean-square deviations, respectively, but
with different settings, 5.22, 6.08, and 6.63 kJ/mol can also be achieved.
Only solvent models containing fitting parameters, like COSMO-RS and
EC-RISM with universal correction and directly used electrostatic
potential, perform better than our EC-RISM implementation with atomic
charges.
Collapse
Affiliation(s)
- Ádám Ganyecz
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest P.O. Box 91, H-1521 Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest P.O. Box 91, H-1521 Hungary
| |
Collapse
|
8
|
Borgis D, Luukkonen S, Belloni L, Jeanmairet G. Accurate prediction of hydration free energies and solvation structures using molecular density functional theory with a simple bridge functional. J Chem Phys 2021; 155:024117. [PMID: 34266282 DOI: 10.1063/5.0057506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper assesses the ability of molecular density functional theory to predict efficiently and accurately the hydration free energies of molecular solutes and the surrounding microscopic water structure. A wide range of solutes were investigated, including hydrophobes, water as a solute, and the FreeSolv database containing 642 drug-like molecules having a variety of shapes and sizes. The usual second-order approximation of the theory is corrected by a third-order, angular-independent bridge functional. The overall functional is parameter-free in the sense that the only inputs are bulk water properties, independent of the solutes considered. These inputs are the direct correlation function, compressibility, liquid-gas surface tension, and excess chemical potential of the solvent. Compared to molecular simulations with the same force field and the same fixed solute geometries, the present theory is shown to describe accurately the solvation free energy and structure of both hydrophobic and hydrophilic solutes. Overall, the method yields a precision of order 0.5 kBT for the hydration free energies of the FreeSolv database, with a computer speedup of 3 orders of magnitude. The theory remains to be improved for a better description of the H-bonding structure and the hydration free energy of charged solutes.
Collapse
Affiliation(s)
- Daniel Borgis
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Sohvi Luukkonen
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Luc Belloni
- Universié Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Guillaume Jeanmairet
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
9
|
Hsu TY, Jeanmairet G. Assessing the correctness of pressure correction to solvation theories in the study of electron transfer reactions. J Chem Phys 2021; 154:131102. [PMID: 33832266 DOI: 10.1063/5.0048343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Liquid state theories have emerged as a numerically efficient alternative to costly molecular dynamics simulations of electron transfer reactions in solution. In a recent paper [Jeanmairet et al., Chem. Sci. 10, 2130-2143 (2019)], we introduced the framework to compute the energy gap, free energy profile, and reorganization free energy using molecular density functional theory. However, this technique, as other molecular liquid state theories, overestimates the bulk pressure of the fluid. Because of the very high pressure, the predicted free energy is dramatically exaggerated. Several attempts were made to fix this issue, either based on simple a posteriori correction or by introducing bridge terms. By studying two model half reactions in water, Cl → Cl+ and Cl → Cl-, we assess the correctness of these two types of corrections to study electron transfer reactions. We found that a posteriori correction, because it violates the Variational principle, leads to an inconsistency in the definition of the reorganization free energy and should not be used to study electron transfer reactions. The bridge approach, because it is theoretically well grounded, is perfectly suitable for this type of systems.
Collapse
Affiliation(s)
- Tzu-Yao Hsu
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Guillaume Jeanmairet
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
10
|
Eckert T, Stuhlmüller NCX, Sammüller F, Schmidt M. Fluctuation Profiles in Inhomogeneous Fluids. PHYSICAL REVIEW LETTERS 2020; 125:268004. [PMID: 33449757 DOI: 10.1103/physrevlett.125.268004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Three one-body profiles that correspond to local fluctuations in energy, in entropy, and in particle number are used to describe the equilibrium properties of inhomogeneous classical many-body systems. Local fluctuations are obtained from thermodynamic differentiation of the density profile or equivalently from average microscopic covariances. The fluctuation profiles follow from functional generators and they satisfy Ornstein-Zernike relations. Computer simulations reveal markedly different fluctuations in confined fluids with Lennard-Jones, hard sphere, and Gaussian core interactions.
Collapse
Affiliation(s)
- Tobias Eckert
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Nico C X Stuhlmüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
11
|
Jeanmairet G, Levesque M, Borgis D. Tackling Solvent Effects by Coupling Electronic and Molecular Density Functional Theory. J Chem Theory Comput 2020; 16:7123-7134. [PMID: 32894674 DOI: 10.1021/acs.jctc.0c00729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solvation effects can have a tremendous influence on chemical reactions. However, precise quantum chemistry calculations are most often done either in vacuum neglecting the role of the solvent or using continuum solvent model ignoring its molecular nature. We propose a new method coupling a quantum description of the solute using electronic density functional theory with a classical grand-canonical treatment of the solvent using molecular density functional theory. Unlike a previous work, both densities are minimized self-consistently, accounting for mutual polarization of the molecular solvent and the solute. The electrostatic interaction is accounted using the full electron density of the solute rather than fitted point charges. The introduced methodology represents a good compromise between the two main strategies to tackle solvation effects in quantum calculation. It is computationally more effective than a direct quantum mechanics/molecular mechanics coupling, requiring the exploration of many solvent configurations. Compared to continuum methods, it retains the full molecular-level description of the solvent. We validate this new framework onto two usual benchmark systems: a water solvated in water and the symmetrical nucleophilic substitution between chloromethane and chloride in water. The prediction for the free energy profiles are not yet fully quantitative compared to experimental data, but the most important features are qualitatively recovered. The method provides a detailed molecular picture of the evolution of the solvent structure along the reaction pathway.
Collapse
Affiliation(s)
- Guillaume Jeanmairet
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes, Interfaciaux, PHENIX, F-75005 Paris, France.,Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Maximilien Levesque
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne, Université, CNRS, 75005 Paris, France.,Aqemia, 75006 Paris, France
| | - Daniel Borgis
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne, Université, CNRS, 75005 Paris, France.,Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Miyata T. Sigma enlarging bridge function for heteronuclear Lennard-Jones diatomic solute solvated in a Lennard-Jones monatomic solvent in terms of the parameter transferability. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Gebhardt J, Kiesel M, Riniker S, Hansen N. Combining Molecular Dynamics and Machine Learning to Predict Self-Solvation Free Energies and Limiting Activity Coefficients. J Chem Inf Model 2020; 60:5319-5330. [DOI: 10.1021/acs.jcim.0c00479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julia Gebhardt
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Matthias Kiesel
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
14
|
Borgis D, Luukkonen S, Belloni L, Jeanmairet G. Simple Parameter-Free Bridge Functionals for Molecular Density Functional Theory. Application to Hydrophobic Solvation. J Phys Chem B 2020; 124:6885-6893. [DOI: 10.1021/acs.jpcb.0c04496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Borgis
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Sohvi Luukkonen
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Luc Belloni
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Guillaume Jeanmairet
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Paris, F-75005, France
- Réseau sur le Stockage Électrochimique de l’Énergie, CNRS FR3459, 33 rue Saint Leu, Amiens, Cedex 80039, France
| |
Collapse
|
15
|
Luukkonen S, Belloni L, Borgis D, Levesque M. Predicting Hydration Free Energies of the FreeSolv Database of Drug-like Molecules with Molecular Density Functional Theory. J Chem Inf Model 2020; 60:3558-3565. [DOI: 10.1021/acs.jcim.0c00526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sohvi Luukkonen
- Maison de la Simulation, CNRS-CEA-Université Paris-Saclay, Gif-sur-Yvette 91191, France
| | - Luc Belloni
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette 91191 France
| | - Daniel Borgis
- Maison de la Simulation, CNRS-CEA-Université Paris-Saclay, Gif-sur-Yvette 91191, France
- PASTEUR, Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Maximilien Levesque
- PASTEUR, Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
- Aqemia, Paris 75001, France
| |
Collapse
|
16
|
Robert A, Luukkonen S, Levesque M. Pressure correction for solvation theories. J Chem Phys 2020; 152:191103. [DOI: 10.1063/5.0002029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Anton Robert
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sohvi Luukkonen
- Maison de la Simulation, CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Maximilien Levesque
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- Aqemia, Paris, France
| |
Collapse
|
17
|
Roy D, Kovalenko A. Application of the Approximate 3D-Reference Interaction Site Model (RISM) Molecular Solvation Theory to Acetonitrile as Solvent. J Phys Chem B 2020; 124:4590-4597. [PMID: 32392049 DOI: 10.1021/acs.jpcb.0c03230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The integral equation formalism based reference interaction site model (RISM) molecular solvation theory is applied to pure liquid acetonitrile and water-acetonitrile binary mixtures of different compositions. Solvate formation of d- and f-block ions by ACN is also calculated to check applicability of the RISM theory. The generalized Amber force field (GAFF) and the universal force field (UFF) parameters were found to be suitable for applications with the RISM theory for acetonitrile solvent. The presence of local microsolvated clusters for water-acetonitrile mixtures is validated in the RISM calculations.
Collapse
Affiliation(s)
- Dipankar Roy
- Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Andriy Kovalenko
- Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.,Nanotechnology Research Centre, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
18
|
Xin X, Niu X, Liu W, Wang D. Hybrid Solvation Model with First Solvation Shell for Calculation of Solvation Free Energy. Chemphyschem 2020; 21:762-769. [PMID: 32154979 DOI: 10.1002/cphc.202000039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Indexed: 02/03/2023]
Abstract
We present a hybrid solvation model with first solvation shell to calculate solvation free energies. This hybrid model combines the quantum mechanics and molecular mechanics methods with the analytical expression based on the Born solvation model to calculate solvation free energies. Based on calculated free energies of solvation and reaction profiles in gas phase, we set up a unified scheme to predict reaction profiles in solution. The predicted solvation free energies and reaction barriers are compared with experimental results for twenty bimolecular nucleophilic substitution reactions. These comparisons show that our hybrid solvation model can predict reliable solvation free energies and reaction barriers for chemical reactions of small molecules in aqueous solution.
Collapse
Affiliation(s)
- Xin Xin
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiao Niu
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Wanqi Liu
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
19
|
Luukkonen S, Levesque M, Belloni L, Borgis D. Hydration free energies and solvation structures with molecular density functional theory in the hypernetted chain approximation. J Chem Phys 2020; 152:064110. [DOI: 10.1063/1.5142651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Sohvi Luukkonen
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Maximilien Levesque
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Luc Belloni
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Daniel Borgis
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
20
|
Lin SC, Martius G, Oettel M. Analytical classical density functionals from an equation learning network. J Chem Phys 2020; 152:021102. [DOI: 10.1063/1.5135919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- S.-C. Lin
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - G. Martius
- Max Planck Institute for Intelligent Systems Tübingen, 72076 Tübingen, Germany
| | - M. Oettel
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
21
|
Maruyama Y, Takano H, Mitsutake A. Analysis of molecular dynamics simulations of 10-residue peptide, chignolin, using statistical mechanics: Relaxation mode analysis and three-dimensional reference interaction site model theory. Biophys Physicobiol 2019; 16:407-429. [PMID: 31984194 PMCID: PMC6975981 DOI: 10.2142/biophysico.16.0_407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 01/03/2023] Open
Abstract
Molecular dynamics simulation is a fruitful tool for investigating the structural stability, dynamics, and functions of biopolymers at an atomic level. In recent years, simulations can be performed on time scales of the order of milliseconds using special purpose systems. Since the most stable structure, as well as meta-stable structures and intermediate structures, is included in trajectories in long simulations, it is necessary to develop analysis methods for extracting them from trajectories of simulations. For these structures, methods for evaluating the stabilities, including the solvent effect, are also needed. We have developed relaxation mode analysis to investigate dynamics and kinetics of simulations based on statistical mechanics. We have also applied the three-dimensional reference interaction site model theory to investigate stabilities with solvent effects. In this paper, we review the results for designing amino-acid substitution of the 10-residue peptide, chignolin, to stabilize the misfolded structure using these developed analysis methods.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Architecture Development Team, FLAGSHIP 2020 Project, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Takano
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
22
|
Maruyama Y. Correction terms for the solvation free energy functional of three-dimensional reference interaction site model based on the reference-modified density functional theory. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Tanimoto S, Yoshida N, Yamaguchi T, Ten-no SL, Nakano H. Effect of Molecular Orientational Correlations on Solvation Free Energy Computed by Reference Interaction Site Model Theory. J Chem Inf Model 2019; 59:3770-3781. [DOI: 10.1021/acs.jcim.9b00330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shoichi Tanimoto
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Seiichiro L. Ten-no
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Haruyuki Nakano
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
24
|
Cao S, Konovalov KA, Unarta IC, Huang X. Recent Developments in Integral Equation Theory for Solvation to Treat Density Inhomogeneity at Solute–Solvent Interface. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Siqin Cao
- Department of Chemistrythe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
| | - Kirill A. Konovalov
- Department of Chemistrythe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
| | - Ilona Christy Unarta
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
- Bioengineering Graduate Programthe Hong Kong University of Science and TechnologyHong Kong of Chinese National EngineeringResearch Center for Tissue Restoration and Reconstructionthe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Xuhui Huang
- Department of Chemistrythe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
- Bioengineering Graduate Programthe Hong Kong University of Science and TechnologyHong Kong of Chinese National EngineeringResearch Center for Tissue Restoration and Reconstructionthe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- HKUST‐Shenzhen Research Institute Hi‐Tech Park, Nanshan Shenzhen 518057 China
| |
Collapse
|
25
|
Roy D, Kovalenko A. Performance of 3D-RISM-KH in Predicting Hydration Free Energy: Effect of Solute Parameters. J Phys Chem A 2019; 123:4087-4093. [PMID: 30993994 DOI: 10.1021/acs.jpca.9b01623] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The three-dimensional reference interaction site model molecular solvation theory with the Kovalenko-Hirata closure relation has been shown to produce excellent solvation characteristics for a large class of (bio)chemical systems in solution. Correct calculation of hydration free energy is central to successful application of any solvation model. In order to find out the best possible force-field parameters to be used for hydration free energy calculation with the aforementioned theory, we have developed an extended database containing a large number of experimental solvation free energies available in the current literature and used a plethora of theoretical models for assessment. The general Amber force field was found to perform satisfactorily, whereas special care should be taken in solute charge assignment with the universal force field.
Collapse
Affiliation(s)
- Dipankar Roy
- Department of Mechanical Engineering , University of Alberta , 10-203 Donadeo Innovation Centre for Engineering, 9211-116 Street NW , Edmonton , Alberta T6G 1H9 , Canada
| | - Andriy Kovalenko
- Department of Mechanical Engineering , University of Alberta , 10-203 Donadeo Innovation Centre for Engineering, 9211-116 Street NW , Edmonton , Alberta T6G 1H9 , Canada.,Nanotechnology Research Centre , 11421 Saskatchewan Drive , Edmonton , Alberta T6G 2M9 , Canada
| |
Collapse
|
26
|
Kido K. A noniterative mean‐field QM/MM‐type approach with a linear response approximation toward an efficient free‐energy evaluation. J Comput Chem 2019; 40:2072-2085. [DOI: 10.1002/jcc.25844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Kentaro Kido
- Nuclear Safety Research CenterJapan Atomic Energy Agency 2‐4 Shirane, Shirakata, Tokai‐mura Ibaraki 319‐1195 Naka‐gun Japan
| |
Collapse
|
27
|
Tsednee T, Luchko T. Closure for the Ornstein-Zernike equation with pressure and free energy consistency. Phys Rev E 2019; 99:032130. [PMID: 30999429 DOI: 10.1103/physreve.99.032130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The Ornstein-Zernike (OZ) integral equation theory is a powerful approach to simple liquids due to its low computational cost and the fact that, when combined with an appropriate closure equation, the theory is thermodynamically complete. However, approximate closures proposed to date exhibit pressure or free energy inconsistencies that produce inaccurate or ambiguous results, limiting the usefulness of the Ornstein-Zernike approach. To address this problem, we combine methods to enforce both pressure and free energy consistency to create a new closure approximation and test it for a single-component Lennard-Jones fluid. The closure is a simple power series in the direct and total correlation functions for which we have derived analytical formulas for the excess Helmholtz free energy and chemical potential. These expressions contain a partial molar volumelike term, similar to excess chemical potential correction terms recently developed. Using our bridge approximation, we have calculated the pressure, Helmholtz free energy, and chemical potential for the Lennard-Jones fluid using the Kirkwood charging, thermodynamic integration techniques, and analytic expressions. These results are compared with those from the hypernetted chain equation and the Verlet-modified closure against Monte Carlo and equations-of-state data for reduced densities of ρ^{*}<1 and temperatures of T^{*}=1.5, 2.74, and 5. Our closure shows consistency among all thermodynamic paths, except for one expression of the Gibbs-Duhem relation, whereas the hypernetted chain equation and the Verlet-modified closure exhibit consistency between only a few relations. Accuracy of the closure is comparable to the Verlet-modified closure and a significant improvement to results obtained from the hypernetted chain equation.
Collapse
Affiliation(s)
- Tsogbayar Tsednee
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330, USA
| | - Tyler Luchko
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330, USA
| |
Collapse
|
28
|
Wang N, Huang X, Gong H, Zhou Y, Li X, Li F, Bao Y, Xie C, Wang Z, Yin Q, Hao H. Thermodynamic mechanism of selective cocrystallization explored by MD simulation and phase diagram analysis. AIChE J 2019. [DOI: 10.1002/aic.16570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Na Wang
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Hao Gong
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical TechnologyTianjin University Tianjin China
| | - Yanan Zhou
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Xin Li
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Fei Li
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Ying Bao
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Chuang Xie
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Zhao Wang
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Qiuxiang Yin
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| |
Collapse
|
29
|
Heyden M. Disassembling solvation free energies into local contributions—Toward a microscopic understanding of solvation processes. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Matthias Heyden
- School of Molecular Sciences Arizona State University Tempe Arizona
| |
Collapse
|
30
|
Dasari S, Mallik BS. Biosolvation Nature of Ionic Liquids: Molecular Dynamics Simulation of Methylated Nucleobases in Hydrated 1-Ethyl-3-methylimidazolium Acetate. ACS OMEGA 2018; 3:8344-8354. [PMID: 31458966 PMCID: PMC6644902 DOI: 10.1021/acsomega.8b01231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/18/2018] [Indexed: 06/10/2023]
Abstract
Solvation free energies of methylated nucleobases were calculated in pure and hydrated 1-ethyl-3-methylimidazolium acetate, [Emim][Ac], ionic liquid, and pure water using classical molecular dynamics simulations using multistate Bennett's acceptance ratio method. The calculated solvation free energies in pure water were compared with the previous experimental and theoretical findings and found to be in agreement. We observe that the solvation free energy of methylated nucleobases is more in the pure ionic liquid compared to that in the pure water and on changing the mole fraction of water in the ionic liquid, the solvation free energy decreases gradually. Comparing the Coulombic and van der Waals contribution to the solvation free energy, electrostatic contribution is more compared to that of the latter for all nucleobases. To obtain the atomistic details and explain the solvation mechanism, we calculated radial distribution functions (RDFs), spatial distribution functions (SDFs), and stacking angle distribution of cations to the nucleobases. From RDFs and SDFs, we find that the acetate anions of the ionic liquid are forming strong hydrogen bonds with the amine hydrogen atoms of the nucleobases. These hydrogen bonds contribute to the major part of the Coulombic contribution to the solvation free energy. Stacking of cations to the nucleobases is primarily due to the van der Waals contribution to the solvation free energy.
Collapse
|
31
|
Brieg M, Setzler J, Albert S, Wenzel W. Generalized Born implicit solvent models for small molecule hydration free energies. Phys Chem Chem Phys 2018; 19:1677-1685. [PMID: 27995260 DOI: 10.1039/c6cp07347f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hydration free energy estimation of small molecules from all-atom simulations was widely investigated in recent years, as it provides an essential test of molecular force fields and our understanding of solvation effects. While explicit solvent representations result in highly accurate models, they also require extensive sampling due to the high number of solvent degrees of freedom. Implicit solvent models, such as those based on the generalized Born model for electrostatic solvation effects and a solvent accessible surface area term for nonpolar contributions (GBSA), significantly reduce the number of degrees of freedom and the computational cost to estimate hydration free energies. However, a recent survey revealed a gap in the accuracy between explicit TIP3P solvent estimates and those computed with many common GBSA models. Here we address this shortcoming by providing a thorough comparison of the performance of three implicit solvent models with different nonpolar contributions and a generalized Born term to estimate experimental hydration free energies. Starting with a minimal set of only ten atom types, we demonstrate that a nonpolar term with atom type dependent surface tension coefficients in combination with an accurate generalized Born term and fully optimized parameters performs best in estimating hydration free energies, even yielding comparable results to the explicit TIP3P water model. Analysis of our results provides evidence that the asymmetric behavior of water around oppositely charged atoms is one of the main sources of error for two of the three implicit solvent models. Explicitly accounting for this effect in the parameterization reduces the corresponding errors, suggesting this as a general strategy for improving implicit solvent models. The findings presented here will help to improve the existing generalized Born based implicit solvent models implemented in state-of-the-art molecular simulation packages.
Collapse
Affiliation(s)
- Martin Brieg
- Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany.
| | - Julia Setzler
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany.
| | - Steffen Albert
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany.
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany.
| |
Collapse
|
32
|
Ansari SM, Sørensen J, Schiøtt B, Palmer DS. On the effect of mutations in bovine or camel chymosin on the thermodynamics of binding κ-caseins. Proteins 2018; 86:75-87. [DOI: 10.1002/prot.25410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Samiul M. Ansari
- Department of Pure and Applied Chemistry; University of Strathclyde, Thomas Graham Building, 295 Cathedral Street; Glasgow G1 1XL Scotland
| | - Jesper Sørensen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry; University of Aarhus, Langelandsgade 140; Aarhus DK 8000 Denmark
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry; University of Aarhus, Langelandsgade 140; Aarhus DK 8000 Denmark
| | - David S. Palmer
- Department of Pure and Applied Chemistry; University of Strathclyde, Thomas Graham Building, 295 Cathedral Street; Glasgow G1 1XL Scotland
| |
Collapse
|
33
|
Sumi T, Maruyama Y, Mitsutake A, Mochizuki K, Koga K. Application of reference‐modified density functional theory: Temperature and pressure dependences of solvation free energy. J Comput Chem 2017; 39:202-217. [DOI: 10.1002/jcc.25101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Tomonari Sumi
- Division of Superconducting and Functional MaterialsResearch Institute for Interdisciplinary Science, Okayama University, 3‐1‐1 Tsushima‐Naka, Kita‐kuOkayama700‐8530 Japan
- Department of Chemistry, Faculty of ScienceOkayama University, 3‐1‐1 Tsushima‐Naka, Kita‐kuOkayama700‐8530 Japan
| | - Yutaka Maruyama
- Co‐Design Team, FLAGSHIP 2020 Project, RIKEN Advanced Institute for Computational Science, 7‐1‐26, Minatojima‐minami‐machiKobe650‐0047 Japan
| | - Ayori Mitsutake
- Department of PhysicsKeio University, 3‐14‐1 Hiyoshi, Kohoku‐kuYokohama Kanagawa223–8522 Japan
| | - Kenji Mochizuki
- Division of Superconducting and Functional MaterialsResearch Institute for Interdisciplinary Science, Okayama University, 3‐1‐1 Tsushima‐Naka, Kita‐kuOkayama700‐8530 Japan
| | - Kenichiro Koga
- Division of Superconducting and Functional MaterialsResearch Institute for Interdisciplinary Science, Okayama University, 3‐1‐1 Tsushima‐Naka, Kita‐kuOkayama700‐8530 Japan
- Department of Chemistry, Faculty of ScienceOkayama University, 3‐1‐1 Tsushima‐Naka, Kita‐kuOkayama700‐8530 Japan
| |
Collapse
|
34
|
Miyata T. A Parameterization of Empirical Sigma Enlarging Bridge Correction of Kovalenko-Hirata Closure in Ornstein-Zernike Theory for Lennard-Jones Fluids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tatsuhiko Miyata
- Department of Physics, Ehime University, 2-5 Bunkyo-Cho, Matsuyama, Ehime 790-8577
| |
Collapse
|
35
|
Ding L, Levesque M, Borgis D, Belloni L. Efficient molecular density functional theory using generalized spherical harmonics expansions. J Chem Phys 2017; 147:094107. [DOI: 10.1063/1.4994281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lu Ding
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Maximilien Levesque
- PASTEUR, Département de Chimie, École Normale Supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, École Normale Supérieure, CNRS, Processus d’Activation Sélective par Transfert d’Énergie Uni-Électronique ou Radiatif (PASTEUR), 75005 Paris, France
| | - Daniel Borgis
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- PASTEUR, Département de Chimie, École Normale Supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, École Normale Supérieure, CNRS, Processus d’Activation Sélective par Transfert d’Énergie Uni-Électronique ou Radiatif (PASTEUR), 75005 Paris, France
| | - Luc Belloni
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
36
|
Sheng S, Miller M, Wu J. Molecular Theory of Hydration at Different Temperatures. J Phys Chem B 2017; 121:6898-6908. [DOI: 10.1021/acs.jpcb.7b04264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shijie Sheng
- Department of Chemical and
Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Michael Miller
- Department of Chemical and
Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jianzhong Wu
- Department of Chemical and
Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
37
|
Fujita T, Yamamoto T. Assessing the accuracy of integral equation theories for nano-sized hydrophobic solutes in water. J Chem Phys 2017; 147:014110. [DOI: 10.1063/1.4990502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - Takeshi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
38
|
Nguyen PM, Guiga W, Dkhissi A, Vitrac O. Off-Lattice Flory–Huggins Approximations for the Tailored Calculation of Activity Coefficients of Organic Solutes in Random and Block Copolymers. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Wafa Guiga
- CNAM, UMR1145
Ingénierie
Procédés Aliments, F-75003 Paris, France
| | | | | |
Collapse
|
39
|
Kobryn AE, Gusarov S, Kovalenko A. A closure relation to molecular theory of solvation for macromolecules. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:404003. [PMID: 27549008 DOI: 10.1088/0953-8984/28/40/404003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose a closure to the integral equations of molecular theory of solvation, particularly suitable for polar and charged macromolecules in electrolyte solution. This includes such systems as oligomeric polyelectrolytes at a finite concentration in aqueous and various non-aqueous solutions, as well as drug-like compounds in solution. The new closure by Kobryn, Gusarov, and Kovalenko (KGK closure) imposes the mean spherical approximation (MSA) almost everywhere in the solvation shell but levels out the density distribution function to zero (with the continuity at joint boundaries) inside the repulsive core and in the spatial regions of strong density depletion emerging due to molecular associative interactions. Similarly to MSA, the KGK closure reduces the problem to a linear equation for the direct correlation function which is predefined analytically on most of the solvation shells and has to be determined numerically on a relatively small (three-dimensional) domain of strong depletion, typically within the repulsive core. The KGK closure leads to the solvation free energy in the form of the Gaussian fluctuation (GF) functional. We first test the performance of the KGK closure coupled to the reference interaction site model (RISM) integral equations on the examples of Lennard-Jones liquids, polar and nonpolar molecular solvents, including water, and aqueous solutions of simple ions. The solvation structure, solvation chemical potential, and compressibility obtained from RISM with the KGK closure favorably compare to the results of the hypernetted chain (HNC) and Kovalenko-Hirata (KH) closures, including their combination with the GF solvation free energy. We then use the KGK closure coupled to RISM to obtain the solvation structure and thermodynamics of oligomeric polyelectrolytes and drug-like compounds at a finite concentration in electrolyte solution, for which no convergence is obtained with other closures. For comparison, we calculate their solvation structure from molecular dynamics (MD) simulations. We further couple the 3D-RISM integral equation with the 3D-version of the KGK closure, and solve it for molecular mixtures as well as oligomeric polyelectrolytes and drug-like molecules in electrolyte solutions.
Collapse
Affiliation(s)
- Alexander E Kobryn
- National Institute for Nanotechnology, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | | | | |
Collapse
|
40
|
Johnson J, Case DA, Yamazaki T, Gusarov S, Kovalenko A, Luchko T. Small molecule hydration energy and entropy from 3D-RISM. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:344002. [PMID: 27367817 PMCID: PMC5118872 DOI: 10.1088/0953-8984/28/34/344002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on the properties of small or large solutes without the complications of explicit simulations. One common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety of small molecules, since many of these values have been measured. Studies of the temperature dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights into the performance of implicit solvent models. Here, we show how to compute temperature derivatives of hydration free energies for the 3D-RISM integral equation approach. We have computed hydration free energies of 1123 small drug-like molecules (both neutral and charged). Temperature derivatives were also used to calculate hydration energies and entropies of 74 of these molecules (both neutral and charged) for which experimental data is available. While direct results have rather poor agreement with experiment, we have found that several previously proposed linear hydration free energy correction schemes give good agreement with experiment. These corrections also provide good agreement for hydration energies and entropies though simple extensions are required in some cases.
Collapse
Affiliation(s)
- J Johnson
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - D A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - T Yamazaki
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - S Gusarov
- National Institute for Nanotechnology, National Research Council of Canada, 11421 Saskatchewan Dr., Edmonton, AB, T6G 2M9, Canada
| | - A Kovalenko
- National Institute for Nanotechnology, National Research Council of Canada, 11421 Saskatchewan Dr., Edmonton, AB, T6G 2M9, Canada
- Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, 9211-116 Str., Edmonton, AB, T6G 1H9, Canada
| | - T Luchko
- Department of Physics and Astronomy, California State University, Northridge, CA 91330
| |
Collapse
|
41
|
Jeanmairet G, Levy N, Levesque M, Borgis D. Molecular density functional theory of water including density-polarization coupling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244005. [PMID: 27116250 DOI: 10.1088/0953-8984/28/24/244005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities.
Collapse
Affiliation(s)
- Guillaume Jeanmairet
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
| | | | | | | |
Collapse
|
42
|
Misin M, Palmer DS, Fedorov MV. Predicting Solvation Free Energies Using Parameter-Free Solvent Models. J Phys Chem B 2016; 120:5724-31. [DOI: 10.1021/acs.jpcb.6b05352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maksim Misin
- Department
of Physics, SUPA, University of Strathclyde, 107 Rottenrow, Glasgow, G4 0NG, U.K
| | - David S. Palmer
- Department
of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral
Street, Glasgow, G1 1XL, U.K
| | - Maxim V. Fedorov
- Department
of Physics, SUPA, University of Strathclyde, 107 Rottenrow, Glasgow, G4 0NG, U.K
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 143026, Russian Federation
| |
Collapse
|
43
|
Sumi T, Maruyama Y, Mitsutake A, Koga K. A reference-modified density functional theory: An application to solvation free-energy calculations for a Lennard-Jones solution. J Chem Phys 2016; 144:224104. [DOI: 10.1063/1.4953191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
44
|
Zafar A, Reynisson J. Hydration Free Energy as a Molecular Descriptor in Drug Design: A Feasibility Study. Mol Inform 2016; 35:207-14. [PMID: 27492087 DOI: 10.1002/minf.201501035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/11/2016] [Indexed: 01/29/2023]
Abstract
In this work the idea was investigated whether calculated hydration energy (ΔGhyd ) can be used as a molecular descriptor in defining promising regions of chemical space for drug design. Calculating ΔGhyd using the Density Solvation Model (SMD) in conjunction with the density functional theory (DFT) gave an excellent correlation with experimental values. Furthermore, calculated ΔGhyd correlates reasonably well with experimental water solubility (r(2) =0.545) and also log P (r(2) =0.530). Three compound collections were used: Known drugs (n=150), drug-like compounds (n=100) and simple organic compounds (n=140). As an approximation only molecules, which do not de/protonate at physiological pH were considered. A relatively broad distribution was seen for the known drugs with an average at -15.3 kcal/mol and a standard deviation of 7.5 kcal/mol. Interestingly, much lower averages were found for the drug-like compounds (-7.5 kcal/mol) and the simple organic compounds (-3.1 kcal/mol) with tighter distributions; 4.3 and 3.2 kcal/mol, respectively. This trend was not observed for these collections when calculated log P and log S values were used. The considerable greater exothermic ΔGhyd average for the known drugs clearly indicates in order to develop a successful drug candidate value of ΔGhyd <-5 kcal/mol or less is preferable.
Collapse
Affiliation(s)
- Ayesha Zafar
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, Tel. +64-9-373-7599 ext. 83746, Fax. +64-9-373-7422
| | - Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, Tel. +64-9-373-7599 ext. 83746, Fax. +64-9-373-7422.
| |
Collapse
|
45
|
Misin M, Fedorov MV, Palmer DS. Hydration Free Energies of Molecular Ions from Theory and Simulation. J Phys Chem B 2016; 120:975-83. [PMID: 26756333 DOI: 10.1021/acs.jpcb.5b10809] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a theoretical/computational framework for accurate calculation of hydration free energies of ionized molecular species. The method is based on a molecular theory, 3D-RISM, combined with a recently developed pressure correction (PC+). The 3D-RISM/PC+ model can provide ∼3 kcal/mol hydration free energy accuracy for a large variety of ionic compounds, provided that the Galvani potential of water is taken into account. The results are compared with direct atomistic simulations. Several methodological aspects of hydration free energy calculations for charged species are discussed.
Collapse
Affiliation(s)
| | | | - David S Palmer
- Department of Pure and Applied Chemistry, University of Strathclyde , 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
| |
Collapse
|
46
|
Skyner RE, McDonagh JL, Groom CR, van Mourik T, Mitchell JBO. A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys Chem Chem Phys 2016; 17:6174-91. [PMID: 25660403 DOI: 10.1039/c5cp00288e] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past decade, pharmaceutical companies have seen a decline in the number of drug candidates successfully passing through clinical trials, though billions are still spent on drug development. Poor aqueous solubility leads to low bio-availability, reducing pharmaceutical effectiveness. The human cost of inefficient drug candidate testing is of great medical concern, with fewer drugs making it to the production line, slowing the development of new treatments. In biochemistry and biophysics, water mediated reactions and interactions within active sites and protein pockets are an active area of research, in which methods for modelling solvated systems are continually pushed to their limits. Here, we discuss a multitude of methods aimed towards solvent modelling and solubility prediction, aiming to inform the reader of the options available, and outlining the various advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- R E Skyner
- School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | | | | | | | |
Collapse
|
47
|
Sergiievskyi V, Jeanmairet G, Levesque M, Borgis D. Solvation free-energy pressure corrections in the three dimensional reference interaction site model. J Chem Phys 2015; 143:184116. [DOI: 10.1063/1.4935065] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
48
|
Three-dimensional reference interaction site model solvent combined with a quantum mechanical treatment of the solute. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Matveev A, Li B, Rösch N. Uranyl Solvation by a Three-Dimensional Reference Interaction Site Model. J Phys Chem A 2015; 119:8702-13. [PMID: 26167741 DOI: 10.1021/acs.jpca.5b03712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report an implementation of the three-dimensional reference interaction site model (3D RISM) that in particular addresses the treatment of the long-range Coulomb field of charged species, represented by point charges and/or a distributed charge density. A comparison of 1D and 3D results for atomic ions demonstrates a reasonable accuracy, even for a moderate size of the unit cell and a moderate grid resolution. In an application to uranyl complexes with 4-6 explicit aqua ligands and an implicit bulk solvent modeled by RISM, we show that the 3D technique is not susceptible to the deficiencies of the 1D technique exposed in our previous work [Li, Matveev, Krüger, Rösch, Comp. Theor. Chem. 2015, 1051, 151]. The 3D method eliminates the artificial superposition of explicit aqua ligands and the RISM medium and predicts essentially the same values for uranyl and uranyl-water bond lengths as a state-of-the-art polarizable continuum model. With the first solvation shell treated explicitly, the observables are nearly independent of the order of the closure relationship used when solving the set of integral equations for the various distribution functions. Furthermore, we calculated the activation barrier of water exchange with a hybrid approach that combines the 3D RISM model for the bulk aqueous solvent and a quantum mechanical description (at the level of electronic density functional theory) of uranyl interacting with explicitly represented water molecules. The calculated result agrees very well with experiment and the best theoretical estimates.
Collapse
Affiliation(s)
| | | | - Notker Rösch
- §Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Connexis #16-16, Singapore 138632, Singapore
| |
Collapse
|
50
|
Ratkova EL, Palmer DS, Fedorov MV. Solvation thermodynamics of organic molecules by the molecular integral equation theory: approaching chemical accuracy. Chem Rev 2015; 115:6312-56. [PMID: 26073187 DOI: 10.1021/cr5000283] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ekaterina L Ratkova
- †G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Street 1, Ivanovo 153045, Russia.,‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany
| | - David S Palmer
- ‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany.,§Department of Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, United Kingdom
| | - Maxim V Fedorov
- ‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany.,∥Department of Physics, Scottish Universities Physics Alliance (SUPA), University of Strathclyde, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|