1
|
Huang L, Liu W, Xing X. Adsorption of O 2 on the Preferred -O-Au Sites of Small Gold Oxide Clusters: Charge-dependent Interaction and Activation. Molecules 2024; 29:1645. [PMID: 38611924 PMCID: PMC11013888 DOI: 10.3390/molecules29071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Decades of research have illuminated the significant roles of gold/gold oxide clusters in small molecule catalytic oxidation. However, many fundamental questions, such as the actual sites to adsorb and activate O2 and the impact of charge, remain unanswered. Here, we have utilized an improved genetic algorithm program coupled with the DFT method to systematically search for the structures of Au1-5Ox-/+/0 (x = 1-4) and calculated binding interactions between Au1-5Ox-/+/0 (x = 1-2) and O2, aiming to determine the active sites and to elucidate the impact of different charge states in gold oxide systems. The results revealed that the reactivity of all three kinds of small gold oxide clusters toward O2 is strongly site-dependent, with clusters featuring an -O-Au site exhibiting a preference for adsorption. The charges on small gold oxide clusters significantly impact the interaction strength and the activation degree of adsorbed O2: in the case of anionic cluster, the interaction between O2 and the -O-Au sites leads to a chemical reaction involving electron transfer, thereby significantly activating O2; in neutral and cationic clusters, the adsorption of O2 on their -O-Au sites can be viewed as an electrostatic interaction. Pointedly, for cationic clusters, the highly concentrated positive charge on the Au atom of the -O-Au sites can strongly adsorb but hardly activate the adsorbed O2. These results have certain reference points for understanding the gold oxide interfaces and the improved catalytic oxidation performance of gold-based systems in the presence of atomic oxygen species.
Collapse
Affiliation(s)
| | | | - Xiaopeng Xing
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, China; (L.H.); (W.L.)
| |
Collapse
|
2
|
Li S, Qian C, Wu XN, Zhou S. Carbon-Atom Exchange between [MC 2] + (M = Os and Ir) and Methane: on the Thermodynamic and Dynamic Aspects. J Phys Chem A 2024; 128:792-798. [PMID: 38239066 DOI: 10.1021/acs.jpca.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Gas-phase reactions of [OsC2]+ and [IrC2]+ with methane at ambient temperature have been studied using quadrupole-ion trap mass spectrometry combined with quantum chemical calculations. Both [OsC2]+ and [IrC2]+ undergo carbon-atom exchange reactions with methane. The associated mechanisms for the two systems are found to be similar. The differences in the rates of carbon isotope exchange reactions of methane with [MC2]+ (M = Os and Ir) are explained by several factors like the energy barrier for the initial H3C-H bond breaking processes, the molecular dynamics, orbital interactions, and the H-binding energies of the pivotal steps. Besides, the number of participating valence orbitals might be one of the keys to regulate the rate in the key step. The present findings may provide useful ideas and inspiration for designing similar processes.
Collapse
Affiliation(s)
- Shihan Li
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, Quzhou 324000, P.R. China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, Quzhou 324000, P.R. China
| | - Xiao-Nan Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, Quzhou 324000, P.R. China
| |
Collapse
|
3
|
He XY, Liu YZ, Chen JJ, Lan X, Li XN, He SG. Size-Dependent Reactivity of Co n- ( n = 5-25) Cluster Anions toward Carbon Dioxide. J Phys Chem Lett 2023; 14:6948-6955. [PMID: 37498356 DOI: 10.1021/acs.jpclett.3c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A fundamental understanding of the reactivity evolution of nanosized clusters at an atomically precise level is pivotal to assemble desired materials with promising candidates. Benefiting from the tandem mass spectrometer coupled with a high-temperature ion-trap reactor, the reactions of mass-selected Con- (n = 5-25) clusters with CO2 were investigated and the increased reactivity of Co20-25- was newly discovered herein. This finding marks an important step to understand property evolution of subnanometer metal clusters (Co25-, ∼0.8 nm) atom-by-atom. The reasons behind the increased reactivity of Co20-25- were proposed by analyzing the reactions of smaller Co6-8- clusters that exhibit significantly different reactivity toward CO2, in which a lower electron affinity of Con contributes to the capture of CO2 while the flexibility of Con- could play vital roles to stabilize reaction intermediates and suppress the barriers of O-CO rupture and CO desorption.
Collapse
Affiliation(s)
- Xing-Yue He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Wang SD, Chen JJ, Ma TM, Li XN, He SG. Catalytic NO Reduction by Noble-Metal-Free Vanadium-Aluminum Oxide Cluster Anions. J Phys Chem Lett 2023; 14:4388-4393. [PMID: 37140362 DOI: 10.1021/acs.jpclett.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
By using state-of-the-art mass spectrometry and guided by the newly discovered single-electron mechanism (SEM; e.g., Ti3+ + 2NO → Ti4+-O•- + N2O), we determined experimentally that the vanadium-aluminum oxide clusters V4-xAlxO10-x- (x = 1-3) can catalyze the reduction of NO by CO and substantiated theoretically that the SEM still prevails in driving the catalysis. This finding marks an important step in cluster science in which a noble metal had been demonstrated to be indispensable in NO activation mediated by heteronuclear metal clusters. The results provide new insights into the SEM in which active V-Al cooperative communication favors the transfer of an unpaired electron from the V atom to NO attached to the Al atom on which the reduction reaction actually takes place. This study provides a clear picture for improving our understanding of related heterogeneous catalysis, and the electron hopping behavior induced by NO adsorption could be a fundamental chemistry for driving NO reduction.
Collapse
Affiliation(s)
- Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Li XN, He SG. Gas-phase reactions driven by polarized metal-metal bonding in atomic clusters. Phys Chem Chem Phys 2023; 25:4444-4459. [PMID: 36723009 DOI: 10.1039/d2cp05148f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multimetallic catalysts exhibit great potential in the activation and catalytic transformation of small molecules. The polarized metal-metal bonds have been gradually recognized to account for the reactivity of multimetallic catalysts due to the synergistic effect of different metal centers. Gas-phase reactions on atomic clusters that compositionally resemble the active sites on related condensed-phase catalysts provide a widely accepted strategy to clarify the nature of polarized metal-metal bonds and the mechanistic details of elementary steps involved in the catalysis driven by this unique chemical bonding. This perspective review concerns the progress in the fundamental understanding of industrially and environmentally important reactions that are closely related to the polarized metal-metal bonds in clusters at a strictly molecular level. The following topics have been summarized and discussed: (1) catalytic CO oxidation with O2, H2O, and NO as oxidants (2) and the activation of other inert molecules (e.g., CH4, CO2, and N2) mediated with clusters featuring polarized metal-metal bonding. It turns out that the findings in the gas phase parallel the catalytic behaviors of condensed-phase catalysts and the knowledge can prove to be essential in inspiring future design of promising catalysts.
Collapse
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
7
|
Wang SD, Chen JJ, Liu YZ, Ma TM, Li XN, He SG. Facile CO bond cleavage on polynuclear vanadium nitride clusters V 4N 5. Phys Chem Chem Phys 2022; 24:29765-29771. [PMID: 36458914 DOI: 10.1039/d2cp04304a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying the structural configurations of precursors for CO dissociation is fundamentally interesting and industrially important in the fields of, e.g., Fischer-Tropsch synthesis. Herein, we demonstrated that CO could be dissociated on polynuclear vanadium nitride V4N5- clusters at room temperature, and a key intermediate, with CO in a N-assisted tilted bridge coordination where the C-O bond ruptures easily, was discovered. The reaction was characterized by mass spectrometry, photoelectron spectroscopy, and quantum-chemistry calculations, and the nature of the adsorbed CO on product V4N5CO- was further characterized by a collision-induced dissociation experiment. Theoretical analysis evidences that CO dissociation is predominantly governed by the low-coordinated V and N atoms on the (V3N4)VN- cluster and the V3N4 moiety resembles a support. This finding strongly suggests that a novel mode for facile CO dissociation was identified in a gas-phase cluster study.
Collapse
Affiliation(s)
- Si-Dun Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China. .,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
8
|
Yang Y, Zhao Y, He S. Conversion of CH
4
Catalyzed by Gas Phase Ions Containing Metals. Chemistry 2022; 28:e202200062. [DOI: 10.1002/chem.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
9
|
Chen LS, Chen JJ, Ma TM, Li XN, He SG. CO self-promoted oxidation by gas-phase cluster anions IrVO4−. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Chen LS, Liu YZ, Li XN, Chen JJ, Jiang GD, Ma TM, He SG. An IrVO 4+ Cluster Catalytically Oxidizes Four CO Molecules: Importance of Ir-V Multiple Bonding. J Phys Chem Lett 2021; 12:6519-6525. [PMID: 34240876 DOI: 10.1021/acs.jpclett.1c01584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The generation and characterization of multiple metal-metal (M-M) bonds between early and late transition metals is vital to correlate the nature of multiple M-M bonds with the related reactivity in catalysis, while the examples with multiple M-M bonds have been rarely reported. Herein, we identified that the quadruple bonding interactions were formed in a gas-phase ion IrV+ with a dramatically short Ir-V bond. Oxidation of four CO molecules by IrVO4+ is a highly exothermic process driven by the generation of stable products IrV+ and CO2, and then IrV+ can be oxidized by N2O to regenerate IrVO4+. This finding overturns the general impression that vanadium oxide clusters are unwilling to oxidize multiple CO molecules because of the strong V-O bond and that at most two oxygen atoms can be supplied from a single V-containing cluster in CO oxidation. This study emphasizes the potential importance of heterobimetallic multiple M-M bonds in related heterogeneous catalysis.
Collapse
Affiliation(s)
- Le-Shi Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Zhao YX, Zhao XG, Yang Y, Ruan M, He SG. Rhodium chemistry: A gas phase cluster study. J Chem Phys 2021; 154:180901. [PMID: 34241019 DOI: 10.1063/5.0046529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the extraordinary catalytic activity in redox reactions, the noble metal, rhodium, has substantial industrial and laboratory applications in the production of value-added chemicals, synthesis of biomedicine, removal of automotive exhaust gas, and so on. The main drawback of rhodium catalysts is its high-cost, so it is of great importance to maximize the atomic efficiency of the precious metal by recognizing the structure-activity relationship of catalytically active sites and clarifying the root cause of the exceptional performance. This Perspective concerns the significant progress on the fundamental understanding of rhodium chemistry at a strictly molecular level by the joint experimental and computational study of the reactivity of isolated Rh-based gas phase clusters that can serve as ideal models for the active sites of condensed-phase catalysts. The substrates cover the important organic and inorganic molecules including CH4, CO, NO, N2, and H2. The electronic origin for the reactivity evolution of bare Rhx q clusters as a function of size is revealed. The doping effect and support effect as well as the synergistic effect among heteroatoms on the reactivity and product selectivity of Rh-containing species are discussed. The ingenious employment of diverse experimental techniques to assist the Rh1- and Rh2-doped clusters in catalyzing the challenging endothermic reactions is also emphasized. It turns out that the chemical behavior of Rh identified from the gas phase cluster study parallels the performance of condensed-phase rhodium catalysts. The mechanistic aspects derived from Rh-based cluster systems may provide new clues for the design of better performing rhodium catalysts including the single Rh atom catalysts.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
12
|
Sampathkumar S, Paranthaman S. Neutral noble-metal-free VCoO 2 and CrCoO 2 cluster catalysts for CO oxidation by O 2. NEW J CHEM 2021. [DOI: 10.1039/d0nj05199c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutral noble-metal-free metal oxide cluster catalysts (VCoO2 and CrCoO2) were developed for multiple CO oxidation reactions by O2.
Collapse
Affiliation(s)
- Suresh Sampathkumar
- Department of Physics and International Research Centre
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil 626 126
- India
| | - Selvarengan Paranthaman
- Department of Physics and International Research Centre
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil 626 126
- India
| |
Collapse
|
13
|
Wang S, Chen J, Li X, Ma T, He S. Catalytic CO Oxidation by O
2
Mediated with Single Gold Atom Doped Titanium Oxide Cluster Anions AuTi
2
O
4–6
−. Chemphyschem 2020; 21:2550-2556. [DOI: 10.1002/cphc.202000755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/16/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Si‐Dun Wang
- School of Chemistry and Chemical Engineering South China University of Technology 381 Wushan Road Tianhe District Guangzhou 510641 China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jiao‐Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| | - Xiao‐Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| | - Tong‐Mei Ma
- School of Chemistry and Chemical Engineering South China University of Technology 381 Wushan Road Tianhe District Guangzhou 510641 China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| |
Collapse
|
14
|
Li W, Wu X, Liu Z, Wu H, Zhang D, Ding X. C/C Exchange in Activation/Coupling Reaction of Acetylene and Methane Mediated by Os +: A Comparison with Ir +, Pt +, and Au . J Phys Chem Lett 2020; 11:8346-8351. [PMID: 32885973 DOI: 10.1021/acs.jpclett.0c02068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The activation and coupling reactions of methane and acetylene mediated by M+ (M = Os, Ir, Pt, and Au) have been comparatively studied at room temperature by the techniques of mass spectrometry in conjunction with theoretical calculations. Studies have shown that Os+ and Ir+ can mediate the activation/coupling reaction of CH4 and C2H2, while Pt+ and Au+ cannot, which could be explained by the number of empty valence orbitals in the metal atom. In addition, there are different competition channels for the reaction mediated by Os+ and Ir+: an expected dehydrogenation and an unexpected C/C exchange. We find that if the rare C/C exchange reaction takes place, there are symmetric carbon atoms in the reaction intermediate and the C/C exchange reaction is favored kinetically. The C/C exchange reaction must be considered, which will affect the yield of the products in the primary reaction. This study shows the molecular-level mechanisms which include the C/C exchange reaction in the activation and coupling reaction of organic compounds mediated by different metals.
Collapse
Affiliation(s)
- Wei Li
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, China
- Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beijing 102206, China
| | - Xiaonan Wu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zizhuang Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hechen Wu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Di Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xunlei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, China
- Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
15
|
Wang Y, Han C, Fei Z, Dong C, Liu H. Probing the Hydrogen Bonding in Microsolvated Clusters of Au 1,2-(Solv) n (Solv = C 2H 5OH, n-C 3H 7OH; n = 1-3 for Au -; n =1 for Au 2-). J Phys Chem A 2020; 124:5590-5598. [PMID: 32551619 DOI: 10.1021/acs.jpca.0c03746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The microsolvation of gold anions in different alcohol solvents is demonstrated by the combination of anion photoelectron spectroscopy and quantum chemical calculations on the Au1,2-(Solv)n (Solv = C2H5OH, n-C3H7OH; n = 1-3 for Au-; n = 1 for Au2-). The microsolvation structures of these clusters and their corresponding neutrals are assigned by comparing calculations with experiments. In terms of overall regularity, the increasing solvation number (n) and carbon chain extension both can increase the stability of the anion. When n ≥ 2, these clusters have low-energy isomers, where conventional hydrogen bonds (HBs) compete with nonconventional HBs (NHBs). NHBs are dominant when n ≤ 2 and when n is increased, vice versa. Interestingly, a variety of theoretical calculations show that after the hydroxy H atom of the ethanol molecule forms a weak ionic HB with Au-, there are two lowest conformations of ethanol, trans and gauche, which could be coexisting in the molecular beams. Some theoretical methods also suggest that the gauche isomer is more stable than the trans one, which indicates that Au- may exist as a gold gauche effect similar to fluorine.
Collapse
Affiliation(s)
- Yongtian Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Changcai Han
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zejie Fei
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Changwu Dong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Hongtao Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| |
Collapse
|
16
|
Liu Z, Bai Y, Li Y, He J, Lin Q, Xie H, Tang Z. Unsaturated binuclear homoleptic nickel carbonyl anions Ni2(CO)n− (n = 4–6) featuring double three-center two-electron Ni–C–Ni bonds. Phys Chem Chem Phys 2020; 22:23773-23784. [DOI: 10.1039/d0cp03883k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two nickel atoms in the Ni2(CO)n− (n = 4–6) complexes are joined by two bridging carbonyl ligands via the sharing three-center two-electron Ni–C–Ni bond in turn to achieve the (16,16), (16,18), and eventually the favored (18,18) configurations.
Collapse
Affiliation(s)
- Zhiling Liu
- School of Chemical and Material Science
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- Shanxi Normal University
- Linfen
| | - Yan Bai
- School of Chemical and Material Science
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- Shanxi Normal University
- Linfen
| | - Ya Li
- School of Chemical and Material Science
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- Shanxi Normal University
- Linfen
| | - Jing He
- School of Chemical and Material Science
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- Shanxi Normal University
- Linfen
| | - Qingyang Lin
- School of Chemical and Material Science
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- Shanxi Normal University
- Linfen
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Zichao Tang
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
17
|
Liu Z, Bai Y, Li Y, He J, Lin Q, Hou L, Wu HS, Zhang F, Jia J, Xie H, Tang Z. Multicenter electron-sharing σ-bonding in the AgFe(CO)4− complex. Dalton Trans 2020; 49:15256-15266. [DOI: 10.1039/d0dt02685a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For the AgFe(CO)4− anion, the silver atom is covalently bonded to the anionic tetracarbonyl-iron, an isolobal analogue of the methyl radical, via a peculiar decentralized electron-sharing σ bond.
Collapse
|
18
|
Hao Z, Guo S, Guo L. Mechanisms investigation of the WGSR catalyzed by single noble metal atoms supported on vanadium oxide clusters. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zijun Hao
- The School of Chemical and Material ScienceShanxi Normal University Linfen 041004 China
| | - Sibei Guo
- The Second Clinical Medical College of Shanxi Medical University Taiyuan 030001 China
| | - Ling Guo
- The School of Chemical and Material ScienceShanxi Normal University Linfen 041004 China
| |
Collapse
|
19
|
Zhang J, Li Y, Liu Z, Li G, Fan H, Jiang L, Xie H. Ligand-Mediated Reactivity in CO Oxidation of Niobium-Nickel Monoxide Carbonyl Complexes: The Crucial Roles of the Multiple Adsorption of CO Molecules. J Phys Chem Lett 2019; 10:1566-1573. [PMID: 30840827 DOI: 10.1021/acs.jpclett.9b00205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The heteronuclear metal oxide complexes are of great significance in heterogeneous catalytic oxidation of CO. However, previous studies are mainly focused on the composition of metal oxide, charge state, the support and the active oxygen species, with little attention paid to adsorbed CO ligands. Herein, the ligand-mediated reactivity in CO oxidation of niobium-nickel monoxide carbonyl complexes has been successfully identified. The NbNiO(CO) n- ( n = 5-6) anions are determined to be O-bridged complexes. In contrast, the NbNiO(CO) n- ( n = 7-8) anions are characterized to be η2-CO2-tagged complexes. The crucial roles of the multiply adsorbed CO molecules that can facilitate not only the competitive binding with bridging oxygen atom to the transition metal centers but also the electron accumulation of transition metal atoms have been discovered. The fascinating results are of substantial importance to understand the mechanisms of CO oxidation over heteronuclear metal oxide under CO-rich feed condition.
Collapse
Affiliation(s)
- Jumei Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials(iChEM) , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Ya Li
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education , Shanxi Normal University , No. 1, Gongyuan Street , Linfen , Shanxi 041004 , China
| | - Zhiling Liu
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education , Shanxi Normal University , No. 1, Gongyuan Street , Linfen , Shanxi 041004 , China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials(iChEM) , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials(iChEM) , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials(iChEM) , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials(iChEM) , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| |
Collapse
|
20
|
Ou SH, Chen JJ, Li XN, Wang LN, Ma TM, He SG. CO oxidation by neutral gold-vanadium oxide clusters. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1812300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shu-hua Ou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiao-jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Tong-mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Sheng-gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
21
|
Chen JJ, Li XN, Chen Q, Liu QY, Jiang LX, He SG. Neutral Au 1-Doped Cluster Catalysts AuTi 2O 3-6 for CO Oxidation by O 2. J Am Chem Soc 2019; 141:2027-2034. [PMID: 30595020 DOI: 10.1021/jacs.8b11118] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxide supported gold catalysts (e.g., Au/TiO2) are of great significance in heterogeneous catalysis owing to their extraordinary catalytic activity. Study of heteronuclear metal oxide clusters (HMOCs, e.g., Au xTi yO z q) is an important way to uncover the molecular-level mechanisms of gold catalysis in the related heterogeneous catalytic systems. However, the current studies of HMOCs are focused on charged clusters with little attention paid to neutral species. The reactivity study of neutral HMOCs is vital to have a comprehensive understanding of heterogeneous catalysis, but it is experimentally challenging because of the difficulty of cluster ionization and detection without fragmentation. Herein, benefiting from a homemade time-of-flight mass spectrometer coupled with a vacuum ultraviolet laser system, the reactivity of neutral Au1-doped titanium oxide clusters AuTi2O3-6 in catalytic CO oxidation by O2 has been successfully identified. The mechanistic details of the catalysis have been elucidated by quantum chemistry calculations. The crucial roles of the mobile AuCO species that can facilitate not only the process of CO oxidation but also the process of O2 activation have been discovered in the cluster catalysis. The fascinating results are of substantial importance to understand the mechanisms of CO oxidation over Au/TiO2, one type of the best studied gold catalysts.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Qiang Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| |
Collapse
|
22
|
Jiang LX, Li XN, Li ZY, Li HF, He SG. H2 dissociation by Au1-doped closed-shell titanium oxide cluster anions. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1805107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Li-xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Zi-yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Hai-fang Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Chi C, Qu H, Meng L, Kong F, Luo M, Zhou M. CO Oxidation by Group 3 Metal Monoxide Cations Supported on [Fe(CO)4
]2−. Angew Chem Int Ed Engl 2017; 56:14096-14101. [DOI: 10.1002/anie.201707898] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Chaoxian Chi
- School of Chemistry, Biological and Materials Sciences; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Hui Qu
- Department of Chemistry; Collaborative Innovation Center of Chemistry for Energy Materials; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Luyan Meng
- School of Chemistry, Biological and Materials Sciences; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Fanchen Kong
- Department of Chemistry; Collaborative Innovation Center of Chemistry for Energy Materials; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Mingbiao Luo
- School of Chemistry, Biological and Materials Sciences; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Mingfei Zhou
- Department of Chemistry; Collaborative Innovation Center of Chemistry for Energy Materials; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Fudan University; Shanghai 200433 China
| |
Collapse
|
24
|
Chi C, Qu H, Meng L, Kong F, Luo M, Zhou M. CO Oxidation by Group 3 Metal Monoxide Cations Supported on [Fe(CO)4
]2−. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chaoxian Chi
- School of Chemistry, Biological and Materials Sciences; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Hui Qu
- Department of Chemistry; Collaborative Innovation Center of Chemistry for Energy Materials; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Luyan Meng
- School of Chemistry, Biological and Materials Sciences; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Fanchen Kong
- Department of Chemistry; Collaborative Innovation Center of Chemistry for Energy Materials; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Mingbiao Luo
- School of Chemistry, Biological and Materials Sciences; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Mingfei Zhou
- Department of Chemistry; Collaborative Innovation Center of Chemistry for Energy Materials; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Fudan University; Shanghai 200433 China
| |
Collapse
|
25
|
Zhang Y, Li ZY, Zhao YX, Li HF, Ding XL, Zhang HY, He SG. H2 Oxidation Mediated by Au1-Doped Vanadium Oxide Cluster Cation AuV2O5+: A Comparative Study with AuCe2O4+. J Phys Chem A 2017; 121:4069-4075. [DOI: 10.1021/acs.jpca.7b02435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Zhang
- Department
of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, People’s Republic of China
| | - Zi-Yu Li
- Beijing
National Laboratory for Molecular Science (BNLMS), State Key Laboratory
for Structural Chemistry of Unstable and Stable Species, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Yan-Xia Zhao
- Beijing
National Laboratory for Molecular Science (BNLMS), State Key Laboratory
for Structural Chemistry of Unstable and Stable Species, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Hai-Fang Li
- Beijing
National Laboratory for Molecular Science (BNLMS), State Key Laboratory
for Structural Chemistry of Unstable and Stable Species, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xun-Lei Ding
- Department
of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, People’s Republic of China
| | - Hua-Yong Zhang
- Department
of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, People’s Republic of China
| | - Sheng-Gui He
- Beijing
National Laboratory for Molecular Science (BNLMS), State Key Laboratory
for Structural Chemistry of Unstable and Stable Species, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
26
|
Schwarz H. Ménage-à-trois: single-atom catalysis, mass spectrometry, and computational chemistry. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02658c] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genuine, single-atom catalysis can be realized in the gas phase and probed by mass spectrometry combined with computational chemistry.
Collapse
Affiliation(s)
- Helmut Schwarz
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
27
|
Duan Y, Li Z, Li Y, Zhang Y, Li L, Li J. New insight of the Mars-van Krevelen mechanism of the CO oxidation by gold catalyst on the ZnO(101) surface. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Jiang LX, Li XN, Li HF, Zhou ZX, He SG. Generation of Hydroxyl Radicals in the Reaction of Dihydrogen with AuNbO 4+ Cluster Cations. Chem Asian J 2016; 11:2730-2734. [PMID: 27017581 DOI: 10.1002/asia.201600144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/09/2016] [Indexed: 11/05/2022]
Abstract
A molecular-level insight into the nature of reactive oxygen species involved in dihydrogen (H2 ) dissociation is of great importance to understand gold catalysis. In this study, laser ablation generated and mass-selected AuNbO4+ oxide cluster cations could dissociate H2 in an ion-trap reactor. The reaction has been characterized by time-of-flight mass spectrometric experiments and density functional calculations. The lowest energy isomer of AuNbO4+ contains two lattice oxygen (O2- ) and one superoxide (O2.- ) species. The gold atom anchors the H2 molecule in the first step and then delivers one hydrogen atom to the O2- ion in H2 dissociation. At the same time, O2.- is reduced into a peroxide unit that can accept the second hydrogen atom of H2 with the generation of a hydroxyl radical as the main product. In this study, the important roles of the O2.- unit in the dissociation of H2 have been identified.
Collapse
Affiliation(s)
- Li-Xue Jiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xiao-Na Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
| | - Hai-Fang Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhen-Xun Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
| |
Collapse
|
29
|
Nagata T, Miyajima K, Mafuné F. Gold Atoms Supported on Gas-Phase Cerium Oxide Cluster Ions: Stable Stoichiometry and Reactivity with CO. J Phys Chem A 2016; 120:7624-7633. [DOI: 10.1021/acs.jpca.6b08257] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiaki Nagata
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ken Miyajima
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Fumitaka Mafuné
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
30
|
Li YK, Yuan Z, Zhao YX, Zhao C, Liu QY, Chen H, He SG. Thermal Methane Conversion to Syngas Mediated by Rh 1-Doped Aluminum Oxide Cluster Cations RhAl 3O 4<sup/>. J Am Chem Soc 2016; 138:12854-12860. [PMID: 27604817 DOI: 10.1021/jacs.6b05454] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Laser ablation generated RhAl3O4+ heteronuclear metal oxide cluster cations have been mass-selected using a quadrupole mass filter and reacted with CH4 or CD4 in a linear ion trap reactor under thermal collision conditions. The reactions have been characterized by state-of-the-art mass spectrometry and quantum chemistry calculations. The RhAl3O4+ cluster can activate four C-H bonds of a methane molecule and convert methane to syngas, an important intermediate product in methane conversion to value-added chemicals. The Rh atom is the active site for activation of the C-H bonds of methane. The high electron-withdrawing capability of Rh atom is the driving force to promote the conversion of methane to syngas. The polarity of Rh oxidation state is changed from positive to negative after the reaction. This study has provided the first example of methane conversion to syngas by heteronuclear metal oxide clusters under thermal collision conditions. Furthermore, the molecular level origin has been revealed for the condensed-phase experimental observation that trace amounts of Rh can promote the participation of lattice oxygen of chemically very inert support (Al2O3) to oxidize methane to carbon monoxide.
Collapse
Affiliation(s)
- Ya-Ke Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Zhen Yuan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yan-Xia Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Chongyang Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Qing-Yu Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
31
|
Zhang HX, Ding XL. DFT investigations on AuVO3+, a barrier-free catalyst for oxidation of CO with O2. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Li ZY, Li HF, Zhao YX, He SG. Gold(III) Mediated Activation and Transformation of Methane on Au1-Doped Vanadium Oxide Cluster Cations AuV2O6+. J Am Chem Soc 2016; 138:9437-43. [DOI: 10.1021/jacs.6b03940] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zi-Yu Li
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Hai-Fang Li
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yan-Xia Zhao
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Sheng-Gui He
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
33
|
Possible reasons that catalytic reactivity towards low-temperature CO oxidation has not been found in Au3− cluster. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Li XN, Li ZY, Li HF, He SG. Multiple CO Oxidation Promoted by Au2
Dimers in Au2
TiO4
−
Cluster Anions. Chemistry 2016; 22:9024-9. [DOI: 10.1002/chem.201600451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao-Na Li
- Beijing National Laboratory for Molecular Science; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Zi-Yu Li
- Beijing National Laboratory for Molecular Science; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Hai-Fang Li
- Beijing National Laboratory for Molecular Science; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Science; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
35
|
A nine-atom rhodium-aluminum oxide cluster oxidizes five carbon monoxide molecules. Nat Commun 2016; 7:11404. [PMID: 27094921 PMCID: PMC4843021 DOI: 10.1038/ncomms11404] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022] Open
Abstract
Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium-aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative.
Collapse
|
36
|
Wang J, Yan QB, Ma J, Cao X, Xing X, Wang X. Exploring the low-lying structures of Aun(CO)+ (n = 1–10): adsorption and stretching frequencies of CO on various coordination sites. RSC Adv 2016. [DOI: 10.1039/c5ra25494a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adsorption of CO on cationic gold clusters is insensitive to the structural details of the adsorption site.
Collapse
Affiliation(s)
- Jie Wang
- Department of Chemistry
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| | - Qing-Bo Yan
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Jun Ma
- Department of Chemistry
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| | - Xizi Cao
- Department of Chemistry
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| | - Xiaopeng Xing
- Department of Chemistry
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| | - Xuefeng Wang
- Department of Chemistry
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| |
Collapse
|
37
|
Ding XL, Wang D, Li RJ, Liao HL, Zhang Y, Zhang HY. Adsorption of a single gold or silver atom on vanadium oxide clusters. Phys Chem Chem Phys 2016; 18:9497-503. [DOI: 10.1039/c6cp00808a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The single Au atom can be adsorbed on both V and O sites of vanadium oxide clusters with quite large binding energies, illustrating the stabilization of noble atoms in single-atom catalysts.
Collapse
Affiliation(s)
- Xun-Lei Ding
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
| | - Dan Wang
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
| | - Rui-Jie Li
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
| | - Heng-Lu Liao
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
| | - Yan Zhang
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
- Research Center for Ecological Engineering and Nonlinear Science
| | - Hua-Yong Zhang
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
- Research Center for Ecological Engineering and Nonlinear Science
| |
Collapse
|
38
|
Zhao YX, Liu QY, Zhang MQ, He SG. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase. Dalton Trans 2016; 45:11471-95. [DOI: 10.1039/c6dt01246a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Progress on the activation and transformation of important inorganic and organic molecules by negatively charged bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Qing-Yu Liu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Mei-Qi Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
39
|
Li YK, Li ZY, Zhao YX, Liu QY, Meng JH, He SG. Activation and Transformation of Ethane by Au2
VO3
+
Clusters with Closed-Shell Electronic Structures. Chemistry 2015; 22:1825-30. [DOI: 10.1002/chem.201503676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Ya-Ke Li
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Zi-Yu Li
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yan-Xia Zhao
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Qing-Yu Liu
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Jing-Heng Meng
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
40
|
Wang L, Li Z, Liu Q, Meng J, He S, Ma T. CO Oxidation Promoted by the Gold Dimer in Au
2
VO
3
−
and Au
2
VO
4
−
Clusters. Angew Chem Int Ed Engl 2015; 54:11720-4. [DOI: 10.1002/anie.201505476] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/14/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Li‐Na Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640 (China)
| | - Zi‐Yu Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
| | - Qing‐Yu Liu
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
| | - Jing‐Heng Meng
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
| | - Sheng‐Gui He
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
| | - Tong‐Mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640 (China)
| |
Collapse
|
41
|
Wang LN, Li ZY, Liu QY, Meng JH, He SG, Ma TM. CO Oxidation Promoted by the Gold Dimer in Au2VO3−and Au2VO4−Clusters. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Koyama K, Kudoh S, Miyajima K, Mafuné F. Stable Stoichiometry of Gas-Phase Manganese Oxide Cluster Ions Revealed by Temperature-Programmed Desorption. J Phys Chem A 2015; 119:8433-42. [DOI: 10.1021/acs.jpca.5b02139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kohei Koyama
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Kudoh
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ken Miyajima
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Fumitaka Mafuné
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
43
|
|
44
|
Schwarz H. Doping Effects in Cluster-Mediated Bond Activation. Angew Chem Int Ed Engl 2015; 54:10090-100. [DOI: 10.1002/anie.201500649] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Indexed: 11/09/2022]
|
45
|
Gao G, Wei S, Duan X, Pan X. Influence of charge state on catalytic properties of PtAu(CO) in reduction of SO2 by CO. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.02.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Wang LN, Zhou ZX, Li XN, Ma TM, He SG. Thermal Conversion of Methane to Formaldehyde Promoted by Gold in AuNbO3+Cluster Cations. Chemistry 2015; 21:6957-61. [DOI: 10.1002/chem.201406497] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 11/11/2022]
|
47
|
Ma JB, Meng JH, He SG. Gas-phase reaction of CeVO5+ cluster ions with C2H4: the reactivity of cluster bonded peroxides. Dalton Trans 2015; 44:3128-35. [DOI: 10.1039/c4dt03398a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of the peroxide unit with hydrocarbon molecules on transition metal oxide clusters with a closed-shell electronic structure has been identified for the first time.
Collapse
Affiliation(s)
- Jia-Bi Ma
- Key Laboratory of Cluster Science
- The Institute for Chemical Physics
- School of Chemistry
- Beijing Institute of Technology
- Beijing
| | - Jing-Heng Meng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- 100190 Beijing
- People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- 100190 Beijing
- People's Republic of China
| |
Collapse
|
48
|
Meng JH, He SG. Thermal Dihydrogen Activation by a Closed-Shell AuCeO2(+) Cluster. J Phys Chem Lett 2014; 5:3890-3894. [PMID: 26278765 DOI: 10.1021/jz502057n] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Laser-ablation-generated AuCeO2(+) and CeO2(+) oxide clusters were mass-selected using a quadrupole mass filter and reacted with H2 in an ion trap reactor at ambient conditions. The reactions were characterized by mass spectrometry and density functional theory calculations. The gold-cerium bimetallic oxide cluster AuCeO2(+) is more reactive in H2 activation than the pure cerium oxide cluster CeO2(+). The gold atom is the active adsorption site and facilitates the heterolytic cleavage of H2 in collaboration with the separated O(2-) ion of the CeO2 support. To the best of our knowledge, this is the first example of thermal H2 activation by a closed-shell atomic cluster, which provides molecular-level insights into the single gold atom catalysis over metal oxide supports.
Collapse
Affiliation(s)
- Jing-Heng Meng
- †Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- ‡University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Sheng-Gui He
- †Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
49
|
Li ZY, Yuan Z, Li XN, Zhao YX, He SG. CO Oxidation Catalyzed by Single Gold Atoms Supported on Aluminum Oxide Clusters. J Am Chem Soc 2014; 136:14307-13. [DOI: 10.1021/ja508547z] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zi-Yu Li
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhen Yuan
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiao-Na Li
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Yan-Xia Zhao
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Sheng-Gui He
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
50
|
Ma JB, Yuan Z, Meng JH, Liu QY, He SG. Gas-Phase Reaction of CeV2O7+with C2H4: Activation of CC and CH Bonds. Chemphyschem 2014; 15:4117-25. [DOI: 10.1002/cphc.201402347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/20/2014] [Indexed: 11/07/2022]
|