1
|
Shi R, Long R, Fang WH, Prezhdo OV. Rapid Interlayer Charge Separation and Extended Carrier Lifetimes due to Spontaneous Symmetry Breaking in Organic and Mixed Organic-Inorganic Dion-Jacobson Perovskites. J Am Chem Soc 2023; 145:5297-5309. [PMID: 36826471 DOI: 10.1021/jacs.2c12903] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Promising alternatives to three-dimensional perovskites, two-dimensional (2D) layered metal halide perovskites have proven their potential in optoelectronic applications due to improved photo- and chemical stability. Nevertheless, photovoltaic devices based on 2D perovskites suffer from poor efficiency owing to unfavorable charge carrier dynamics and energy losses. Focusing on the 2D Dion-Jacobson perovskite phase that is rapidly rising in popularity, we demonstrate that doping of complementary cations into the 3-(aminomethyl)piperidinium perovskite accelerates spontaneous charge separation and slows down charge recombination, both factors improving the photovoltaic performance. Employing ab initio nonadiabatic (NA) molecular dynamics combined with time-dependent density functional theory, we demonstrate that cesium doping broadens the bandgap by 0.4 eV and breaks structural symmetry. Assisted by thermal fluctuations, the symmetry breaking helps to localize electrons and holes in different layers and activates additional vibrational modes. As a result, the charge separation is accelerated. Simultaneously, the charge carrier lifetime grows due to shortened coherence time between the ground and excited states. The established relationships between perovskite composition and charge carrier dynamics provide guidelines toward future material discovery and design of perovskite solar cells.
Collapse
Affiliation(s)
- Ran Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Zahmatkesh S, Hajiaghaei-Keshteli M, Bokhari A, Sundaramurthy S, Panneerselvam B, Rezakhani Y. Wastewater treatment with nanomaterials for the future: A state-of-the-art review. ENVIRONMENTAL RESEARCH 2023; 216:114652. [PMID: 36309214 DOI: 10.1016/j.envres.2022.114652] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Aquatic and terrestrial ecosystems are both threatened by toxic wastewater. The unique properties of nanomaterials are currently being studied thoroughly for treating sewage. Nanomaterials also have the advantage of being capable of removing organic matter, fungi, and viruses from wastewater. Advanced oxidation processes are used in nanomaterials to treat wastewater. Additionally, nanomaterials have a large effective area of contact due to their tiny dimensions. The adsorption and reactivity of nanomaterials are strong. Wastewater treatment would benefit from the development of nanomaterial technology. Second, the paper provides a comprehensive analysis of the unique characteristics of nanomaterials in wastewater treatment, their proper use, and their prospects. In addition to focusing on their economic feasibility, since limited forms of nanomaterials have been manufactured, it is also necessary to consider their feasibility in terms of their technical results. According to this study, the significant adsorption area, excellent chemical reaction, and electrical conductivity of nanoparticles (NPs) contribute to the successful treatment of wastewater.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| | | | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno Technická 2896/2, 616 00, Brno, Czech Republic
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology Bhopal, 462 003, Madhya Pradesh, India
| | | | - Yousof Rezakhani
- Department of Civil Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| |
Collapse
|
3
|
Ballabio M, Cánovas E. Electron Transfer at Quantum Dot–Metal Oxide Interfaces for Solar Energy Conversion. ACS NANOSCIENCE AU 2022; 2:367-395. [PMID: 36281255 PMCID: PMC9585894 DOI: 10.1021/acsnanoscienceau.2c00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Electron transfer
at a donor–acceptor quantum dot–metal
oxide interface is a process fundamentally relevant to solar energy
conversion architectures as, e.g., sensitized solar cells and solar
fuels schemes. As kinetic competition at these technologically relevant
interfaces largely determines device performance, this Review surveys
several aspects linking electron transfer dynamics and device efficiency;
this correlation is done for systems aiming for efficiencies up to
and above the ∼33% efficiency limit set by Shockley and Queisser
for single gap devices. Furthermore, we critically comment on common
pitfalls associated with the interpretation of kinetic data obtained
from current methodologies and experimental approaches, and finally,
we highlight works that, to our judgment, have contributed to a better
understanding of the fundamentals governing electron transfer at quantum
dot–metal oxide interfaces.
Collapse
Affiliation(s)
- Marco Ballabio
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| | - Enrique Cánovas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| |
Collapse
|
4
|
Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook. ENERGIES 2022. [DOI: 10.3390/en15041553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The grand challenges in renewable energy lie in our ability to comprehend efficient energy conversion systems, together with dealing with the problem of intermittency via scalable energy storage systems. Relatively little progress has been made on this at grid scale and two overriding challenges still need to be addressed: (i) limiting damage to the environment and (ii) the question of environmentally friendly energy conversion. The present review focuses on a novel route for producing hydrogen, the ultimate clean fuel, from the Sun, and renewable energy source. Hydrogen can be produced by light-driven photoelectrochemical (PEC) water splitting, but it is very inefficient; rather, we focus here on how electric fields can be applied to metal oxide/water systems in tailoring the interplay with their intrinsic electric fields, and in how this can alter and boost PEC activity, drawing both on experiment and non-equilibrium molecular simulation.
Collapse
|
5
|
Effect of Chlorine Vacancy on the Electronic and Optical Properties of CsSnCl3 Perovskites for Optoelectronic Applications. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Mangan SM, Zhou G, Chu W, Prezhdo OV. Dependence between Structural and Electronic Properties of CsPbI 3: Unsupervised Machine Learning of Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2021; 12:8672-8678. [PMID: 34472856 DOI: 10.1021/acs.jpclett.1c02361] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using unsupervised machine learning on the trajectories from a nonadiabatic molecular dynamics simulation with time-dependent Kohn-Sham density functional theory, we elucidated the structural parameters with the largest influence on nonradiative recombination of charge carriers in CsPbI3, which forms the basis for solar energy and optoelectronic applications. The I-I-I angles between PbI6 octahedra, followed by the Cs-I distance, have the strongest impact on the bandgap and the nonadiabatic coupling. The importance of the Cs-I distance is unexpected, because Cs does not contribute to electron and hole wave functions. The nonadiabatic coupling is most influenced by static properties, which is also surprising, given its explicit dependence on atomic velocities.
Collapse
Affiliation(s)
- Spencer M Mangan
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Guoqing Zhou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Weibin Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Cheng C, Fang WH, Long R, Prezhdo OV. Water Splitting with a Single-Atom Cu/TiO 2 Photocatalyst: Atomistic Origin of High Efficiency and Proposed Enhancement by Spin Selection. JACS AU 2021; 1:550-559. [PMID: 34467318 PMCID: PMC8395698 DOI: 10.1021/jacsau.1c00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 05/26/2023]
Abstract
Anatase TiO2 is an intensely investigated photocatalytic material due to its abundance and chemical stability. However, it suffers from weak light harvesting and low photocatalytic efficiency. Experiments show that light absorption and photocatalytic properties can be enhanced simultaneously by TiO2 doping with well-dispersed Cu atoms, forming a single-atom catalyst (Cu/TiO2) that can be used for solar water splitting and other applications. By performing ab initio nonadiabatic molecular dynamics simulations, we demonstrate that Cu/TiO2 is inactive before light irradiation due to rapid electron-hole recombination via both shallow and deep traps. Surprisingly, the shallow trap is more detrimental to the Cu/TiO2 performance than the deep trap because it couples better to free carriers. After light irradiation, leading to electron transfer and Cu/TiO2 protonation, the shallow trap is eliminated, and a local distortion around the Cu atom stabilizes the deep trap state on the Cu d-orbital, decoupling it from free charges and giving rise to high photocatalytic hydrogen generation activity. We further demonstrate that the photocatalytic performance of Cu/TiO2 can be enhanced by spin selection, achievable experimentally via optical intersite spin transfer or chiral semiconductor coating. Both H adsorption and spin selection enhance charge carrier lifetimes by an order of magnitude. The spin selection mechanism does not require formation of the H species, which necessitates concurrent sources of electrons and protons and which is intrinsically unstable because water splitting involves frequent proton shuffling. Our results rationalize the experimental observations at the atomistic level, provide mechanistic insights into operation of single atom photocatalysis, and demonstrate that spin selection can be used to develop advanced and efficient systems for solar energy conversion.
Collapse
Affiliation(s)
- Cheng Cheng
- College
of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry
of Ministry of Education, Beijing Normal
University, Beijing 100875, P.R. China
| | - Wei-Hai Fang
- College
of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry
of Ministry of Education, Beijing Normal
University, Beijing 100875, P.R. China
| | - Run Long
- College
of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry
of Ministry of Education, Beijing Normal
University, Beijing 100875, P.R. China
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
He J, Zhu Y, Fang W, Long R. Preventing Superoxide Generation on Molecule-Protected CH 3NH 3PbI 3 Perovskite: A Time-Domain Ab Initio Study. J Phys Chem Lett 2021; 12:1664-1670. [PMID: 33555885 DOI: 10.1021/acs.jpclett.0c03851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal halide perovskites are promising materials for photovoltaics and optoelectronics. However, transfer of an electron from perovskite to oxygen leads to the formation of superoxide that significantly decreases the stability and charge carrier lifetime of perovskites, which constitutes major issues for real applications. Using nonadiabatic (NA) molecule dynamics simulations, we demonstrate that the introduction of a perylene diimide (PDI) molecule into the CH3NH3PbI3 system adsorbed with an oxygen molecule creates a midgap state above the trap state generated by the oxygen molecule, and thus the PDI midgap state can rapidly capture the photogenerated electron of perovskite at about 100 ps prior to the O2-related trap state, which takes about double the time. The route simultaneously avoids the formation of superoxide and enhances the stability of perovskites. The fast electron trapping originates from the strong NA coupling and small energy gap between the PDI midgap state and the CH3NH3PbI3 conduction band minimum. Our simulations suggest that a rational choice an electron-accepting molecule can improve the stability and performance of perovskite solar cells and photoelectric devices.
Collapse
Affiliation(s)
- Jinlu He
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Yonghao Zhu
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Weihai Fang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
9
|
Shi R, Vasenko AS, Long R, Prezhdo OV. Edge Influence on Charge Carrier Localization and Lifetime in CH 3NH 3PbBr 3 Perovskite: Ab Initio Quantum Dynamics Simulation. J Phys Chem Lett 2020; 11:9100-9109. [PMID: 33048554 DOI: 10.1021/acs.jpclett.0c02800] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The distribution of charge carriers in metal halide perovskites draws strong interest from the solar cell community, with experiments demonstrating that edges of various microstructures can improve material performance. This is rather surprising because edges and grain boundaries are often viewed as the main source of charge traps. We demonstrate by ab initio quantum dynamics simulations that edges of the CH3NH3PbBr3 perovskite create shallow trap states that mix well with the valence and conduction bands of the bulk and therefore support mobile charge carriers. Charges are steered to the edges energetically, facilitating dissociation of photo-generated excitons into free carriers. The edge-driven charge separation extends carrier lifetimes because of decreased overlap of the electron and hole wave functions, which leads to reduction of the nonadiabatic coupling responsible for nonradiative electron-hole recombination. Reduction of spatial symmetry near the edges activates additional vibrational modes that accelerate coherence loss within the electronic subsystem, further extending carrier lifetimes. Enhanced atomic motions at edges increase fluctuations of edge energy levels, enhancing mixing with band states and improving charge mobility. The simulations contribute to the atomistic understanding of the unusual properties of metal halide perovskites, generating the fundamental knowledge needed to design high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Ran Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Andrey S Vasenko
- National Research University Higher School of Economics, 101000 Moscow, Russia
- I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
English NJ. Dynamical properties of organo lead-halide perovskites and their interfaces to titania: insights from Density Functional Theory. Heliyon 2020; 6:e03427. [PMID: 32211538 PMCID: PMC7082533 DOI: 10.1016/j.heliyon.2020.e03427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/28/2019] [Accepted: 02/12/2020] [Indexed: 12/04/2022] Open
Abstract
The vibrational density of states (VDOS), electronic structure and optical properties of bulk organo lead-halide perovskites, CH3NH3PbX3 (where X = Cl, I and Br), very promising and exciting candidate materials for solar-energy applications, have been studied by means of (hybrid) Density Functional Theory (DFT), with and without spin-orbit coupling, and equilibrium Born-Oppenheimer molecular dynamics (BOMD) in the constant-volume, isothermal (NVT) ensemble at 298 K. Particular emphasis has been directed towards the detailed characterisation of optimal hybrid-DFT strategies to reproduce faithfully the band gap, band structure and optical properties vis-à-vis both experiment and more computationally demanding GW calculations (i.e., those involving the single-particle Green's function, G, and the screened Coulomb interaction, W). The VDOS was found to feature intimate coupling between the lead and halide atoms, and was dominated by acoustic phonon modes - particularly so for chlorine, suggesting this as the more effective candidate material of the considered halides. Bulk optical properties were also determined. In view of promising 'hybrid' architectures of perovskites adsorbed on titania substrates, further simulations of lead iodide in contact with titania have been performed to assess thermal stability, as well as dynamical and structural properties of these systems. It was found that lattice strain led to some atomic layers in perovskite further from the interface adopting less crystal-like structure and less pronounced phonon spectra.
Collapse
Affiliation(s)
- Niall J. English
- School of Chemical and Bioprocess Engineering, University College Dublin, Ireland
| |
Collapse
|
11
|
Margineda J, English NJ. Dynamical and structural properties of adsorbed water molecules at the TiO2 anatase-(1 0 1) surface: Importance of interfacial hydrogen-bond rearrangements. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Margineda J, English NJ. Dynamical and structural properties of adsorbed water molecules at the TiO2 rutile-(110) surface: interfacial hydrogen bonding probed by ab-initio molecular dynamics. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1725166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Joan Margineda
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Niall J. English
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
13
|
Wang L, Qiu J, Bai X, Xu J. Surface hopping methods for nonadiabatic dynamics in extended systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1435] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Linjun Wang
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jing Qiu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Xin Bai
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jiabo Xu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| |
Collapse
|
14
|
Nijjar P, Jankowska J, Prezhdo OV. Ehrenfest and classical path dynamics with decoherence and detailed balance. J Chem Phys 2019; 150:204124. [DOI: 10.1063/1.5095810] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Parmeet Nijjar
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Joanna Jankowska
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Faculty of Chemistry, University of Warsaw, Warsaw, 02-093, Poland
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
15
|
Torres A, Prado LR, Bortolini G, Rego LGC. Charge Transfer Driven Structural Relaxation in a Push-Pull Azobenzene Dye-Semiconductor Complex. J Phys Chem Lett 2018; 9:5926-5933. [PMID: 30257563 DOI: 10.1021/acs.jpclett.8b02490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoexcited structural dynamics in azo-compounds may differ fundamentally whether the push-pull photochromic azo-compound is isolated or forms a heterogeneous charge transfer complex, due to a sudden oxidation of the chromophore. Herein, we use a quantum-classical self-consistent approach that incorporates nonadiabatic excited-state electronic quantum dynamics into molecular mechanics to study the photoexcited dynamics of the push-pull azo-compound para-Methyl Red in the gas phase and sensitizing the (101) anatase surface of TiO2. We find that the photoinduced S2/S0 trans-to- cis isomerization of para-Methyl Red in the gas phase occurs through a pedal-like torsion around the ϕCNNC dihedral angle, without evidence to support the inversion mechanism, likewise in the parent azobenzene molecule. However, the photoexcited structural relaxation of the charge transfer complex para-Methyl Red/TiO2 contrasts essentially with the isolated azo-compounds. Immediately after photoexcitation, the excited electron flows into the TiO2 conduction band, with an injection time constant of ≃5 fs, and no indication of isomerization is observed during the 1.5 ps simulations. Instead, a strong vibronic relaxation occurs that excites the NN stretching mode of the azo-group, which is ultimately ascribed to the NA relaxation, and delocalization, of the hole wavepacket.
Collapse
Affiliation(s)
- Alberto Torres
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Luciano R Prado
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Graziele Bortolini
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Luis G C Rego
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| |
Collapse
|
16
|
Wei Y, Zhou Z, Fang WH, Long R. Grain Boundary Facilitates Photocatalytic Reaction in Rutile TiO 2 Despite Fast Charge Recombination: A Time-Domain ab Initio Analysis. J Phys Chem Lett 2018; 9:5884-5889. [PMID: 30247916 DOI: 10.1021/acs.jpclett.8b02761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
TiO2 is an excellent photocatalytic and photovoltaic material but suffers low efficiency because of deep trap states giving rise to fast charge and energy losses. Using a combination of time-domain density functional theory and nonadiabatic molecular dynamics, we demonstrate that grain boundaries (GBs), which are common in polycrystalline TiO2, accelerate nonradiative electron-hole recombination by a factor of 3. Despite GBs increase the band gap without creating deep trap states, and accelerate coherence loss, they enhance nonadiabatic electron-phonon coupling, and facilitate the relaxation. Importantly, electrons accumulated at the boundaries together with the relatively long-lived excite state favor photocatalytic reaction. Our study rationalizes the experimental observations and provides valuable perspectives for improving the device performance by defect engineering.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing , 100875 , P. R. China
| | - Zhaohui Zhou
- Chemical Engineering and Technology, School of Environmental Science and Engineering, and Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education , Chang'an University , Xi'an 710064 , China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing , 100875 , P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing , 100875 , P. R. China
| |
Collapse
|
17
|
Wei Y, Long R. Grain Boundaries Are Benign and Suppress Nonradiative Electron-Hole Recombination in Monolayer Black Phosphorus: A Time-Domain Ab Initio Study. J Phys Chem Lett 2018; 9:3856-3862. [PMID: 29952569 DOI: 10.1021/acs.jpclett.8b01654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Using time-domain density functional theory combined with nonadiabatic molecular dynamics, we demonstrate that both symmetrical (GB_s) and asymmetrical grain boundaries (GB_a) significantly extend charge-carrier lifetime compared with monolayer black phosphorus. Boundaries create no deep trap states, which decrease electron-phonon coupling. As a result, GB_s increases carrier lifetime by a factor of 22, whereas GB_a extends the lifetime by a factor of 4. More importantly, the interplay between the immobile electron localized at the boundaries in the GB_s and extended excited-state lifetime facilitates a chemical reaction, which is beneficial for photocatalysts. In contrast, GB_a separates electron and hole spatially in different locations, which forms a long-lived charge-separated state and is favorable for photovoltaics. Our simulations demonstrate that grain boundaries are benign and retard nonradiative electron-hole recombination in monolayer black phosphorus, suggesting a route to reduce energy losses via rational choice of defect to realize high-performance photovoltaic and photocatalytic devices.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , P. R. China
| |
Collapse
|
18
|
Du K, Liu G, Chen X, Wang K. Fast charge separation and photocurrent enhancement on black TiO2 nanotubes co-sensitized with Au nanoparticles and PbS quantum dots. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Wang Y, Guo H, Zheng Q, Saidi WA, Zhao J. Tuning Solvated Electrons by Polar-Nonpolar Oxide Heterostructure. J Phys Chem Lett 2018; 9:3049-3056. [PMID: 29767527 DOI: 10.1021/acs.jpclett.8b00938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solvated electron states at the oxide/aqueous interface represent the lowest energy charge-transfer pathways, thereby playing an important role in photocatalysis and electronic device applications. However, their energies are usually higher than the conduction band minimum (CBM), which makes the solvated electrons difficult to utilize in charge-transfer processes. Thus it is essential to stabilize the energy of the solvated electron states. Taking LaAlO3/SrTiO3 (LAO/STO) oxide heterostructure with H2O-adsorbed monolayer as a prototypical system, we show using DFT and ab initio time-dependent nonadiabatic molecular dynamics simulation that the energy and dynamics of solvated electrons can be tuned by the electric field in the polar-nonpolar oxide heterostructure. In particular, for LAO/STO with p-type interface, the CBM is contributed by the solvated electron state when LAO is thicker than four unit cells. Furthermore, the solvated electron band minimum can be partially occupied when LAO is thicker than eight unit cells. We propose that the tunability of solvated electron states can be achieved on polar-nonpolar oxide heterostructure surfaces as well as on ferroelectric oxides, which is important for charge and proton transfer at oxide/aqueous interfaces.
Collapse
Affiliation(s)
- Yanan Wang
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Hongli Guo
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education , Wuhan University , Wuhan 430072 , China
| | - Qijing Zheng
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Jin Zhao
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Department of Physics and Astronomy , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
- Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
20
|
Ma J, Zhu C, Lu J, Ouyang B, Xie Q, Liu H, Peng S, Chen T. Kinetics analysis of interfacial electron-transfer processes in goethite suspensions systems. CHEMOSPHERE 2017; 188:667-676. [PMID: 28923730 DOI: 10.1016/j.chemosphere.2017.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
The photochemical behavior of goethite has been one of the most important topics in the field of environmental science due to it plays a significant role in the removal and transformation process of numerous pollutants. However, the interfacial electron transfer process of goethite is not clear. Using a nanosecond laser flash photolysis spectrometer, we report the transient spectroscopic observations of interfacial electron-transfer reactions in goethite dispersion under UV irradiation. Excitation of goethite generated conduction-band electron (ecb-) and hole (h+). The conduction band electron (ecb-) reacted with an electron acceptor, methylviologen dichloride hydrate (MV2+), forming reduced methylviologen (MV+) with a second-order rate constant of (2.6 ± 0.3) × 109 L mol-1 s-1. The concentration of MV+ was strongly influenced by MV2+ initial concentration and pH values. The flat band potential of goethite was calculated to be Efb (goethite, pH = 7) = 0.24 V (vs NHE). Oxygen did not react with conduction band electron of goethite. The present study provides a reliable method to investigate the photo-induced interfacial charge transfer of goethite.
Collapse
Affiliation(s)
- Jianzhong Ma
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China; Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, PR China
| | - Chengzhu Zhu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China; Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, PR China.
| | - Jun Lu
- Center of Analysis & Measurement, Hefei University of Technology, Hefei 230009, PR China
| | - Bin Ouyang
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, Cambs, England
| | - Qiaoqin Xie
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Haibo Liu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Shuchuan Peng
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Tianhu Chen
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| |
Collapse
|
21
|
Wei Y, Zhou Z, Long R. Defects Slow Down Nonradiative Electron-Hole Recombination in TiS 3 Nanoribbons: A Time-Domain Ab Initio Study. J Phys Chem Lett 2017; 8:4522-4529. [PMID: 28876946 DOI: 10.1021/acs.jpclett.7b02099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Layered TiS3 materials hold appealing potential in photovoltaics and optoelectronics due to their excellent electronic and optical properties. Using time domain density functional theory combined with nonadiabatic (NA) molecular dynamics, we show that the electron-hole recombination in pristine TiS3 nanoribbons (NRs) occurs in tens of picoseconds and is over 10-fold faster than the experimental value. By performing an atomistic ab initio simulation with a sulfur vacancy, we demonstrate that a sulfur vacancy greatly reduces electron-hole recombination, achieving good agreement with experiment. Introduction of a sulfur vacancy increases the band gap slightly because the NR's highest occupied molecular orbital is lowered in energy. More importantly, the sulfur vacancy partially diminishes the electron and hole wave functions' overlap and reduces NA electron-phonon coupling, which competes successfully with the longer decoherence time, slowing down recombination. Our study suggests that a rational choice of defects can control nonradiative electron-hole recombination in TiS3 NRs and provides mechanistic principles for photovoltaic and optoelectronic device design.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, People's Republic of China
| | - Zhaohui Zhou
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University , Xi'an 710049, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, People's Republic of China
| |
Collapse
|
22
|
Ivanou D, Ivanova YA, Poznyak S, Starykevich M, Ferreira M, Mendes A, Streltsov E. Spectral sensitization of TiO 2 with electrodeposited PbSe: improvement of photocurrent stability and light conversion efficiency. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Wei Y, Li L, Fang W, Long R, Prezhdo OV. Weak Donor-Acceptor Interaction and Interface Polarization Define Photoexcitation Dynamics in the MoS 2/TiO 2 Composite: Time-Domain Ab Initio Simulation. NANO LETTERS 2017; 17:4038-4046. [PMID: 28586230 DOI: 10.1021/acs.nanolett.7b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To realize the full potential of transition metal dichalcogenides interfaced with bulk semiconductors for solar energy applications, fast photoinduced charge separation, and slow electron-hole recombination are needed. Using a combination of time-domain density functional theory with nonadiabatic molecular dynamics, we demonstrate that the key features of the electron transfer (ET), energy relaxation and electron-hole recombination in a MoS2-TiO2 system are governed by the weak van der Waals interfacial interaction and interface polarization. Electric fields formed at the interface allow charge separation to happen already during the photoexcitation process. Those electrons that still reside inside MoS2, transfer into TiO2 slowly and by the nonadiabatic mechanism, due to weak donor-acceptor coupling. The ET time depends on excitation energy, because the TiO2 state density grows with energy, increasing the nonadiabatic transfer rate, and because MoS2 sulfur atoms start to contribute to the photoexcited state at higher energies, increasing the coupling. The ET is slower than electron-phonon energy relaxation because the donor-acceptor coupling is weak, rationalizing the experimentally observed injection of primarily hot electrons. The weak van der Waals MoS2-TiO2 interaction ensures a long-lived charge separated state and a short electron-hole coherence time. The injection is promoted primarily by phonons within the 200-800 cm-1 range. Higher frequency modes are particularly important for the electron-hole recombinations, because they are able to accept large amounts of electronic energy. The predicted time scales for the forward and backward ET, and energy relaxation can be measured by time-resolved spectroscopies. The reported simulations generate a detailed time-domain atomistic description of the complex interplay of the charge and energy transfer processes at the MoS2/TiO2 interface that are of fundamental importance to photovoltaic and photocatalytic applications. The results suggest that even though the photogenerated charge-separated state is long-lived, the slower charge separation, compared to the electron-phonon energy relaxation, can present problems in practical applications.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing, 100875, People's Republic of China
| | - Linqiu Li
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Weihai Fang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing, 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing, 100875, People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
24
|
Long R, Prezhdo OV, Fang W. Nonadiabatic charge dynamics in novel solar cell materials. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1305] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education Beijing Normal University Beijing P.R. China
| | - Oleg V. Prezhdo
- Department of Chemistry University of Southern California Los Angeles CA USA
| | - Weihai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education Beijing Normal University Beijing P.R. China
| |
Collapse
|
25
|
Ishida T, Nanbu S, Nakamura H. Clarification of nonadiabatic chemical dynamics by the Zhu-Nakamura theory of nonadiabatic transition: from tri-atomic systems to reactions in solutions. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1293399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Long R, Casanova D, Fang WH, Prezhdo OV. Donor–Acceptor Interaction Determines the Mechanism of Photoinduced Electron Injection from Graphene Quantum Dots into TiO2: π-Stacking Supersedes Covalent Bonding. J Am Chem Soc 2017; 139:2619-2629. [DOI: 10.1021/jacs.6b09598] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - David Casanova
- Kimika Fakultatea,
Euskal Herriko Unibertsitatea and Donostia International Physics Center, 20018 Donostia, Euskadi, Spain
- IKERBASQUE, Basque
Foundation for Science, 48013 Bilbao, Euskadi, Spain
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
27
|
Long R, Prezhdo OV. Time-Domain ab Initio Modeling of Electron-Phonon Relaxation in High-Temperature Cuprate Superconductors. J Phys Chem Lett 2017; 8:193-198. [PMID: 27982592 DOI: 10.1021/acs.jpclett.6b02713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Superconducting pairing due to electron-phonon coupling is investigated in recent pump-probe experiments. Combining time-dependent density functional theory and nonadiabatic molecular dynamics, we report the first direct modeling of such experiments and show how the electron-phonon relaxation depends on chemical bonding, electron-phonon coupling, and electronic state density. The relaxation rate is determined primarily by the nonadiabatic charge-phonon coupling strength, which in turn depends on the strength of chemical interactions between the key atoms, reflected in the wave function delocalization. The differences in the electronic density of states constitute the secondary factor. Having obtained good agreement with the experimental data on YBa2Cu3O6.5, we predict that the relaxation slows if Y is replaced with Sc or Ba with Sr, while the relaxation accelerates if O is replaced with S, indicating that YBa2Cu3S6.5 can exhibit improved superconducting performance.
Collapse
Affiliation(s)
- Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, PR China
- School of Physics, Complex & Adaptive System Lab, University College Dublin , Belfield, Dublin 4, Ireland
| | - Oleg V Prezhdo
- Departments of Chemistry, Physics, and Astronomy, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Abstract
Developed 25 years ago, Tully's fewest switches surface hopping (FSSH) has proven to be the most popular approach for simulating quantum-classical dynamics in a broad variety of systems, ranging from the gas phase, to the liquid and solid phases, to biological and nanoscale materials. FSSH is widely adopted as the fundamental platform to introduce modifications as needed. Significant progress has been made recently to enhance the accuracy and efficiency of the surface hopping technique. Various limitations of the standard FSSH-associated with quantum nuclear effects, interference and decoherence, trivial or "unavoided" crossings, superexchange, and representation dependence-have been lifted. These advances are needed to allow one to treat many important phenomena in chemistry, physics, materials, and related disciplines. Examples include charge transport in extended systems such as organic solids, singlet fission in molecular aggregates, Auger-type exciton multiplication, recombination and relaxation in quantum dots and other nanoscale materials, Auger-assisted charge transfer, nonradiative luminescence quenching, and electron-hole recombination. This Perspective summarizes recent advances in the surface hopping formulation of nonadiabatic dynamics and provides an outlook on the future of surface hopping.
Collapse
Affiliation(s)
- Linjun Wang
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Alexey Akimov
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-1062, United States
| |
Collapse
|
29
|
Long R, Prezhdo OV. Quantum Coherence Facilitates Efficient Charge Separation at a MoS2/MoSe2 van der Waals Junction. NANO LETTERS 2016; 16:1996-2003. [PMID: 26882202 DOI: 10.1021/acs.nanolett.5b05264] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two-dimensional transition metal dichalcogenides (MX2, M = Mo, W; X = S, Se) hold great potential in optoelectronics and photovoltaics. To achieve efficient light-to-electricity conversion, electron-hole pairs must dissociate into free charges. Coulomb interaction in MX2 often exceeds the charge transfer driving force, leading one to expect inefficient charge separation at a MX2 heterojunction. Experiments defy the expectation. Using time-domain density functional theory and nonadiabatic (NA) molecular dynamics, we show that quantum coherence and donor-acceptor delocalization facilitate rapid charge transfer at a MoS2/MoSe2 interface. The delocalization is larger for electron than hole, resulting in longer coherence and faster transfer. Stronger NA coupling and higher acceptor state density accelerate electron transfer further. Both electron and hole transfers are subpicosecond, which is in agreement with experiments. The transfers are promoted primarily by the out-of-plane Mo-X modes of the acceptors. Lighter S atoms, compared to Se, create larger NA coupling for electrons than holes. The relatively slow relaxation of the "hot" hole suggests long-distance bandlike transport, observed in organic photovoltaics. The electron-hole recombination is notably longer across the MoS2/MoSe2 interface than in isolated MoS2 and MoSe2, favoring long-lived charge separation. The atomistic, time-domain studies provide valuable insights into excitation dynamics in two-dimensional transition metal dichalcogenides.
Collapse
Affiliation(s)
- Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing, 100875, People's Republic of China
- School of Physics and Complex and Adaptive Systems Lab, University College Dublin , Dublin 4, Ireland
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
30
|
Zhang W, Xiao X, Li Y, Zeng X, Zheng L, Wan C. Liquid exfoliation of layered metal sulphide for enhanced photocatalytic activity of TiO2 nanoclusters and DFT study. RSC Adv 2016. [DOI: 10.1039/c6ra03534e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A facile and effective liquid exfoliation solvothermal method for fabricating TiO2/LMS (LMS = MoS2, WS2 or SnS2) photocatalysts has been developed.
Collapse
Affiliation(s)
- Weiping Zhang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Xinyan Xiao
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yang Li
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Xingye Zeng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Lili Zheng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Caixia Wan
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
31
|
Long R, Prezhdo OV. Dopants Control Electron-Hole Recombination at Perovskite-TiO₂ Interfaces: Ab Initio Time-Domain Study. ACS NANO 2015; 9:11143-11155. [PMID: 26456384 DOI: 10.1021/acsnano.5b05843] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
TiO2 sensitized with organohalide perovskites gives rise to solar-to-electricity conversion efficiencies reaching close to 20%. Nonradiative electron-hole recombination across the perovskite/TiO2 interface constitutes a major pathway of energy losses, limiting quantum yield of the photoinduced charge. In order to establish the fundamental mechanisms of the energy losses and to propose practical means for controlling the interfacial electron-hole recombination, we applied ab initio nonadiabatic (NA) molecular dynamics to pristine and doped CH3NH3PbI3(100)/TiO2 anatase(001) interfaces. We show that doping by substitution of iodide with chlorine or bromine reduces charge recombination, while replacing lead with tin enhances the recombination. Generally, lighter and faster atoms increase the NA coupling. Since the dopants are lighter than the atoms they replace, one expects a priori that all three dopants should accelerate the recombination. We rationalize the unexpected behavior of chlorine and bromine by three effects. First, the Pb-Cl and Pb-Br bonds are shorter than the Pb-I bond. As a result, Cl and Br atoms are farther away from the TiO2 surface, decreasing the donor-acceptor coupling. In contrast, some iodines form chemical bonds with Ti atoms, increasing the coupling. Second, chlorine and bromine reduce the NA electron-vibrational coupling, because they contribute little to the electron and hole wave functions. Tin increases the coupling, since it is lighter than lead and contributes to the hole wave function. Third, higher frequency modes introduced by chlorine and bromine shorten quantum coherence, thereby decreasing the transition rate. The recombination occurs due to coupling of the electronic subsystem to low-frequency perovskite and TiO2 modes. The simulation shows excellent agreement with the available experimental data and advances our understanding of electronic and vibrational dynamics in perovskite solar cells. The study provides design principles for optimizing solar cell performance and increasing photon-to-electron conversion efficiency through creative choice of dopants.
Collapse
Affiliation(s)
- Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing, 100875, People's Republic of China
- School of Physics, Complex & Adaptive Systems Lab, University College Dublin , Dublin, Ireland
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
32
|
Monti A, Negre CFA, Batista VS, Rego LGC, de Groot HJM, Buda F. Crucial Role of Nuclear Dynamics for Electron Injection in a Dye-Semiconductor Complex. J Phys Chem Lett 2015; 6:2393-8. [PMID: 26266622 DOI: 10.1021/acs.jpclett.5b00876] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We investigate the electron injection from a terrylene-based chromophore to the TiO2 semiconductor bridged by a recently proposed phenyl-amide-phenyl molecular rectifier. The mechanism of electron transfer is studied by means of quantum dynamics simulations using an extended Hückel Hamiltonian. It is found that the inclusion of the nuclear motion is necessary to observe the photoinduced electron transfer. In particular, the fluctuations of the dihedral angle between the terrylene and the phenyl ring modulate the localization and thus the electronic coupling between the donor and acceptor states involved in the injection process. The electron propagation shows characteristic oscillatory features that correlate with interatomic distance fluctuations in the bridge, which are associated with the vibrational modes driving the process. The understanding of such effects is important for the design of functional dyes with optimal injection and rectification properties.
Collapse
Affiliation(s)
- Adriano Monti
- †Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Christian F A Negre
- §Theoretical Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Victor S Batista
- ‡Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Luis G C Rego
- ∥Department of Physics, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Huub J M de Groot
- †Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Francesco Buda
- †Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
33
|
Optimisation of parameters in a solar light-induced photoelectrocatalytic process with a TiO2/Ti composite electrode prepared by paint-thermal decomposition. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
34
|
Wang L, Long R, Prezhdo OV. Time-Domain Ab Initio Modeling of Photoinduced Dynamics at Nanoscale Interfaces. Annu Rev Phys Chem 2015; 66:549-79. [DOI: 10.1146/annurev-physchem-040214-121359] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Linjun Wang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482;
- Department of Chemistry, University of Rochester, Rochester, New York 14627
| | - Run Long
- School of Physics and Complex & Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482;
| |
Collapse
|
35
|
Trivedi DJ, Wang L, Prezhdo OV. Auger-mediated electron relaxation is robust to deep hole traps: time-domain ab initio study of CdSe quantum dots. NANO LETTERS 2015; 15:2086-2091. [PMID: 25639836 DOI: 10.1021/nl504982k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
By slowing down electron-phonon relaxation in nanoscale materials, one can increase efficiencies of solar energy conversion via hot electron extraction, multiple exciton generation, and elimination of exciton trapping. The elusive phonon bottleneck is hard to achieve, in particular, due to Auger-type energy exchange between electrons and holes. The Auger channel can be suppressed by hole trapping. Using time-domain ab initio simulation, we show that deep hole traps cannot fully eliminate the Auger channel. The simulations show that the hole-mediated electron relaxation is slowed down only by about 30%, which is in agreement with the recent experiments. The Auger energy exchange and hole relaxation to the trap state occur on similar time scales. Hole trapping is slow, because holes themselves experience a weak bottleneck effect. The study establishes the fundamental mechanisms of the electron and hole relaxation processes with and without hole traps. It shows that more sophisticated hole trapping strategies, for example, involving shell layers, are required in order to achieve the phonon bottleneck and to reduce electronic energy losses.
Collapse
Affiliation(s)
- Dhara J Trivedi
- Department of Physics and Astronomy, University of Rochester , Rochester, New York 14627, United States
| | | | | |
Collapse
|
36
|
Hyeon-Deuk K, Kim J, Prezhdo OV. Ab Initio Analysis of Auger-Assisted Electron Transfer. J Phys Chem Lett 2015; 6:244-249. [PMID: 26263457 DOI: 10.1021/jz502505m] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.
Collapse
Affiliation(s)
- Kim Hyeon-Deuk
- †Department of Chemistry, Kyoto University, Kyoto 606-8502, Japan
- ‡Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Joonghan Kim
- §Department of Chemistry, The Catholic University of Korea, Bucheon, Gyunggi-do 420-743, Korea
| | - Oleg V Prezhdo
- ∥Department of Chemistry, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089, United States
| |
Collapse
|