1
|
Hribar-Lee B, Lukšič M. Biophysical Principles Emerging from Experiments on Protein-Protein Association and Aggregation. Annu Rev Biophys 2024; 53:1-18. [PMID: 37906740 DOI: 10.1146/annurev-biophys-030722-111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Protein-protein association and aggregation are fundamental processes that play critical roles in various biological phenomena, from cellular signaling to disease progression. Understanding the underlying biophysical principles governing these processes is crucial for elucidating their mechanisms and developing strategies for therapeutic intervention. In this review, we provide an overview of recent experimental studies focused on protein-protein association and aggregation. We explore the key biophysical factors that influence these processes, including protein structure, conformational dynamics, and intermolecular interactions. We discuss the effects of environmental conditions such as temperature, pH and related buffer-specific effects, and ionic strength and related ion-specific effects on protein aggregation. The effects of polymer crowders and sugars are also addressed. We list the techniques used to study aggregation. We analyze emerging trends and challenges in the field, including the development of computational models and the integration of multidisciplinary approaches for a comprehensive understanding of protein-protein association and aggregation.
Collapse
Affiliation(s)
- Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia;
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia;
| |
Collapse
|
2
|
Simončič M, Lukšič M. Mechanistic differences in the effects of sucrose and sucralose on the phase stability of lysozyme solutions. J Mol Liq 2021; 326. [PMID: 35082450 DOI: 10.1016/j.molliq.2020.115245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of two disaccharide analogues, sucrose and sucralose, on the phase stability of aqueous lysozyme solutions has been addressed from a mechanistic viewpoint by a combination of experiment and molecular dynamics (MD) simulations. The influence of the added low molecular weight salts (NaBr, NaI and NaNO3) was considered as well. The cloud-point temperature measurements revealed a larger stabilizing effect of sucralose. Upon increasing sugar concentration, the protein solutions became more stable and differences in the effect of sucralose and sucrose amplified. It was confirmed that the addition of either of the two sugars imposed no secondary structure changes of the lysozyme. Enthalpies of lysozyme-sugar mixing were exothermic and a larger effect was recorded for sucralose. MD simulations indicated that acidic, basic and polar amino acid residues play predominant roles in the sugar-protein interactions, mainly through hydrogen bonding. Such sugar mediated protein-protein interactions are thought to be responsible for the biopreserative nature of sugars. Our observations hint at mechanistic differences in sugar-lysozyme interactions: while sucrose does not interact directly with the protein's surface for the most part (in line with the preferential hydration hypothesis), sucralose forms hydrogen bonds with acidic, basic and polar amino acid residues at the lysozyme's surface (in line with the water replacement hypothesis).
Collapse
Affiliation(s)
- Matjaž Simončič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Giuffrida S, Cupane A, Cottone G. "Water Association" Band in Saccharide Amorphous Matrices: Role of Residual Water on Bioprotection. Int J Mol Sci 2021; 22:2496. [PMID: 33801421 PMCID: PMC7958616 DOI: 10.3390/ijms22052496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Saccharides protect biostructures against adverse environmental conditions mainly by preventing large scale motions leading to unfolding. The efficiency of this molecular mechanism, which is higher in trehalose with respect to other sugars, strongly depends on hydration and sugar/protein ratio. Here we report an Infrared Spectroscopy study on dry amorphous matrices of the disaccharides trehalose, maltose, sucrose and lactose, and the trisaccharide raffinose. Samples with and without embedded protein (Myoglobin) are investigated at different sugar/protein ratios, and compared. To inspect matrix properties we analyse the Water Association Band (WAB), and carefully decompose it into sub-bands, since their relative population has been shown to effectively probe water structure and dynamics in different matrices. In this work the analysis is extended to investigate the structure of protein-sugar-water samples, for the first time. Results show that several classes of water molecules can be identified in the protein and sugar environment and that their relative population is dependent on the type of sugar and, most important, on the sugar/protein ratio. This gives relevant information on how the molecular interplay between residual waters, sugar and protein molecules affect the biopreserving properties of saccharides matrices.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Correspondence: (S.G.); (G.C.); Tel.: +39-06-5024-4070 (S.G.); +39-091-238-91713 (G.C.)
| | | | - Grazia Cottone
- Dipartimento di Fisica e Chimica Emilio Segrè, Università di Palermo, Viale delle Scienze 17-18, I-90128 Palermo, Italy;
| |
Collapse
|
4
|
Thananurak P, Chuaychu-Noo N, Thélie A, Phasuk Y, Vongpralub T, Blesbois E. Sucrose increases the quality and fertilizing ability of cryopreserved chicken sperms in contrast to raffinose. Poult Sci 2019; 98:4161-4171. [PMID: 31065720 PMCID: PMC6698190 DOI: 10.3382/ps/pez196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/21/2019] [Indexed: 11/23/2022] Open
Abstract
Chicken semen conservation is an important tool for programs of genetic diversity management and of endangered breeds’ conservation. However, the method still needs to be improved in order to be applied in a wide variety of environments and breeds. Our objective was to compare the effects of 2 external cryoprotectants saccharides (sucrose and raffinose) on the sperm freezability of a Thai local breed, Pradu Hang Dum, in which semen was frozen with a simple freezing method using nitrogen vapors and dimethyl formamide (DMF). Thirty-six males were selected on their motility vigor score for the experiments. In a first experiment, a large range of sucrose and raffinose doses were tested. Semen quality was evaluated after incubation at 5°C or after cryopreservation in straws in the saline Blumberger Hahnen Sperma Verdünner diluent + DMF (6% v/v) with or without sucrose/raffinose. The best targeted doses of sucrose and raffinose were then kept for experiment 2 that was focused on cryopreserved semen. In this experiment, semen quality was measured on frozen-thawed sperm: different objective motility data evaluated by computer-assisted sperm analysis (CASA), membrane integrity, acrosome integrity, mitochondria function evaluated using flow cytometry, lipid peroxide production assessed by the thiobarbituric acid test. Fertility obtained with frozen-thawed semen supplemented or not with sucrose or raffinose was also evaluated after artificial insemination of laying hens. The presence of sucrose at the osmotically inactive dose 1 mmol significantly increased the vigor motility, membrane integrity, acrosome integrity, and mitochondrial functions of frozen-thawed sperm (P < 0.05), and showed the highest levels of fertility after sperm cryopreservation (91% vs. control 86%, P < 0.001). Raffinose showed negative effects on in vitro semen quality from 1 to 100 mmol. Fertility was also negatively (P < 0.001) affected by raffinose (fertility rate 66 to 70%). We thus showed in the present study the high success of a simple chicken sperm cryopreservation method with an external cryoprotectant easily available and cheap, the sucrose, used at an osmotically inactive low concentration.
Collapse
Affiliation(s)
- Pachara Thananurak
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Napapach Chuaychu-Noo
- Department of Animal Science, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Sri Thammarat 80110, Thailand
| | - Aurore Thélie
- UMR-PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly 37380, France
| | - Yupin Phasuk
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thevin Vongpralub
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand.,Research and Development Network Center for Animal Breeding (Native Chicken), Khon Kaen University, Khon Kaen 40002, Thailand
| | | |
Collapse
|
5
|
Abstract
Trehalose, commonly found in living organisms, is believed to help them survive severe environmental conditions, such as drought or extreme temperatures. With the aim of trying to understand these properties, two recent neutron scattering studies investigate the structure of trehalose water solutions but come to seemingly opposite conclusions. In the first study, which looks at two concentrations of trehalose-water mole ratios of 1:100 and 1:25, the conclusion is that trehalose hydrogen-bonds to water rather weakly and has a relatively minor impact on the structure of water in solution compared to bulk water. On the other hand, for the other, using a mole ratio of 1:38, the conclusion is that the water structure is rather substantially modified by the presence of trehalose and that the hydrogen bonding between water and trehalose hydroxyl groups is significant. In an attempt to try to understand the origin of these divergent views, which arise from similar but independent analyses of different neutron diffraction data, we have performed additional X-ray scattering experiments, which are highly sensitive to water structure, at the same trehalose-water concentrations used in the first study, and combined these with empirical potential structure refinement on the previously collected neutron data. The new analysis unequivocally confirms that trehalose does indeed have only a minor impact on the structure of water, at all three concentrations, and forms relatively weak hydrogen bonds with water. Far from being discrepant with the existing literature, our new analysis of the different datasets suggests a natural explanation for the increased glass-transition temperature of trehalose compared to other sugars and hence its enhanced effectiveness as a protectant against drought stress.
Collapse
Affiliation(s)
- Alan K Soper
- ISIS Facility, STFC Rutherford Appleton Laboratory , Harwell Campus , Didcot OX11 0QX , U.K
| | - Maria Antonietta Ricci
- Dipartimento di Scienze , Università degli Studi "Roma Tre" , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Fabio Bruni
- Dipartimento di Scienze , Università degli Studi "Roma Tre" , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Natasha H Rhys
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , U.K
| | - Sylvia E McLain
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , U.K
| |
Collapse
|
6
|
Olsson C, Jansson H, Swenson J. The Role of Trehalose for the Stabilization of Proteins. J Phys Chem B 2016; 120:4723-31. [DOI: 10.1021/acs.jpcb.6b02517] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christoffer Olsson
- Department
of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Helén Jansson
- Department
of Civil and Environmental Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Jan Swenson
- Department
of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
7
|
Malferrari M, Nalepa A, Venturoli G, Francia F, Lubitz W, Möbius K, Savitsky A. Structural and dynamical characteristics of trehalose and sucrose matrices at different hydration levels as probed by FTIR and high-field EPR. Phys Chem Chem Phys 2013; 16:9831-48. [PMID: 24358471 DOI: 10.1039/c3cp54043j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Some organisms can survive complete dehydration and high temperatures by adopting an anhydrobiotic state in which the intracellular medium contains large amounts of disaccharides, particularly trehalose and sucrose. Trehalose is most effective also in protecting isolated in vitro biostructures. In an attempt to clarify the molecular mechanisms of disaccharide bioprotection, we compared the structure and dynamics of sucrose and trehalose matrices at different hydration levels by means of high-field W-band EPR and FTIR spectroscopy. The hydration state of the samples was characterized by FTIR spectroscopy and the structural organization was probed by EPR using a nitroxide radical dissolved in the respective matrices. Analysis of the EPR spectra showed that the structure and dynamics of the dehydrated matrices as well as their evolution upon re-hydration differ substantially between trehalose and sucrose. The dehydrated trehalose matrix is homogeneous in terms of distribution of the residual water and spin-probe molecules. In contrast, dehydrated sucrose forms a heterogeneous matrix. It is comprised of sucrose polycrystalline clusters and several bulk water domains. The amorphous form was found only in 30% (volume) of the sucrose matrix. Re-hydration leads to a structural homogenization of the sucrose matrix, whilst in the trehalose matrix several domains develop differing in the local water/radical content and radical mobility. The molecular model of the matrices provides an explanation for the different protein-matrix dynamical coupling observed in dried ternary sucrose and trehalose matrices, and accounts for the superior efficacy of trehalose as a bioprotectant. Furthermore, for bacterial photosynthetic reaction centers it is shown that at low water content the protein-matrix coupling is modulated by the sugar/protein molar ratio in sucrose matrices only. This effect is suggested to be related to the preference for sucrose, rather than trehalose, as a bioprotective disaccharide in some anhydrobiotic organisms.
Collapse
Affiliation(s)
- M Malferrari
- Laboratorio di Biochimica e Biofisica, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, via Irnerio 42, I-40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Panzica M, Emanuele A, Cordone L. Thermal Aggregation of Bovine Serum Albumin in Trehalose and Sucrose Aqueous Solutions. J Phys Chem B 2012; 116:11829-36. [DOI: 10.1021/jp3054197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Massimo Panzica
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| | - Antonio Emanuele
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| | - Lorenzo Cordone
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| |
Collapse
|
9
|
Malferrari M, Francia F, Venturoli G. Coupling between Electron Transfer and Protein–Solvent Dynamics: FTIR and Laser-Flash Spectroscopy Studies in Photosynthetic Reaction Center Films at Different Hydration Levels. J Phys Chem B 2011; 115:14732-50. [DOI: 10.1021/jp2057767] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Marco Malferrari
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
| | - Francesco Francia
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy
| |
Collapse
|
10
|
Abstract
We describe a method for direct, quantitative, in vivo lipid profiling of oil-producing microalgae using single-cell laser-trapping Raman spectroscopy. This approach is demonstrated in the quantitative determination of the degree of unsaturation and transition temperatures of constituent lipids within microalgae. These properties are important markers for determining engine compatibility and performance metrics of algal biodiesel. We show that these factors can be directly measured from a single living microalgal cell held in place with an optical trap while simultaneously collecting Raman data. Cellular response to different growth conditions is monitored in real time. Our approach circumvents the need for lipid extraction and analysis that is both slow and invasive. Furthermore, this technique yields real-time chemical information in a label-free manner, thus eliminating the limitations of impermeability, toxicity, and specificity of the fluorescent probes common in currently used protocols. Although the single-cell Raman spectroscopy demonstrated here is focused on the study of the microalgal lipids with biofuel applications, the analytical capability and quantitation algorithms demonstrated are applicable to many different organisms and should prove useful for a diverse range of applications in lipidomics.
Collapse
|
11
|
Pagnotta SE, McLain SE, Soper AK, Bruni F, Ricci MA. Water and trehalose: how much do they interact with each other? J Phys Chem B 2010; 114:4904-8. [PMID: 20297794 DOI: 10.1021/jp911940h] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The observation made by early naturalists that some organisms could tolerate extreme environmental condisions and "enjoy the advantage of real resurrection after death" [ Spallanzani , M. Opuscules de Physique Animale et Vegetale 1776 (translated from Italian by Senebier , J. Opuscules de Physique Animale et Vegetale 1787 , 2 , 203 - 285 )] stimulated research that still continues to this day. Cryptobiosis, the ability of an organism to tolerate adverse environments, such as dehydration and low temperatures, still represents an unsolved and fascinating problem. It has been shown that many sugars play an important role as bioprotectant agents, and among the best performers is the disaccharide trehalose. The current hypothesis links the efficiency of its protective role to strong modifications of the tetrahedral arrangement of water molecules in the sugar hydration shell, with trehalose forming many hydrogen bonds with the solvent. Here, we show, by means of state-of-the-art neutron diffraction experiments combined with EPSR simulations, that trehalose solvation induces very minor modifications of the water structure. Moreover, the number of water molecules hydrogen-bonded to the sugar is surprisingly small.
Collapse
Affiliation(s)
- S E Pagnotta
- Centro de Fisica de Materiales (CSIC-UPV/EHU) MPC, 20008 Donostia-San Sebastian, Spain, School of Health and Biomedical Sciences, King's College London, London SE1 9NH, UK
| | | | | | | | | |
Collapse
|
12
|
Cosco D, Celia C, Cilurzo F, Trapasso E, Paolino D. Colloidal carriers for the enhanced delivery through the skin. Expert Opin Drug Deliv 2008; 5:737-55. [DOI: 10.1517/17425247.5.7.737] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Giannola LI, De Caro V, Giandalia G, Siragusa MG, Cordone L. Ocular Gelling Microspheres: In Vitro Precorneal Retention Time and Drug Permeation Through Reconstituted Corneal Epithelium. J Ocul Pharmacol Ther 2008; 24:186-96. [DOI: 10.1089/jop.2007.0113] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Libero I. Giannola
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università di Palermo, Palermo, Italy
- Istituto Nazionale di Fisica della Materia (INFM), Unità di Palermo, Palermo, Italy
| | - Viviana De Caro
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Giulia Giandalia
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università di Palermo, Palermo, Italy
- Istituto Nazionale di Fisica della Materia (INFM), Unità di Palermo, Palermo, Italy
| | - Maria G. Siragusa
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Lorenzo Cordone
- Istituto Nazionale di Fisica della Materia (INFM), Unità di Palermo, Palermo, Italy
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Palermo, Italy
| |
Collapse
|
14
|
|
15
|
Cordone L, Cottone G, Giuffrida S, Librizzi F. Thermal evolution of the CO stretching band in carboxy-myoglobin in the light of neutron scattering and molecular dynamics simulations. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Giuffrida S, Cottone G, Cordone L. Role of solvent on protein-matrix coupling in MbCO embedded in water-saccharide systems: a Fourier transform infrared spectroscopy study. Biophys J 2006; 91:968-80. [PMID: 16714349 PMCID: PMC1563748 DOI: 10.1529/biophysj.106.081927] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embedding protein in sugar systems of low water content enables one to investigate the protein dynamic-structure function in matrixes whose rigidity is modulated by varying the content of residual water. Accordingly, studying the dynamics and structure thermal evolution of a protein in sugar systems of different hydration constitutes a tool for disentangling solvent rigidity from temperature effects. Furthermore, studies performed using different sugars may give information on how the detailed composition of the surrounding solvent affects the internal protein dynamics and structural evolution. In this work, we compare Fourier transform infrared spectroscopy measurements (300-20 K) on MbCO embedded in trehalose, sucrose, maltose, raffinose, and glucose matrixes of different water content. At all the water contents investigated, the protein-solvent coupling was tighter in trehalose than in the other sugars, thus suggesting a molecular basis for the trehalose peculiarity. These results are in line with the observation that protein-matrix phase separation takes place in lysozyme-lactose, whereas it is absent in lysozyme-trehalose systems; indeed, these behaviors may respectively be due to the lack or presence of suitable water-mediated hydrogen-bond networks, which match the protein surface to the surroundings. The above processes might be at the basis of pattern recognition in crowded living systems; indeed, hydration shells structural and dynamic matching is first needed for successful come together of interacting biomolecules.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo and CNISM, I-90123 Palermo, Italy
| | | | | |
Collapse
|