1
|
Divya KP, Dharuman V. Electrochemical label free sensing of human IgG - Protein A interaction. Food Chem 2020; 339:127881. [PMID: 32866703 DOI: 10.1016/j.foodchem.2020.127881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/14/2020] [Accepted: 08/16/2020] [Indexed: 11/17/2022]
Abstract
A novel and rapid Electrochemical Immunosensing platform was developed for the direct sensing of antibody human immuno globulin gamma (IgG) interaction with virulence factor of S. aureus, staphylococcal protein A (SpA) in the presence of electroactive redox couple ferri/ferro cyanide (K3/K4[Fe(CN)6]). The receptor SpA was attached to BioPE-DOTAP binary lipid bilayer tethered on alkane thiol molecular cushions. Atomic force microscopy (AFM), High-resolution transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) techniques were used to study the molecular interactions. The AFM images showed array like formation of BioPE-DOTAP on the monolayer surface. The IgG sensor showed a linear range from 10-21 M to 10-16 M.
Collapse
Affiliation(s)
- Karutha Pandian Divya
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630 003, India; Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India
| | - Venkataraman Dharuman
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
2
|
Seo Y, Jeong S, Lee J, Choi HS, Kim J, Lee H. Innovations in biomedical nanoengineering: nanowell array biosensor. NANO CONVERGENCE 2018; 5:9. [PMID: 29670832 PMCID: PMC5897454 DOI: 10.1186/s40580-018-0141-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 05/04/2023]
Abstract
Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.
Collapse
Affiliation(s)
- YoungTae Seo
- Department of Computer Science, Queens College of the City University of New York, Flushing, NY 11367 USA
- Mara Nanotech New York, Inc., New York, NY 10031 USA
| | - Sunil Jeong
- Department of Biology, Queens College of the City University of New York, Flushing, NY 11367 USA
- Mara Nanotech New York, Inc., New York, NY 10031 USA
| | - JuKyung Lee
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02219 USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115 USA
| | - HeaYeon Lee
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115 USA
- Mara Nanotech New York, Inc., New York, NY 10031 USA
| |
Collapse
|
3
|
|
4
|
Poly(ethylene glycol) (PEG) microwells in microfluidics: Fabrication methods and applications. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8401-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Design of a novel disposable piezoelectric co-polymer diaphragm based biosensor unit. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Vermette P. Liposome characterization by quartz crystal microbalance measurements and atomic force microscopy. Methods Enzymol 2010; 465:43-73. [PMID: 19913161 DOI: 10.1016/s0076-6879(09)65003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
This chapter reviews liposome characterization by quartz crystal microbalance (QCM) measurements and atomic force microscopy (AFM). In many studies, AFM imaging is simply used to image liposomes with resolution often that does not allow morphological analysis. Although liposome size can be obtained by processing AFM images, it is found that liposomes flatten upon surface adsorption or immobilization. Liposome stability and stiffness have been characterized by using AFM imaging or AFM force measurements, although the latter method, using a microsphere attached on the AFM cantilever, seems more appropriate to limit liposome damage and to obtain more quantitative analysis, such as the Young's modulus. Investigation of liposome layers by QCM revealed that liposomes can be detected from a combined analysis of frequency and bandwidth shifts. However, QCM by itself provides only limited information on liposomes. QCM can be used to assess the presence of a layer and also to discriminate between rigid and viscoelastic ones. Liposome properties have been derived from QCM curves, but often this requires making hypotheses that are difficult to assess. AFM and QCM analyses need to be combined with other techniques to provide complementary information.
Collapse
Affiliation(s)
- Patrick Vermette
- Laboratoire de Bioingénierie et de Biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
7
|
Yu F, Du P, Lei X, Zhang S. Investigation of voltammetric enzyme-linked immunoassay system based on N-heterocyclic substrate of 2,3-diaminopyridine. Talanta 2009; 78:1395-400. [DOI: 10.1016/j.talanta.2009.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
|
8
|
Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3. Anal Chim Acta 2009; 633:244-9. [DOI: 10.1016/j.aca.2008.11.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/06/2008] [Accepted: 11/24/2008] [Indexed: 02/03/2023]
|
9
|
Lee HY, Lee BK, Park JW, Jung HS, Kim JM, Kawai T. Self-organized functional lipid vesicle array for sensitive immunoassay chip. Ultramicroscopy 2008; 108:1325-7. [DOI: 10.1016/j.ultramic.2008.04.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Wang H, Shen G, Yu R. Aspects of recent development of immunosensors. ELECTROCHEMICAL SENSORS, BIOSENSORS AND THEIR BIOMEDICAL APPLICATIONS 2008. [PMCID: PMC7150224 DOI: 10.1016/b978-012373738-0.50011-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This chapter focuses on the recent developments in the field of immunosensors. Immunosensors incorporate the specific immunochemical reaction with the modern transducers including electrochemical (potentiometric, conductometric, capacitative, impedance, amperometric), optical (fluorescence, luminescence, refractive index), and microgravimetric transducers. These immunosensor devices with dramatic improvements in the sensitivity and selectivity possess the abilities to investigate the reaction dynamics of antibody–antigen binding and the potential to revolutionize conventional immunoassay techniques. With the rapid development of immunological reagents and detection equipments, immunosensors have allowed an increasing range of analytes to be identified and quantified and in particular, simple-to-use, inexpensive, and reliable immunosensing systems have been developed for areas such as outpatient monitoring, large screening programs, and remote environmental surveillance. Immunosensors with lowered detection limits and increased sensitivities have been developed in various fields, particularly in clinical analysis. A noticeable development trend is also observed in the development of immunosensors combining with other techniques such as flow injection analysis (FIA) or capillary electrophoretic (CE) analysis, which complement and improve the present immunoassay methods. Belov et al. have proposed a novel immunophenotyping method for leukemias which uses a cluster of differentiation antibody microarray, and a microarray of enzyme-linked immunosorbent assay has been developed for autoimmune diagnosis of systematic rheumatic disease. Development of microfluidic immunosensor systems for proteomics and drug discovery have also been reported in recent years where the microfluidic system integrates multiple processes in a single device to improve analytical performance by reducing the reagent consumption and the analysis time, and increasing reliability and sensitivity through automation.
Collapse
|
11
|
Ordeig O, del Campo J, Muñoz F, Banks C, Compton R. Electroanalysis Utilizing Amperometric Microdisk Electrode Arrays. ELECTROANAL 2007. [DOI: 10.1002/elan.200703914] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Affiliation(s)
- Eric Bakker
- Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
13
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
14
|
Lee HY, Jung HS, Fujikawa K, Park JW, Kim JM, Yukimasa T, Sugihara H, Kawai T. New antibody immobilization method via functional liposome layer for specific protein assays. Biosens Bioelectron 2005; 21:833-8. [PMID: 16242625 DOI: 10.1016/j.bios.2005.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/26/2005] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
A specific protein assay system based on functional liposome-modified gold electrodes has been demonstrated. To fabricate such assay system, a liposome layer was initially grown on top of a gold layer. The liposome layer contained two kinds of functional molecules: biotin molecules for the binding sites of streptavidin and N-(10,12-pentacosadiynoic)-acetylferrocene molecules for the facile redox probe in electrochemical detections. Then, streptavidin was attached on the functional liposme-modified layer using the interaction of streptavidin-sbiotin complex. On the streptavidin-attached surface, antibody molecules, anti-human serum albumin antibodies could be immobilized without any secondary antibodies. AFM imaging of the streptavidin-attached liposome surface revealed a uniform distribution of closely packed streptavidin molecules. In situ quartz-crystal microbalance and electrochemical measurements demonstrated that the wanted antibody-antigen reactions should occur with high specificity and selectivity. Our specific antibody assay system, based on a functional liposome modified electrode, can be developed further to yield sophisticated structures for numerous protein chips and immunoassay sensors.
Collapse
Affiliation(s)
- H Y Lee
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | | | | | | | | | |
Collapse
|