1
|
Guennouni Z, Cousin F, Fauré MC, Perrin P, Limagne D, Konovalov O, Goldmann M. Self-Organization of Polystyrene-b-polyacrylic Acid (PS-b-PAA) Monolayer at the Air/Water Interface: A Process Driven by the Release of the Solvent Spreading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1971-1980. [PMID: 26824719 DOI: 10.1021/acs.langmuir.5b02652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present an in situ structural study of the surface behavior of PS-b-PAA monolayers at the air/water interface at pH 2, for which the PAA blocks are neutral and using N,N-dimethyformamide (DMF) as spreading solvent. The surface pressure versus molecular area isotherm shows a perfectly reversible pseudoplateau over several cycles of compression/decompression. The width of such plateau enlarges when increasing temperature, conversely to what is classically observed in the case of an in-plane first order transition. We combined specular neutron reflectivity (SNR) experiments with contrast variation to solve the profile of each block perpendicular to the surface with grazing-incidence small-angle scattering (GISAXS) measurements to determine the in-plane structure of the layer. SNR experiments showed that both PS and PAA blocks remain adsorbed on the surface for all surface pressure probed. A correlation peak at Q(xy)* = 0.021 Å(-1) is evidenced by GISAXS at very low surface pressure which intensity first increases on the plateau. When compressing further, its intensity decays while Q(xy)* is shifted toward low Q(xy). The peak fully disappears at the end of the plateau. These results are interpreted by the formation of surface aggregates induced by DMF molecules at the surface. These DMF molecules remain adsorbed within the PS core of the aggregates. Upon compression, they are progressively expelled from the monolayer, which gives rise to the pseudoplateau on the isotherm. The intensity of the GISAXS correlation peak is set by the amount of DMF within the monolayer as it vanishes when all DMF molecules are expelled. This result emphizes the role of the solvent in Langmuir monolayer formed by amphiphilic copolymers which hydrophobic and hydrophilic parts are composed by long polymer chains.
Collapse
Affiliation(s)
- Zineb Guennouni
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu F-75005 Paris, France
- Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif sur Yvette Cedex, France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif sur Yvette Cedex, France
| | - Marie-Claude Fauré
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu F-75005 Paris, France
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes , 45 rue des Saints Pères , 75006 Paris, France
| | - Patrick Perrin
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), ParisTech, PSL Research University, Sciences et Ingénierie de la Matière Molle (SIMM), CNRS UMR 7615, 10, Rue Vauquelin, F-75231 Cedex 05 Paris, France
- Sorbonne-Universités, UPMC Univ Paris 06, SIMM, 10, Rue Vauquelin, F-75231 Cedex 05 Paris, France
| | - Denis Limagne
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu F-75005 Paris, France
| | - Oleg Konovalov
- European Synchrotron Radiation Facility , 6 rue Jules Horowitz 38000 Grenoble, France
| | - Michel Goldmann
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu F-75005 Paris, France
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes , 45 rue des Saints Pères , 75006 Paris, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Molecular arrangement of symmetric and non-symmetric triblock copolymers of poly(ethylene oxide) and poly(isobutylene) at the air/water interface. J Colloid Interface Sci 2015; 437:80-89. [PMID: 25313470 DOI: 10.1016/j.jcis.2014.09.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/16/2022]
Abstract
The behavior of a series of amphiphilic triblock copolymers of poly(ethylene oxide) (PEO) and poly(isobutylene) (PIB); including both symmetric (same degree of polymerization (DP) of the terminal PEO blocks) PEOm-b-PIBn-b-PEOm and non-symmetric (different DP of the terminal PEO blocks) PEOm-b-PIBn-b-PEOz, is investigated at the air/water interface by measuring surface pressure vs mean molecular area isotherms (π vs mmA), Langmuir-Blodgett (LB) technique, and infrared reflection-absorption spectroscopy (IRRAS). The block copolymer (PEO32-b-PIB160-b-PEO32) with longer PEO segments forms a stable monolayer and the isotherm reveals a pseudo-plateau starting at π∼5.7 mN/m, also observed in the IRRAS, which is assigned to the pancake-to-brush transition related to the PEO dissolution into the subphase and subsequent PEO brush dehydration. Another plateau is observed at π∼40 mN/m, which is attributed to the film collapse due to multilayer formation. The pancake-to-brush transition could not be observed for samples with smaller PEO chains. The isotherms for block copolymers, with short PEO chains, both symmetric (PEO3-b-PIBn-b-PEO3) and non-symmetric (PEO12-b-PIBn-b-PEO3), reveal another transition at π∼20-25 mN/m. This is interpreted to be due to the conformational transition from a folded state where the middle PIB block is anchored to the water surface at both ends by the terminal hydrophilic segments to an unfolded state with PIB anchored to the water surface at one end. It is assumed that this transition involves the removal of PEO3 chains from the water surface in case of non-symmetric PEO12-b-PIB85-b-PEO3 and in case of symmetric, probably one PEO3 of each PEO3-b-PIB85-b-PEO3 chain. Because of the weaker interaction of the short PEO3 chains with the water surface as compared with the relatively longer PEO12 chains, the film of PEO3-b-PIB85-b-PEO3 collapses at much lower surface pressure after the transition as compared with the PEO12-b-PIB85-b-PEO3. The AFM images reveal the formation of microdomains of almost uniform height (6-7 nm) in LB films of PEO3-b-PIB85-b-PEO3 and PEO12-b-PIB85-b-PEO3 after transferring onto silicon surfaces. These domains are assumed to be the mesomorphic domains of ordered and folded PIB chains.
Collapse
|
3
|
Lee H, Kim DH, Park HW, Mahynski NA, Kim K, Meron M, Lin B, Won YY. Reduced Water Density in a Poly(ethylene oxide) Brush. J Phys Chem Lett 2012; 3:1589-1595. [PMID: 26285713 DOI: 10.1021/jz3002772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A model poly(ethylene oxide) (PEO) brush system, prepared by spreading a poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) amphiphilic diblock copolymer onto an air-water interface, was investigated under various grafting density conditions by using the X-ray reflectivity (XR) technique. The overall electron density profiles of the PEO-PnBA monolayer in the direction normal to the air-water interface were determined from the XR data. From this analysis, it was found that inside of the PEO brush, the water density is significantly lower than that of bulk water, in particular, in the region close to the PnBA-water interface. Separate XR measurements with a PnBA homopolymer monolayer confirm that the reduced water density within the PEO-PnBA monolayer is not due to unfavorable contacts between the PnBA surface and water. The above result, therefore, lends support to the notion that PEO chains provide a hydrophobic environment for the surrounding water molecules when they exist as polymer brush chains.
Collapse
Affiliation(s)
- Hoyoung Lee
- †School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dae Hwan Kim
- †School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hae-Woong Park
- †School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nathan A Mahynski
- †School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kyungil Kim
- ‡Advanced Photon Source, University of Chicago, Argonne, Illinois 60439, United States
| | - Mati Meron
- ‡Advanced Photon Source, University of Chicago, Argonne, Illinois 60439, United States
| | - Binhua Lin
- ‡Advanced Photon Source, University of Chicago, Argonne, Illinois 60439, United States
| | - You-Yeon Won
- †School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Liu L, Kim JK, Lee M. Interfacial Organization of Y-Shaped Rod-Coil Molecules Packed into Cylindrical Nanoarchitectures. Chemphyschem 2008; 9:1585-92. [DOI: 10.1002/cphc.200800124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Busse K, Peetla C, Kressler J. Water surface covering of fluorinated amphiphilic triblock copolymers: surface pressure-area and X-ray reflectivity investigations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:6975-82. [PMID: 17503856 DOI: 10.1021/la0637059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Monolayers of ABA amphiphilic triblock block copolymers are studied using surface pressure-area and X-ray reflectivity (XR) measurements. The triblock copolymers are composed of long poly(ethylene oxide) (PEO) middle blocks with poly((perfluorohexyl)ethyl methacrylate) (PFMA) end blocks. The surface pressure-area isotherms of water-insoluble species show two pseudoplateaus. The plateau at low surface pressure is consistent with the pseudoplateau observed for PEO copolymers in the literature. The plateau in the brush region can be assigned to the horizontal to vertical rearrangement of whole PFMA chains at the air-water interface, which was followed by XR measurements. For water-soluble species with a very low amount of PFMA no (significant) second pseudoplateau and no enrichment of PFMA at the air-water interface were observed.
Collapse
Affiliation(s)
- Karsten Busse
- Institute of Physical Chemistry, Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | | | | |
Collapse
|
6
|
Joncheray TJ, Denoncourt KM, Meier MAR, Schubert US, Duran RS. Two-dimensional self-assembly of linear poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:2423-9. [PMID: 17243736 DOI: 10.1021/la062626u] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The interfacial properties of amphiphilic linear diblock copolymers based on poly(ethylene oxide) and poly(epsilon-caprolactone) (PEO-b-PCL) were studied at the air-water (A/W) interface by surface pressure measurements (isotherms and hysteresis experiments). The resulting Langmuir monolayers were transferred onto mica substrates and the Langmuir-Blodgett (LB) film morphologies were investigated by atomic force microscopy (AFM). All block copolymers had the same PEO segment (Mn = 2670 g/mol) and different PCL chain lengths (Mn = 1270; 2110; 3110 and 4010 g/mol). Isothermal characterization of the block copolymer samples indicated the presence of three distinct phase transitions around 6.5, 10.5, and 13.5 mN/m. The phase transitions at 6.5 and 13.5 mN/m correspond to the dissolution of the PEO segments in the water subphase and crystallization of the PCL blocks above the interface similarly as for the corresponding homopolymers, respectively. The phase transition at 10.5 mN/m was not observed for the homopolymers alone or for their blends and arises from a brush formation of the PEO segments anchored underneath the adsorbed hydrophobic PCL segments. AFM analysis confirmed the presence of PCL crystals in the LB films with unusual hairlike/needlelike architectures significantly different from those obtained for PCL homopolymers.
Collapse
Affiliation(s)
- Thomas J Joncheray
- The George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200, USA
| | | | | | | | | |
Collapse
|