1
|
Arandiyan H, S Mofarah S, Sorrell CC, Doustkhah E, Sajjadi B, Hao D, Wang Y, Sun H, Ni BJ, Rezaei M, Shao Z, Maschmeyer T. Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chem Soc Rev 2021; 50:10116-10211. [PMID: 34542117 DOI: 10.1039/d0cs00639d] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxide perovskites have emerged as an important class of materials with important applications in many technological areas, particularly thermocatalysis, electrocatalysis, photocatalysis, and energy storage. However, their implementation faces numerous challenges that are familiar to the chemist and materials scientist. The present work surveys the state-of-the-art by integrating these two viewpoints, focusing on the critical role that defect engineering plays in the design, fabrication, modification, and application of these materials. An extensive review of experimental and simulation studies of the synthesis and performance of oxide perovskites and devices containing these materials is coupled with exposition of the fundamental and applied aspects of defect equilibria. The aim of this approach is to elucidate how these issues can be integrated in order to shed light on the interpretation of the data and what trajectories are suggested by them. This critical examination has revealed a number of areas in which the review can provide a greater understanding. These include considerations of (1) the nature and formation of solid solutions, (2) site filling and stoichiometry, (3) the rationale for the design of defective oxide perovskites, and (4) the complex mechanisms of charge compensation and charge transfer. The review concludes with some proposed strategies to address the challenges in the future development of oxide perovskites and their applications.
Collapse
Affiliation(s)
- Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia. .,Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia.
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Esmail Doustkhah
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Baharak Sajjadi
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Derek Hao
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yuan Wang
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia. .,School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hongyu Sun
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mehran Rezaei
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6845, Australia. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Siretanu I, van den Ende D, Mugele F. Atomic structure and surface defects at mineral-water interfaces probed by in situ atomic force microscopy. NANOSCALE 2016; 8:8220-8227. [PMID: 27030282 DOI: 10.1039/c6nr01403h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Atomic scale details of surface structure play a crucial role for solid-liquid interfaces. While macroscopic characterization techniques provide averaged information about bulk and interfaces, high resolution real space imaging reveals unique insights into the role of defects that are believed to dominate many aspects of surface chemistry and physics. Here, we use high resolution dynamic Atomic Force Microscopy (AFM) to visualize and characterize in ambient water the morphology and atomic scale structure of a variety of nanoparticles of common clay minerals adsorbed to flat solid surfaces. Atomically resolved images of the (001) basal planes are obtained on all materials investigated, namely gibbsite, kaolinite, illite, and Na-montmorillonite of both natural and synthetic origin. Next to regions of perfect crystallinity, we routinely observe extended regions of various types of defects on the surfaces, including vacancies of one or few atoms, vacancy islands, atomic steps, apparently disordered regions, as well as strongly adsorbed seemingly organic and inorganic species. While their exact nature is frequently difficult to identify, our observations clearly highlight the ubiquity of such defects and their relevance for the overall physical and chemical properties of clay nanoparticle-water interfaces.
Collapse
Affiliation(s)
- Igor Siretanu
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Dirk van den Ende
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Frieder Mugele
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
4
|
An R, Huang L, Long Y, Kalanyan B, Lu X, Gubbins KE. Liquid-Solid Nanofriction and Interfacial Wetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:743-750. [PMID: 26716469 DOI: 10.1021/acs.langmuir.5b04115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using atomic force microscopy, the nanofriction coefficient was measured systematically for a series of liquids on planar graphite, silica and mica surfaces. This allows us to explore the quantitative interplay between nanofriction at liquid-solid interfaces and interfacial wetting. A corresponding states theory analysis shows that the nanofriction coefficient, μ = dF(F)/dF(N), where FF is the friction force and FN is the normal force, is a function of three dimensionless parameters that reflect the intermolecular forces involved and the structure of the solid substrate. Of these, we show that one parameter in particular, β = ρ(s)Δ(s)σ(ls)(2), where ρ(s) is the atomic density of the solid, Δ(s) is the spacing between layers of solid atoms, and σ(ls) is the molecular diameter that characterizes the liquid-substrate interaction, is very important in determining the friction coefficient. This parameter β, which we term the structure adhesion parameter, provides a measure of the intermolecular interaction between a liquid molecule and the substrate and also of the surface area of contact of the liquid molecule with the substrate. We find a linear dependence of μ on the structure adhesion parameter for the systems studied. We also find that increasing β leads to an increase in the vertical adhesion forces FA (the attractive force exerted by the solid surface on the liquid film). Our quantitative relationship between the nanofriction coefficient and the key parameter β which governs the vertical adhesive strength, opens up an opportunity for describing liquid flows on solid surfaces at the molecular level, with implications for the development of membrane and nanofluidic devices.
Collapse
Affiliation(s)
- Rong An
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Liangliang Huang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Yun Long
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Singapore 117585, Singapore
| | - Berc Kalanyan
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, China
| | - Keith E Gubbins
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Daniels CR, Reznik C, Landes CF. Dye diffusion at surfaces: charge matters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:4807-12. [PMID: 20163084 PMCID: PMC5634710 DOI: 10.1021/la904749z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Fluorescence correlation spectroscopy and single molecule burst analysis were used to measure the effects of glass surface interactions on the diffusion of two common fluorescent dyes, one cationic and one anionic. The effects of dye-surface interactions on measured diffusion rates as a function of distance from the surface were investigated. Use of a three-axis piezo stage, combined with reference calibration measurements, enabled the accurate acquisition of surface-distance-dependent transport data. This analysis reveals attractive interactions between the cationic dye and the surface, which significantly alter the extracted diffusion values and persist in the measurements up to 1.0 microm from the surface. The Coulomb attraction between the cationic dye and the surface also results in rare, long-lived association events that lead to irreproducibility in extracted diffusion values. In addition to an assignment of the association lifetime for these events, this paper demonstrates that, if experiments must be performed with cationic probes near a glass surface, the use of solution electrolytes can eliminate deleterious dye-surface interactions, as the dyes were tested in a variety of environments. Finally, our data demonstrate that a better dye choice is an anionic probe, which exhibits no depth dependence of diffusion characteristics above a glass surface.
Collapse
Affiliation(s)
| | - Carmen Reznik
- Department of Chemistry, Rice University, Houston, Texas 77251
| | | |
Collapse
|
7
|
Abstract
The self-assembly and self-organization of porphyrins and related macrocycles enables the bottom-up fabrication of photonic materials for fundamental studies of the photophysics of these materials and for diverse applications. This rapidly developing field encompasses a broad range of disciplines including molecular design and synthesis, materials formation and characterization, and the design and evaluation of devices. Since the self-assembly of porphyrins by electrostatic interactions in the late 1980s to the present, there has been an ever increasing degree of sophistication in the design of porphyrins that self-assemble into discrete arrays or self-organize into polymeric systems. These strategies exploit ionic interactions, hydrogen bonding, coordination chemistry, and dispersion forces to form supramolecular systems with varying degrees of hierarchical order. This review concentrates on the methods to form supramolecular porphyrinic systems by intermolecular interactions other than coordination chemistry, the characterization and properties of these photonic materials, and the prospects for using these in devices. The review is heuristically organized by the predominant intermolecular interactions used and emphasizes how the organization affects properties and potential performance in devices.
Collapse
Affiliation(s)
- Charles Michael Drain
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065, USA.
| | | | | |
Collapse
|