1
|
Acevedo-Fani A, Soliva-Fortuny R, Martín-Belloso O. Photo-protection and controlled release of folic acid using edible alginate/chitosan nanolaminates. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
2
|
Silva JM, Reis RL, Mano JF. Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4308-42. [PMID: 27435905 DOI: 10.1002/smll.201601355] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Indexed: 05/23/2023]
Abstract
Surface modification of biomaterials is a well-known approach to enable an adequate biointerface between the implant and the surrounding tissue, dictating the initial acceptance or rejection of the implantable device. Since its discovery in early 1990s layer-by-layer (LbL) approaches have become a popular and attractive technique to functionalize the biomaterials surface and also engineering various types of objects such as capsules, hollow tubes, and freestanding membranes in a controllable and versatile manner. Such versatility enables the incorporation of different nanostructured building blocks, including natural biopolymers, which appear as promising biomimetic multilayered systems due to their similarity to human tissues. In this review, the potential of natural origin polymer-based multilayers is highlighted in hopes of a better understanding of the mechanisms behind its use as building blocks of LbL assembly. A deep overview on the recent progresses achieved in the design, fabrication, and applications of natural origin multilayered films is provided. Such films may lead to novel biomimetic approaches for various biomedical applications, such as tissue engineering, regenerative medicine, implantable devices, cell-based biosensors, diagnostic systems, and basic cell biology.
Collapse
Affiliation(s)
- Joana M Silva
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - João F Mano
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Fu Y, Chen L, Sun W, Chen T, Sun Y, Zhao J. Simulation for diffusion behaviour of molecules in nanopattern-supported lipid bilayers based on random walk theory. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.803553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Tsai HA, Wu RR, Lee IC, Chang HY, Shen CN, Chang YC. Selection, Enrichment, and Maintenance of Self-Renewal Liver Stem/Progenitor Cells Utilizing Polypeptide Polyelectrolyte Multilayer Films. Biomacromolecules 2010; 11:994-1001. [DOI: 10.1021/bm901461e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hsuan-Ang Tsai
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Ruei-Ren Wu
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - I-Chi Lee
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Hsiao-Yuan Chang
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| |
Collapse
|
5
|
Boudou T, Crouzier T, Ren K, Blin G, Picart C. Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:441-67. [PMID: 20217734 DOI: 10.1002/adma.200901327] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The design of advanced functional materials with nanometer- and micrometer-scale control over their properties is of considerable interest for both fundamental and applied studies because of the many potential applications for these materials in the fields of biomedical materials, tissue engineering, and regenerative medicine. The layer-by-layer deposition technique introduced in the early 1990s by Decher, Moehwald, and Lvov is a versatile technique, which has attracted an increasing number of researchers in recent years due to its wide range of advantages for biomedical applications: ease of preparation under "mild" conditions compatible with physiological media, capability of incorporating bioactive molecules, extra-cellular matrix components and biopolymers in the films, tunable mechanical properties, and spatio-temporal control over film organization. The last few years have seen a significant increase in reports exploring the possibilities offered by diffusing molecules into films to control their internal structures or design "reservoirs," as well as control their mechanical properties. Such properties, associated with the chemical properties of films, are particularly important for designing biomedical devices that contain bioactive molecules. In this review, we highlight recent work on designing and controlling film properties at the nanometer and micrometer scales with a view to developing new biomaterial coatings, tissue engineered constructs that could mimic in vivo cellular microenvironments, and stem cell "niches."
Collapse
Affiliation(s)
- Thomas Boudou
- Grenoble-INP, LMGP-MINATEC, CNRS UMR 5628 3, Parvis Louis Néel, 38016 Grenoble, France
| | | | | | | | | |
Collapse
|
6
|
Zhi ZL, Haynie DT. Straightforward and Effective Protein Encapsulation in Polypeptide-based Artificial Cells. ACTA ACUST UNITED AC 2009; 34:189-203. [PMID: 16537174 DOI: 10.1080/10731190600581635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A simple and straightforward approach to encapsulating an enzyme and preserving its function in polypeptide-based artificial cells is demonstrated. A model enzyme, glucose oxidase (GOx), was encapsulated by repeated stepwise adsorption of poly(L-lysine) and poly(L-glutamic acid) onto GOx-coated CaCO3 templates. These polypeptides are known from previous research to exhibit nanometer-scale organization in multilayer films. Templates were dissolved by ethylenediaminetetraacetic acid (EDTA) at neutral pH. Addition of polyethylene glycol (PEG) to the polypeptide assembly solutions greatly increased enzyme retention on the templates, resulting in high-capacity, high-activity loading of the enzyme into artificial cells. Assay of enzyme activity showed that over 80 mg-mL(-1) GOx was retained in artificial cells after polypeptide multilayer film formation and template dissolution in the presence of PEG, but only one-fifth as much was retained in the absence of PEG. Encapsulation is a means of improving the availability of therapeutic macromolecules in biomedicine. This work therefore represents a means of developing polypeptide-based artificial cells for use as therapeutic biomacromolecule delivery vehicles.
Collapse
Affiliation(s)
- Zheng-Liang Zhi
- Biomedical Engineering and Physics, Bionanosystems Engineering Laboratory, Center for Applied Physics Studies, Louisiana Tech University, Ruston, Louisiana 71272, USA
| | | |
Collapse
|
7
|
Zhang G, Liu M. Acidichromism and chiroptical switch based on the self-assembly of a cyanine dye on the PLGA/PAH LbL film. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b817782a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Influence of assembling pH on the stability of poly(l-glutamic acid) and poly(l-lysine) multilayers against urea treatment. Colloids Surf B Biointerfaces 2008; 62:250-7. [DOI: 10.1016/j.colsurfb.2007.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/30/2007] [Accepted: 10/22/2007] [Indexed: 11/19/2022]
|
9
|
Zhang L, Zhao W, Rudra JS, Haynie DT. Context dependence of the assembly, structure, and stability of polypeptide multilayer nanofilms. ACS NANO 2007; 1:476-486. [PMID: 19206669 DOI: 10.1021/nn700267g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polyelectrolyte multilayer nanofilms and nanocomposites have shown considerable promise for the rational development of multifunctional materials with wide-ranging properties. Polypeptides are a distinctive and largely unexplored class of polyelectrolytes in this context. Methods now exist for the synthesis of peptides with control at the level of the amino acid sequence, and for the preparation of these polymers in massive quantities. Here, we analyze the roles of six designed 32mer peptides in the fabrication, structure, and stability of multilayer nanofilms prepared by layer-by-layer self-assembly. The data show that amino acid sequence and the specific combination of anionic and cationic peptides together have a marked impact on nanofilm growth behavior, secondary structure content, and density in experimental studies. The same factors determine physical properties of the corresponding interpolypeptide complexes in molecular dynamics simulations.
Collapse
Affiliation(s)
- Ling Zhang
- Artificial Cell Technologies, Inc., 5 Science Park at Yale, Third Floor, New Haven, Connecticut 06511, USA
| | | | | | | |
Collapse
|
10
|
Zhong Y, Whittington CF, Zhang L, Haynie DT. Controlled loading and release of a model drug from polypeptide multilayer nanofilms. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 3:154-60. [PMID: 17572357 DOI: 10.1016/j.nano.2007.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 01/28/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
A major concern of medicine today is the sustained release of therapeutic compounds. Delivery vehicles for such compounds must be biocompatible. Ideally, loading a drug into the delivery vehicle will be a simple process, and vehicle properties will allow control over the drug release profile under desired conditions. Here, polypeptide multilayer nanofilms have been prepared by electrostatic layer-by-layer self-assembly to study the post-fabrication loading and release of a model therapeutic, methylene blue (MB). Drug loading and release have been characterized by optical spectroscopy for different peptide designs at different pH values, and film surface morphology has been characterized by atomic force microscopy (AFM). Differences in peptide structure have been found to influence MB loading and release under otherwise fixed conditions. Release is also influenced by pH, salt concentration, and number of "capping" layers. Although more research will be needed to exhaust the potential of polypeptide multilayer films, present results would suggest that the technology holds considerable promise for applications in medicine.
Collapse
Affiliation(s)
- Yang Zhong
- Center for Applied Physics Studies, College of Engineering and Science, Louisiana Tech University, Ruston, Louisiana, USA
| | | | | | | |
Collapse
|
11
|
Rudra JS, Dave K, Haynie DT. Antimicrobial polypeptide multilayer nanocoatings. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2007; 17:1301-15. [PMID: 17176751 DOI: 10.1163/156856206778667433] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A multilayer coating (or film) of nanometer-thick layers can be made by sequential adsorption of oppositely charged polyelectrolytes on a solid support. The method is known as layer-by-layer assembly (LBL). No special apparatus is required for LBL and nanofilms can be prepared under mild, physiological conditions. A multilayer nanofilm in which at least one of the constituent species is a polypeptide is a polypeptide multilayer nanofilm. The present work was aimed at assessing whether polypeptide multilayer nanofilms with specific antimicrobial properties could be prepared by incorporation of a known antimicrobial agent in the film structure, in this case the edible protein hen egg white lysozyme (HEWL). The chicken enzyme is widely employed as a human food preservative. An advantage of LBL in this context is that the nanofilm is fabricated directly on the surface of interest, eliminating the need to incorporate the antimicrobial in other packaging materials. Here, nanofilms were made of poly(L-glutamic acid) (PLGA), which is highly negatively charged in the mildly acidic pH range, and HEWL, which has a high net positive charge at acidic pH. We show that PLGA/HEWL nanofilms inhibit growth of the model microbe Microccocus luteus in the surrounding liquid medium. The amount of HEWL released from PLGA/HEWL films depends on the number of HEWL layers and therefore on the total quantity of HEWL in the films. This initial study provides a sketch of the scope for further development of LBL in the area of antimicrobial polypeptide multilayer films. Potential applications of such films include strategies for food preservation and coatings for implant devices.
Collapse
Affiliation(s)
- Jai S Rudra
- Biomedical Engineering, Bionanosystems Engineering Laboratory, Center for Applied Physics Studies, PO Box 10348, Louisiana Tech University, Ruston, LA 71272, USA
| | | | | |
Collapse
|
12
|
Palath N, Bhad S, Montazeri R, Guidry CA, Haynie DT. Polypeptide multilayer nanofilm artificial red blood cells. J Biomed Mater Res B Appl Biomater 2007; 81:261-8. [PMID: 16969824 DOI: 10.1002/jbm.b.30661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reliable encapsulation of hemoglobin (Hb) within polypeptide multilayer nanofilms has been achieved by a template-based approach, and protein functionality has been demonstrated postencapsulation. The method is general in scope and could be useful for many other encapsulants. Met-Hb was adsorbed onto 5 microm-diameter CaCO3 microparticles, and the Hb-coated particles were encapsulated within a multilayer nanofilm of poly(L-glutamic acid) (PLGA) and poly(L-lysine) (PLL) by layer-by-layer assembly. The CaCO3 templates were then dissolved within the PLGA/PLL nanofilms by addition of ethylenediaminetetraacetic acid. Encapsulation of Hb was proved by fluorescence microscopy, the pH-dependence of retention of Hb was determined by visible wavelength absorbance, and conversion of the encapsulated met-Hb to deoxy-Hb and oxy-Hb was demonstrated by spectroscopic analysis of the Soret absorption peak under various conditions. It thus has been shown that control of Hb oxygenation within polypeptide multilayer nanofilm artificial cells is possible, and that Hb thus encapsulated can bind, release, and subsequently rebind molecular oxygen. This work therefore represents an advance in the development of polypeptide multilayer film artificial red blood cells.
Collapse
Affiliation(s)
- Naveen Palath
- Artificial Cell Technologies Incorporated, 5 Science Park, Suite 13, New Haven, Connecticut 06511, USA
| | | | | | | | | |
Collapse
|
13
|
Zhong Y, Whittington CF, Haynie DT. Stimulated release of small molecules from polyelectrolyte multilayer nanocoatings. Chem Commun (Camb) 2007:1415-7. [PMID: 17389977 DOI: 10.1039/b615699a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Free thiol-containing polyelectrolytes serve simultaneously as a material for self-assembly of a multilayer nanocoating and as a carrier of small molecules for release from the coating in response to an environmental cue.
Collapse
Affiliation(s)
- Yang Zhong
- Artificial Cell Technologies, Inc., 5 Science Park, New Haven, Connecticut 06511, USA
| | | | | |
Collapse
|
14
|
Abstract
Polypeptide multilayer films are promising for the development of coatings for implant devices, biosensors, and artificial cells. This paper discusses aspects of the physics of these films. Three sub-topics in the physics of peptide adsorption in multilayer film assembly covered here are peptide structure at the film/solid support interface, adsorbed layer thickness, and dynamics of peptide adsorption. A synopsis of work in these areas is preceded by an introduction to the subject and a review of some aspects of polymer theory.
Collapse
Affiliation(s)
- Donald T Haynie
- Biomedical Engineering and Physics, Bionanosystems Engineering Laboratory, Center for Applied Physics Studies, Louisiana Tech University, P.O. Box 10348, Ruston, 71272, USA.
| |
Collapse
|
15
|
Haynie DT, Zhang L, Rudra JS, Zhao W, Zhong Y, Palath N. Polypeptide multilayer films. Biomacromolecules 2006; 6:2895-913. [PMID: 16283705 DOI: 10.1021/bm050525p] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Research on polypeptide multilayer films, coatings, and microcapsules is located at the intersection of several disciplines: synthetic polymer chemistry and physics, biomaterials science, and nanoscale engineering. The past few years have witnessed considerable growth in each of these areas. Unexplored territory has been found at the borders, and new possibilities for technology development are taking form from technological advances in polypeptide production, sequencing of the human genome, and the nature of peptides themselves. Most envisioned applications of polypeptide multilayers have a biomedical bent. Prospects seem no less positive, however, in fields ranging from food technology to environmental science. This review of the present state of polypeptide multilayer film research covers key points of polypeptides as materials, means of polymer production and film preparation, film characterization methods, focal points of current research in basic science, and the outlook for a few specific applications. In addition, it discusses how the study of polypeptide multilayer films could help to clarify the physical basis of assembly and stability of polyelectrolyte multilayers, and mention is made of similarities to protein folding studies.
Collapse
Affiliation(s)
- Donald T Haynie
- Bionanosystems Engineering Laboratory, Center for Applied Physics Studies, College of Engineering & Science, Louisiana Tech University, PO Box 10348, Ruston, Louisiana 71272, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Zhi ZL, Haynie DT. High-capacity functional protein encapsulation in nanoengineered polypeptide microcapsules. Chem Commun (Camb) 2006:147-9. [PMID: 16372087 DOI: 10.1039/b511353a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Addition of polyethylene glycol to aqueous assembly solutions of oppositely charged polypeptides enables high-capacity "loading" of functional protein in biocompatible microcapsules by template-supported layer-by-layer nanoassembly.
Collapse
|