1
|
Xu H, Liang X, Lu S, Gao M, Wang S, Li Y. Self-Assembly of Palmitic Acid in the Presence of Choline Hydroxide. Molecules 2023; 28:7463. [PMID: 38005186 PMCID: PMC10673190 DOI: 10.3390/molecules28227463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
To disperse fatty acids in aqueous solution, choline, a quaternary ammonium ion, has been used recently. So far, only the self-assembly of myristic acid (MA) in the presence of choline hydroxide as a function of the molar ratio has been investigated, and, thus, the current understanding of these fatty acid systems is still limited. We investigated the self-assembly of palmitic acid (PA) in the presence of choline hydroxide (ChOH) as a function of the molar ratio (R) between ChOH and PA. The self-assemblies were characterized by phase contrast microscopy, cryo-TEM, small-angle X-ray scattering, and 2H NMR. The ionization state of PA was determined by pH, conductivity, and FT-IR measurements. With increase in R, various self-assembled structures, including vesicles, lamellar phase, rigid membranes (large sheets, tubules, cones, and polyhedrals), and micelles, form in the PA/ChOH system, different from those of the MA/ChOH system. The change in R induces pH variation and, consequently, a change in the PA ionization state, which, in turn, regulates the molecular interactions, including hydrogen bonding and electrostatic interaction, leading to various self-assemblies. Temperature is an important factor used to tune the self-assembly transitions. The fatty acid choline systems studied here potentially may be applicable in medicine, chemical engineering, and biotechnology.
Collapse
Affiliation(s)
- Huifang Xu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Xin Liang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Song Lu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Meihua Gao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Sijia Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Yuanyuan Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| |
Collapse
|
2
|
Mechanisms of membrane protein crystallization in 'bicelles'. Sci Rep 2022; 12:11109. [PMID: 35773455 PMCID: PMC9246360 DOI: 10.1038/s41598-022-13945-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Despite remarkable progress, mainly due to the development of LCP and ‘bicelle’ crystallization, lack of structural information remains a bottleneck in membrane protein (MP) research. A major reason is the absence of complete understanding of the mechanism of crystallization. Here we present small-angle scattering studies of the evolution of the “bicelle” crystallization matrix in the course of MP crystal growth. Initially, the matrix corresponds to liquid-like bicelle state. However, after adding the precipitant, the crystallization matrix transforms to jelly-like state. The data suggest that this final phase is composed of interconnected ribbon-like bilayers, where crystals grow. A small amount of multilamellar phase appears, and its volume increases concomitantly with the volume of growing crystals. We suggest that the lamellar phase surrounds the crystals and is critical for crystal growth, which is also common for LCP crystallization. The study discloses mechanisms of “bicelle” MP crystallization and will support rational design of crystallization.
Collapse
|
3
|
Dufourc EJ. Bicelles and nanodiscs for biophysical chemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183478. [PMID: 32971065 DOI: 10.1016/j.bbamem.2020.183478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/14/2023]
Abstract
Membrane nanoobjects are very important tools to study biomembrane properties. Two types are described herein: Bicelles and Nanodiscs. Bicelles are obtained by thorough water mixing of long chain and short chain lipids and may take the form of membranous discs of 10-50 nm. Temperature-composition-hydration diagrams have been established for Phosphatidylcholines and show limited domains of existence. Bicelles can be doped with charged lipids, surfactants or with cholesterol and offer a wide variety of membranous platforms for structural biology. Internal dynamics as measured by solid-state NMR is very similar to that of liposomes in their fluid phase. Because of the magnetic susceptibility anisotropy of the lipid chains, discs may be aligned along or perpendicular to the magnetic field. They may serve as weak orienting media to provide distance information in determining the 3D structure of soluble proteins. In different conditions they show strong orienting properties which may be used to study the 3D structure, topology and dynamics of membrane proteins. Lipid Bicelles with biphenyl chains or doped with lanthanides show long lasting remnant orientation after removing the magnetic field due to smectic-like properties. An alternative to pure lipid Bicelles is provided by nanodiscs where the half torus composed by short chain lipids is replaced by proteins. This renders the nano-objects less fragile as they can be used to stabilize membrane protein assemblies to be studied by electron microscopy. Internal dynamics is again similar to liposomes except that the phase transition is abolished, possibly due to lateral constrain imposed by the toroidal proteins limiting the disc size. Advantages and drawbacks of both nanoplatforms are discussed.
Collapse
Affiliation(s)
- Erick J Dufourc
- Institute of Chemistry and Biology of membranes and Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Allée Geoffroy Saint Hilaire, 33600 Pessac, France.
| |
Collapse
|
4
|
Li M, Heller WT, Liu CH, Gao CY, Cai Y, Hou Y, Nieh MP. Effects of fluidity and charge density on the morphology of a bicellar mixture - A SANS study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183315. [PMID: 32304755 DOI: 10.1016/j.bbamem.2020.183315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 01/28/2023]
Abstract
The spontaneously formed structures of physiologically relevant lipid model membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and 1,2-hexanoyl-sn-glycero-3-phosphocholine have been evaluated in depth using small angle neutron scattering. Although a common molar ratio of long- to short- chain phospholipids (~4) as reported in many bicellar mixtures was used, discoidal bicelles were not found as the major phase throughout the range of lipid concentration and temperature studied, indicating that the required condition for the formation of bicelle is the immiscibility between the long- and short- chain lipids, which were in the gel and Lα phases, respectively, in previous reports. In this study, all lipids are in the Lα phase. The characterization outcome suggests that the spontaneous structures tie strongly with the physical parameters of the system such as melting transition temperature of the long-chain lipid, total lipid concentration and charge density of the system. Multilamellar vesicles, unilamellar vesicles, ribbons and perforated lamellae can be obtained based on the analysis of the small angle neutron scattering results, leading to the construction of structural diagrams. This report provides the important map to choose suitable lipid systems for the structural study of membrane-associated proteins, design of theranostic nanocarriers or other related research fields.
Collapse
Affiliation(s)
- Ming Li
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA
| | - William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA
| | - Carrie Y Gao
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yutian Cai
- Department of Polymer Material Science and Engineering, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410000, China
| | - Yiming Hou
- Department of Polymer Material Science and Engineering, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410000, China
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs 06269, USA.
| |
Collapse
|
5
|
Uchida N, Nishizawa Horimoto N, Yamada K, Hikima T, Ishida Y. Kinetically Stable Bicelles with Dilution Tolerance, Size Tunability, and Thermoresponsiveness for Drug Delivery Applications. Chembiochem 2018; 19:1922-1926. [PMID: 29969169 DOI: 10.1002/cbic.201800304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 11/10/2022]
Abstract
Mixtures of a phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, DPPC) and a sodium-cholate-derived surfactant (SC-C5 ) at room temperature formed phospholipid bilayer fragments that were edge-stabilized by SC-C5 : so-called "bicelles". Because the bilayer melting point of DPPC (41 °C) is above room temperature and because SC-C5 has an exceptionally low critical micelle concentration (<0.5 mm), the bicelles are kinetically frozen at room temperature. Consequently, they exist even when the mixture is diluted to a concentration of 0.04 wt %. In addition, the lateral size of the bicelles can be fine-tuned by altering the molar ratio of DPPC to SC-C5 . On heating to ≈37 °C, the bicelles transformed into micelles composed of DPPC and SC-C5 . By taking advantage of the dilution tolerance, size tunability, and thermoresponsiveness, we demonstrated in vitro drug delivery based on use of the bicelles as carriers, which suggests their potential utility in transdermal drug delivery.
Collapse
Affiliation(s)
- Noriyuki Uchida
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | - Kuniyo Yamada
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
6
|
Banigan JR, Leninger M, Her AS, Traaseth NJ. Assessing Interactions Between a Polytopic Membrane Protein and Lipid Bilayers Using Differential Scanning Calorimetry and Solid-State NMR. J Phys Chem B 2018; 122:2314-2322. [PMID: 29457729 DOI: 10.1021/acs.jpcb.8b00479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is known that the lipid composition within a cellular membrane can influence membrane protein structure and function. In this Article, we investigated how structural changes to a membrane protein upon substrate binding can impact the lipid bilayer. To carry out this study, we reconstituted the secondary active drug transporter EmrE into a variety of phospholipid bilayers varying in headgroup and chain length and carried out differential scanning calorimetry (DSC) and solid-state NMR experiments. The DSC results revealed a difference in cooperativity of the lipid phase transition for drug-free EmrE protonated at glutamic acid 14 (i.e., proton-loaded form) and the tetraphenylphosphonium (TPP+) bound form of the protein (i.e., drug-loaded form). To complement these findings, we acquired magic-angle-spinning (MAS) spectra in the presence and absence of TPP+ by directly probing the phospholipid headgroup using 31P NMR. These spectra showed a reduction in lipid line widths around the main phase transition for samples where EmrE was bound to TPP+ compared to the drug free form. Finally, we collected oriented solid-state NMR spectra on isotopically enriched EmrE that displayed chemical shift perturbations to both transmembrane and loop residues upon TPP+ binding. All of these results prompt us to propose a mechanism whereby substrate-induced changes to the structural dynamics of EmrE alters the surrounding lipids within the bilayer.
Collapse
Affiliation(s)
- James R Banigan
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Maureen Leninger
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Ampon Sae Her
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Nathaniel J Traaseth
- Department of Chemistry, New York University , New York, New York 10003, United States
| |
Collapse
|
7
|
Control and role of pH in peptide–lipid interactions in oriented membrane samples. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:833-41. [DOI: 10.1016/j.bbamem.2014.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022]
|
8
|
Douliez JP, Navailles L, Dufourc EJ, Nallet F. Fully deuterated magnetically oriented system based on fatty acid direct hexagonal phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5075-5081. [PMID: 24758608 DOI: 10.1021/la500808q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There is strong demand in the field of NMR for simple oriented lipid supramolecular assemblies, the constituents of which can be fully deuterated, for specifically studying the structure of host protonated molecules (e.g., peptides, proteins...) in a lipid environment. Also, small-angle neutron scattering (SANS) in fully deuterated oriented systems is powerful for gaining information on protonated host molecules in a lipid environment by using the contrast proton/deuterium method. Here we report on a very simple system made of fatty acids (dodecanoic and tetradecanoic) and ethanolamine in water. All components of this system can be obtained commercially as perdeuterated. Depending on the molar ratio and the concentration, the system self-assembles at room temperature into a direct hexagonal phase that is oriented by moderate magnetic fields of a few tesla. The orientation occurs within the magnetic field upon cooling the system from its higher-temperature isotropic phase: the lipid cylinders of the hexagonal phase become oriented parallel to the field. This is shown by solid-state NMR using either perdeuterated fatty acids or ethanolamine. This system bears strong interest for studying host protonated molecules but also in materials chemistry for building oriented solid materials.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- UMR 1332, Biologie et Pathologie du Fruit, INRA, Centre de Bordeaux, 33883 Villenave d'Ornon, France
| | | | | | | |
Collapse
|
9
|
Vácha R, Frenkel D. Stability of bicelles: a simulation study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4229-4235. [PMID: 24670113 DOI: 10.1021/la4048159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aqueous mixtures of long-tailed lipids (e.g., dimyristoylphosphatidylcholine - DMPC) and detergents can sometimes form membrane disks called bicelles. Bicelles have found applications as an embedding medium for membrane proteins in the context of NMR studies and protein crystallization. However, the parameters that determine the thermodynamic stability of bicelles are not well understood. Here we report a coarse-grained simulation study of the relationship between lipid-aggregate morphology and the composition and temperature of the surfactant mixture. In agreement with experiments, we find that bicellar mixtures are destabilized at higher temperatures and detergents are present at membrane edges as well as in flat membranes with a strong preference for the edges. In addition, our results suggest that the free-energy difference between bicelles and the perforated lamellar phase is typically very small for molecules without intrinsic curvature and charge. Cone shaped surfactant molecules tend to favor the formation of bicelles; however, none of the systems that we have studied provide unambiguous evidence for the existence of thermodynamically stable bicelles in mixtures of uncharged lipids with long and short tails. We speculate that small changes in the properties of the system (charge, dopants) may make bicelles thermodynamically stable.
Collapse
Affiliation(s)
- Robert Vácha
- National Centre for Biomolecular Research, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University , Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
| | | |
Collapse
|
10
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
11
|
Goncalves J, Eilers M, South K, Opefi CA, Laissue P, Reeves PJ, Smith SO. Magic angle spinning nuclear magnetic resonance spectroscopy of G protein-coupled receptors. Methods Enzymol 2013; 522:365-89. [PMID: 23374193 DOI: 10.1016/b978-0-12-407865-9.00017-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and mediate a diversity of cellular processes. These receptors have a common seven-transmembrane helix structure, yet have evolved to respond to literally thousands of different ligands. In this chapter, we describe the use of magic angle spinning solid-state NMR spectroscopy for characterizing the structure and dynamics of GPCRs. Solid-state NMR spectroscopy is well suited for structural measurements in both detergent micelles and membrane bilayer environments. We first outline the methods for large-scale production of stable, functional receptors containing (13)C- and (15)N-labeled amino acids. The expression methods make use of eukaryotic HEK293S cell lines that produce correctly folded, fully functional receptors. We subsequently describe the basic methods used for magic angle spinning solid-state NMR measurements of chemical shifts and dipolar couplings, which reveal detailed information on GPCR structure and dynamics.
Collapse
Affiliation(s)
- Joseph Goncalves
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Smith EA, Dea PK. Influence of the interdigitated gel phase in mixtures of ether-linked and monofluorinated ester-linked phospholipids. Chem Phys Lipids 2012; 165:818-25. [DOI: 10.1016/j.chemphyslip.2012.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
13
|
Tang W, Knox RW, Nevzorov AA. A spectroscopic assignment technique for membrane proteins reconstituted in magnetically aligned bicelles. JOURNAL OF BIOMOLECULAR NMR 2012; 54:307-316. [PMID: 22976525 DOI: 10.1007/s10858-012-9673-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
Oriented-sample NMR (OS-NMR) has emerged as a powerful tool for the structure determination of membrane proteins in their physiological environments. However, the traditional spectroscopic assignment method in OS NMR that uses the "shotgun" approach, though effective, is quite labor- and time-consuming as it is based on the preparation of multiple selectively labeled samples. Here we demonstrate that, by using a combination of the spin exchange under mismatched Hartmann-Hahn conditions and a recent sensitivity-enhancement REP-CP sequence, spectroscopic assignment of solid-state NMR spectra of Pf1 coat protein reconstituted in magnetically aligned bicelles can be significantly improved. This method yields a two-dimensional spin-exchanged version of the SAMPI4 spectrum correlating the (15)N chemical shift and (15)N-(1)H dipolar couplings, as well as spin-correlations between the (i, i ± 1) amide sites. Combining the spin-exchanged SAMPI4 spectrum with the original SAMPI4 experiment makes it possible to establish sequential assignments, and this technique is generally applicable to other uniaxially aligned membrane proteins. Inclusion of an (15)N-(15)N correlation spectrum into the assignment process helps establish correlations between the peaks in crowded or ambiguous spectral regions of the spin-exchanged SAMPI4 experiment. Notably, unlike the traditional method, only a uniformly labeled protein sample is required for spectroscopic assignment with perhaps only a few selectively labeled "seed" spectra. Simulations for the magnetization transfer between the dilute spins under mismatched Hartmann Hahn conditions for various B (1) fields have also been performed. The results adequately describe the optimal conditions for establishing the cross peaks, thus eliminating the need for lengthy experimental optimizations.
Collapse
Affiliation(s)
- Wenxing Tang
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA
| | | | | |
Collapse
|
14
|
Rankenberg JM, Vostrikov VV, DuVall CD, Greathouse DV, Koeppe RE, Grant CV, Opella SJ. Proline kink angle distributions for GWALP23 in lipid bilayers of different thicknesses. Biochemistry 2012; 51:3554-64. [PMID: 22489564 DOI: 10.1021/bi300281k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By using selected (2)H and (15)N labels, we have examined the influence of a central proline residue on the properties of a defined peptide that spans lipid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy. For this purpose, GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-ethanolamide) is a suitable model peptide that employs, for the purpose of interfacial anchoring, only one tryptophan residue on either end of a central α-helical core sequence. Because of its systematic behavior in lipid bilayer membranes of differing thicknesses [Vostrikov, V. V., et al. (2010) J. Biol. Chem. 285, 31723-31730], we utilize GWALP23 as a well-characterized framework for introducing guest residues within a transmembrane sequence; for example, a central proline yields acetyl-GGALW(5)LALALAP(12)ALALALW(19)LAGA-ethanolamide. We synthesized GWALP23-P12 with specifically placed (2)H and (15)N labels for solid-state NMR spectroscopy and examined the peptide orientation and segmental tilt in oriented DMPC lipid bilayer membranes using combined (2)H GALA and (15)N-(1)H high-resolution separated local field methods. In DMPC bilayer membranes, the peptide segments N-terminal and C-terminal to the proline are both tilted substantially with respect to the bilayer normal, by ~34 ± 5° and 29 ± 5°, respectively. While the tilt increases for both segments when proline is present, the range and extent of the individual segment motions are comparable to or smaller than those of the entire GWALP23 peptide in bilayer membranes. In DMPC, the proline induces a kink of ~30 ± 5°, with an apparent helix unwinding or "swivel" angle of ~70°. In DLPC and DOPC, on the basis of (2)H NMR data only, the kink angle and swivel angle probability distributions overlap those of DMPC, yet the most probable kink angle appears to be somewhat smaller than in DMPC. As has been described for GWALP23 itself, the C-terminal helix ends before Ala(21) in the phospholipids DMPC and DLPC yet remains intact through Ala(21) in DOPC. The dynamics of bilayer-incorporated, membrane-spanning GWALP23 and GWALP23-P12 are less extensive than those observed for WALP family peptides that have more than two interfacial Trp residues.
Collapse
Affiliation(s)
- Johanna M Rankenberg
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | | | | | | | | | | |
Collapse
|
15
|
Agah S, Faham S. Crystallization of membrane proteins in bicelles. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 914:3-16. [PMID: 22976019 DOI: 10.1007/978-1-62703-023-6_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structural biology of membrane proteins remains a challenging field, partly due to the difficulty in obtaining high-quality crystals. We developed the bicelle method as a tool to aid with the production of membrane protein crystals. Bicelles are bilayer discs that are formed by a mixture of a detergent and a lipid. They combine the ease of use of detergents with the benefits of a lipidic medium. Bicelles maintain membrane proteins in a bilayer milieu, which is more similar to their native environment than detergent micelles. At the same time, bicelles are liquid at certain temperatures and they can be integrated into standard crystallization techniques without the need for specialized equipment.
Collapse
Affiliation(s)
- Sayeh Agah
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
16
|
Mote KR, Gopinath T, Traaseth NJ, Kitchen J, Gor'kov PL, Brey WW, Veglia G. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers. JOURNAL OF BIOMOLECULAR NMR 2011; 51:339-346. [PMID: 21976256 DOI: 10.1007/s10858-011-9571-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers.
Collapse
Affiliation(s)
- Kaustubh R Mote
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Structural Versatility of Bicellar Systems and Their Possibilities as Colloidal Carriers. Pharmaceutics 2011; 3:636-64. [PMID: 24310601 PMCID: PMC3857087 DOI: 10.3390/pharmaceutics3030636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/21/2011] [Accepted: 09/05/2011] [Indexed: 11/17/2022] Open
Abstract
Bicellar systems are lipid nanostructures formed by long- and short-chained phospholipids dispersed in aqueous solution. The morphological transitions of bicellar aggregates due to temperature, composition and time variations have been revised in this work. To this end, two bicellar systems have been considered; one formed by dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl- phosphatidylcholine (DHPC) and another formed by dipalmitoyl-phosphatidylcholine (DPPC) and DHPC. The relationship between the magnetic alignment, the morphology of the aggregates and the phase transition temperature (Tm) of lipids is discussed. In general terms, the non-alignable samples present rounded objects at temperature below the Tm. Above this temperature, an increase of viscosity is followed by the formation of large elongated aggregates. Alignable samples presented discoidal objects below the Tm. The best alignment was achieved above this temperature with large areas of lamellar stacked bilayers and some multilamellar vesicles. The effect of the inclusion of ceramides with different chain lengths in the structure of bicelles is also revised in the present article. A number of physical techniques show that the bicellar structures are affected by both the concentration and the type of ceramide. Systems are able to incorporate 10% mol of ceramides that probably are organized forming domains. The addition of 20% mol of ceramides promotes destabilization of bicelles, promoting the formation of mixed systems that include large structures. Bicellar systems have demonstrated to be morphologically stable with time, able to encapsulate different actives and to induce specific effects on the skin. These facts make bicellar systems good candidates as colloidal carriers for dermal delivery. However, water dilution induces structural changes and formation of vesicular structures in the systems; stabilization strategies have been been explored in recent works and are also updated here.
Collapse
|
18
|
Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I. Choosing membrane mimetics for NMR structural studies of transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1957-74. [DOI: 10.1016/j.bbamem.2011.03.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 12/11/2022]
|
19
|
Bertelsen K, Vad B, Nielsen EH, Hansen SK, Skrydstrup T, Otzen DE, Vosegaard T, Nielsen NC. Long-term-stable ether-lipid vs conventional ester-lipid bicelles in oriented solid-state NMR: altered structural information in studies of antimicrobial peptides. J Phys Chem B 2011; 115:1767-74. [PMID: 21309516 DOI: 10.1021/jp110866g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, ether lipids have been introduced as long-term stable alternatives to the more natural, albeit easier degradable, ester lipids in the preparation of oriented lipid bilayers and bicelles for oriented-sample solid-state NMR spectroscopy. Here we report that ether lipids such as the frequently used 14-O-PC (1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine) may induce significant changes in the structure and dynamics, including altered interaction between peptides and lipids relative to what is observed with the more conventionally used DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers. Such effects are demonstrated for the antimicrobial peptide novicidin, for which 2D separate-local-field NMR and circular dichroism experiments reveal significant structural/conformational differences for the peptide in the two different lipid systems. Likewise, we observe altered secondary structure and different temperature-dependent membrane anchoring for the antimicrobial peptide alamethicin depending on whether the peptide is reconstituted into ester or ether lipids. Such observations are not particularly surprising considering the significant difference of the lipids in the phosphorus headgroup and they may provide important new insight into the delicate peptide-membrane interactions in the systems studied. In contrast, these observations reinforce the need to carefully consider potential structural changes in addition to long-term stability prior to the selection of membrane environment of membrane proteins in the analysis of their structure and dynamics. In more general terms, the results underscore the necessity in structural biology to address both the protein and its environments in studies relating structure to function.
Collapse
Affiliation(s)
- Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Walther TH, Grage SL, Roth N, Ulrich AS. Membrane Alignment of the Pore-Forming Component TatAd of the Twin-Arginine Translocase from Bacillus subtilis Resolved by Solid-State NMR Spectroscopy. J Am Chem Soc 2010; 132:15945-56. [DOI: 10.1021/ja106963s] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Torsten H. Walther
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Stephan L. Grage
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Nadine Roth
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Anne S. Ulrich
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Douliez JP. A novel oriented system made of fatty acid hexagonal phases with tuneable orientation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 206:171-176. [PMID: 20598599 DOI: 10.1016/j.jmr.2010.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 05/29/2023]
Abstract
There is a strong demand in the field of solid state NMR for oriented lipid supramolecular assemblies. This is mainly devoted to biophysical structural studies or materials chemistry because the NMR signal depends on the orientation. Here we report a novel system made of a fatty acid hexagonal phase which self orient in the magnetic field. The orientation occurs within the magnetic field upon cooling the system from its isotropic phase. The cylinders of the hexagonal phase are then oriented parallel to the field. We take advantage that the hexagonal phase is a gel, i.e., the orientation is maintained fixed within the sample tube to investigate the orientational dependence of the deuterium solid state NMR signal using deuterated fatty acids and D(2)O by manually rotating the sample tube within the coil probe. As expected, the oriented signal follows the low |3cos(2)theta-1| where theta is the angle between the long cylindrical axis and the field. We expect this system to be of interest in materials chemistry and structural biology.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- UR 1268, Biopolymères Interactions Assemblages INRA, équipe ISD, Rue de la Géraudière, 44316 Nantes, France.
| |
Collapse
|
22
|
Doherty T, Su Y, Hong M. High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers. J Mol Biol 2010; 401:642-52. [PMID: 20600109 PMCID: PMC2918711 DOI: 10.1016/j.jmb.2010.06.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 06/17/2010] [Accepted: 06/23/2010] [Indexed: 11/27/2022]
Abstract
The opening and closing of voltage-gated potassium (Kv) channels are controlled by several conserved Arg residues in the S4 helix of the voltage-sensing domain. The interaction of these positively charged Arg residues with the lipid membrane has been of intense interest for understanding how membrane proteins fold to allow charged residues to insert into lipid bilayers against free-energy barriers. Using solid-state NMR, we have now determined the orientation and insertion depth of the S4 peptide of the KvAP channel in lipid bilayers. Two-dimensional (15)N correlation experiments of macroscopically oriented S4 peptide in phospholipid bilayers revealed a tilt angle of 40 degrees and two possible rotation angles differing by 180 degrees around the helix axis. Remarkably, the tilt angle and one of the two rotation angles are identical to those of the S4 helix in the intact voltage-sensing domain, suggesting that interactions between the S4 segment and other helices of the voltage-sensing domain are not essential for the membrane topology of the S4 helix. (13)C-(31)P distances between the S4 backbone and the lipid (31)P indicate a approximately 9 A local thinning and 2 A average thinning of the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphochloline)/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) bilayer, consistent with neutron diffraction data. Moreover, a short distance of 4.6 A from the guanidinium C(zeta) of the second Arg to (31)P indicates the existence of guanidinium phosphate hydrogen bonding and salt bridges. These data suggest that the structure of the Kv gating helix is mainly determined by protein-lipid interactions instead of interhelical protein-protein interactions, and the S4 amino acid sequence encodes sufficient information for the membrane topology of this crucial gating helix.
Collapse
Affiliation(s)
| | | | - Mei Hong
- Department of Chemistry, Iowa State University, Ames, IA 50011
| |
Collapse
|
23
|
Pardaxin permeabilizes vesicles more efficiently by pore formation than by disruption. Biophys J 2010; 98:576-85. [PMID: 20159154 DOI: 10.1016/j.bpj.2009.08.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/02/2009] [Accepted: 08/06/2009] [Indexed: 12/28/2022] Open
Abstract
Pardaxin is a 33-amino-acid neurotoxin from the Red Sea Moses sole Pardachirus marmoratus, whose mode of action shows remarkable sensitivity to lipid chain length and charge, although the effect of pH is unclear. Here we combine optical spectroscopy and dye release experiments with laser scanning confocal microscopy and natural abundance (13)C solid-state nuclear magnetic resonance to provide a more complete picture of how pardaxin interacts with lipids. The kinetics and efficiency of release of entrapped calcein is highly sensitive to pH. In vesicles containing zwitterionic lipids (PC), release occurs most rapidly at low pH, whereas in vesicles containing 20% anionic lipid (PG), release occurs most rapidly at high pH. Pardaxin forms stable or transient pores in PC vesicles that allow release of contents without loss of vesicle integrity, whereas the inclusion of PG promotes total vesicle collapse. In agreement with this, solid-state nuclear magnetic resonance reveals that pardaxin takes up a trans-membrane orientation in 14-O-PC/6-O-PC bicelles, whereas the inclusion of 14-0-PG restricts it to contacts with lipid headgroups, promoting membrane lysis. Pore formation in zwitterionic vesicles is more efficient than lysis of anionic vesicles, suggesting that electrostatic interactions may trap pardaxin in several suboptimal interconverting conformations on the membrane surface.
Collapse
|
24
|
Beck P, Liebi M, Kohlbrecher J, Ishikawa T, Rüegger H, Fischer P, Walde P, Windhab E. Novel type of bicellar disks from a mixture of DMPC and DMPE-DTPA with complexed lanthanides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5382-5387. [PMID: 20384368 DOI: 10.1021/la903806a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report on the formation of bicelles from a mixture of dimyristoylphosphatidylcholine (DMPC) and the chelator-lipid dimyristoylphosphatidylethanolamine-diethylenetriaminepentaacetate (DMPE-DTPA) with complexed lanthanides, either thulium (Tm(3+)) or lanthanum (La(3+)). The two phospholipids used have the same acyl-chain length but differ in headgroup size and chemical structure. The total lipid concentration was 15 mM, and the molar ratio of DMPC to DMPE-DTPA was 4:1. The system was studied with small angle neutron scattering (SANS) in a magnetic field, cryo-transmission electron microscopy (cryo-TEM), and (31)P NMR spectroscopy. We found that, after appropriate preparation steps, that is, extrusion through a polycarbonate membrane followed by a cooling step, monodisperse small unilamellar disks (flat cylinders called bicelles) are formed. They have a radius of 20 nm and a bilayer thickness of about 4 nm and are stable in the investigated temperature range of 2.5-30 degrees C. Fitting of SANS data with a form factor for partly aligned flat cylinders shows that the bicelles are slightly orientable in a magnetic field of 8 T if DMPE-DTPA is complexed with Tm(3+).
Collapse
Affiliation(s)
- Paul Beck
- Laboratory of Food Process Engineering, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Assessing the size, stability, and utility of isotropically tumbling bicelle systems for structural biology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:482-8. [PMID: 19914202 DOI: 10.1016/j.bbamem.2009.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/24/2009] [Accepted: 11/05/2009] [Indexed: 11/23/2022]
Abstract
Aqueous phospholipid mixtures that form bilayered micelles (bicelles) have gained wide use by molecular biophysicists during the past 20 years for spectroscopic studies of membrane-bound peptides and structural refinement of soluble protein structures. Nonetheless, the utility of bicelle systems may be compromised by considerations of cost, chemical stability, and preservation of the bicelle aggregate organization under a broad range of temperature, concentration, pH, and ionic strength conditions. In the current work, (31)P nuclear magnetic resonance (NMR) and atomic force microscopy (AFM) have been used to monitor the size and morphology of isotropically tumbling small bicelles formed by mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DIOMPC) with either 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) or 1,2-di-O-hexyl-sn-glycero-3-phosphocholine (DIOHPC), testing their tolerance of variations in commonly used experimental conditions. (1)H-(15)N 2D NMR has been used to demonstrate the usefulness of the robust DMPC-DIOHPC system for conformational studies of a fatty acid-binding protein that shuttles small ligands to and from biological membranes.
Collapse
|
26
|
Diller A, Loudet C, Aussenac F, Raffard G, Fournier S, Laguerre M, Grélard A, Opella SJ, Marassi FM, Dufourc EJ. Bicelles: A natural 'molecular goniometer' for structural, dynamical and topological studies of molecules in membranes. Biochimie 2009; 91:744-51. [PMID: 19248817 PMCID: PMC2899883 DOI: 10.1016/j.biochi.2009.02.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
Major biological processes occur at the biological membrane. One of the great challenges is to understand the function of chemical or biological molecules inside the membrane; as well of those involved in membrane trafficking. This requires obtaining a complete picture of the in situ structure and dynamics as well as the topology and orientation of these molecules in the membrane lipid bilayer. These led to the creation of several innovative models of biological membranes in order to investigate the structure and dynamics of amphiphilic molecules, as well as integral membrane proteins having single or multiple transmembrane segments. Because the determination of the structure, dynamics and topology of molecules in membranes requires a macroscopic alignment of the system, a new membrane model called 'bicelles' that represents a crossover between lipid vesicles and classical micelles has become very popular due to its property of spontaneous self-orientation in magnetic fields. In addition, crucial factors involved in mimicking natural membranes, such as sample hydration, pH and salinity limits, are easy to control in bicelle systems. Bicelles are composed of mixtures of long chain (14-18 carbons) and short chain phospholipids (6-8 carbons) hydrated up to 98% with buffers and may adopt various morphologies depending on lipid composition, temperature and hydration. We have been developing bicelle systems under the form of nano-discs made of lipids with saturated or biphenyl-containing fatty acyl chains. Depending on the lipid nature, these membranous nano-discs may be macroscopically oriented with their normal perpendicular or parallel to the magnetic field, providing a natural 'molecular goniometer' for structural and topological studies, especially in the field of NMR. Bicelles can also be spun at the magic angle and lead to the 3D structural determination of molecules in membranes.
Collapse
Affiliation(s)
- Anna Diller
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Cécile Loudet
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Gérard Raffard
- RMSB UMR 5536, CNRS, Université Bordeaux, Bordeaux, France
| | - Sylvie Fournier
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Michel Laguerre
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Axelle Grélard
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | | | - Erick J. Dufourc
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
27
|
Faham S, Ujwal R, Abramson J, Bowie JU. Chapter 5 Practical Aspects of Membrane Proteins Crystallization in Bicelles. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)63005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Barbosa-Barros L, de la Maza A, Estelrich J, Linares AM, Feliz M, Walther P, Pons R, López O. Penetration and growth of DPPC/DHPC bicelles inside the stratum corneum of the skin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:5700-5706. [PMID: 18471002 DOI: 10.1021/la703732h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effect of dipalmitoyl phosphatidylcholine (DPPC)/dihexanoyl phosphatidylcholine (DHPC) bicelles on the microstructure of pig stratum corneum (SC) in vitro was evaluated. The physicochemical characterization of these nanoaggregates revealed small disks with diameters around 15 nm and a thickness of 5.4 nm. Upon dilution, the bicelles grow and transform into vesicles. Cryogenic scanning electron microscopy (cryo-SEM) images of the SC pieces treated with this system showed vesicles of about 200 nm and lamellar-like structures in the intercellular lipid areas. These vesicles probably resulted from the growth and molecular rearrangement of the DPPC/DHPC bicelles after penetrating the SC. The presence of lamellar-like structures is ascribed to the interaction of the lipids from bicelles with the SC lipids. The bicellar system used is suitable to penetrate the skin SC and to reinforce the intercellular lipid areas, constituting a promising tool for skin applications.
Collapse
Affiliation(s)
- L Barbosa-Barros
- Departamento de Tecnología de Tensioactivos, Instituto de Investigaciones Químicas y Ambientales de Barcelona, Consejo Superior de Investigaciones Científicas, Calle Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Thaning J, Högberg CJ, Stevensson B, Lyubartsev AP, Maliniak A. Molecular Conformations in a Phospholipid Bilayer Extracted from Dipolar Couplings: A Computer Simulation Study. J Phys Chem B 2007; 111:13638-44. [DOI: 10.1021/jp075278t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johan Thaning
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Carl-Johan Högberg
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Baltzar Stevensson
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexander P. Lyubartsev
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Arnold Maliniak
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
30
|
Loudet C, Manet S, Gineste S, Oda R, Achard MF, Dufourc EJ. Biphenyl bicelle disks align perpendicular to magnetic fields on large temperature scales: a study combining synthesis, solid-state NMR, TEM, and SAXS. Biophys J 2007; 92:3949-59. [PMID: 17307824 PMCID: PMC1868983 DOI: 10.1529/biophysj.106.097758] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A phosphatidylcholine lipid (PC) containing a biphenyl group in one of its acyl chains (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC, TBBPC) was successfully synthesized with high yield. Water mixtures of TBBPC with a short-chain C(6) lipid, dicaproyl-PC (DCPC), lead to bicelle systems formation. Freeze-fracture electron microscopy evidenced the presence of flat bilayered disks of 800 A diameter for adequate composition, hydration, and temperature conditions. Because of the presence of the biphenyl group, which confers to the molecule a positive magnetic anisotropy Delta chi, the disks align with their normal, n, parallel to the magnetic field B(0), as directly detected by (31)P, (14)N, (2)H solid-state NMR and also using small-angle x-ray scattering after annealing in the field. Temperature-composition and temperature-hydration diagrams were established. Domains where disks of TBBPC/DCPC align with their normal parallel to the field were compared to chain-saturated lipid bicelles made of DMPC(dimyristoylPC)/DCPC, which orient with their normal perpendicular to B(0). TBBPC/DCPC bicelles exist on a narrow range of long- versus short-chain lipid ratios (3%) but over a large temperature span around room temperature (10-75 degrees C), whereas DMPC/DCPC bicelles exhibit the reverse situation, i.e., large compositional range (22%) and narrow temperature span (25-45 degrees C). The two types of bicelles present orienting properties up to 95% dilution but with the peculiarity that water trapped in biphenyl bicelles exhibits ordering properties twice as large as those observed in the saturated-chains analog, which offers very interesting properties for structural studies on hydrophilic or hydrophobic embedded biomolecules.
Collapse
Affiliation(s)
- Cécile Loudet
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | | | | | | | |
Collapse
|
31
|
Triba MN, Devaux PF, Warschawski DE. Effects of lipid chain length and unsaturation on bicelles stability. A phosphorus NMR study. Biophys J 2006; 91:1357-67. [PMID: 16731559 PMCID: PMC1518622 DOI: 10.1529/biophysj.106.085118] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most studies reported until now on the magnetically alignable system formed by the binary mixtures of long- and short-chain lipids were based on the mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (D14PC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (D6PC) lipids. We have recently shown that a large part of the phase diagrams of this lipid mixture could be understood by taking into account the partial miscibility between the long-chain lipids and the short-chain lipids when the sample was heated above the melting transition temperature (Tm) of the long-chain lipids. In this work, we show by modifying the chain length of either one of the two lipids that it is possible to control their miscibility and thus the intervals of temperature and composition where spontaneous alignment is observed in a magnetic field. By using 31P NMR, we demonstrate that the very special properties of such binary lipid mixtures are correlated with the propensity for short-chain lipids to diffuse into the bilayer regions. We also show that lipid mixtures with comparable properties can be formed with unsaturated lipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC).
Collapse
Affiliation(s)
- Mohamed N Triba
- Unité Mixte de Recherche No. 7099, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | | | | |
Collapse
|
32
|
Douliez JP. Self-assembly of hollow cones in a bola-amphiphile/hexadiamine salt solution. J Am Chem Soc 2006; 127:15694-5. [PMID: 16277498 DOI: 10.1021/ja0560478] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cones are a very rare form of supramolecular self-assembly. It is shown that mixing of an unsymmetrical bola-fatty acid and a diamine (catanionic system) in dilute solutions can produce aggregates having a conical shape. These assemblies are made of frozen unsymmetrical monolayers in which bolas are arranged on a regular hexagonal lattice. Cones are stabilized by the introduction of pentagonal or n-gonal defects in the bola-lattice which yields the quantification of the cone apex angle according to the Euler theorems. The formation of cones represents a novel route for lipid and surfactant systems to minimize the edge energy of a flat membrane.
Collapse
|
33
|
Douliez JP, Navailles L, Nallet F. Self-assembly of fatty acid-alkylboladiamine salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:622-7. [PMID: 16401110 DOI: 10.1021/la052377u] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Long-chain fatty acids are insoluble in aqueous solution and form crystal precipitates. It is then of particular importance to determine the physicochemical parameters allowing their dispersion in water to improve their bioavailability and their utilization as surfactants. Herein, we report a study on salt-free catanionic systems in aqueous solution made of mixtures between palmitic or stearic fatty acids and alkylboladiamines (Abd's) differing by their alkyl chain length. Phase contrast microscopy, solid-state NMR, Fourier transform infrared spectroscopy, and small-angle neutron scattering were used to characterize the phase behavior of these systems at molar ratio of fatty acid to Abd of 1 and 2. Whatever the Abd and the molar ratio, fatty acids were embedded at low temperature in a bilayer gel phase which crystallizes after a period of rest. At an equimolar ratio, the gel phases transited upon raising the temperature to an isotropic phase made of worm-like micelles except in the case of the ethylenediamine chain for which a lamellar fluid phase was observed. At a molar ratio of 2 and high temperature, fatty acids were embedded in a lamellar fluid phase which self-orients with its stacking axis perpendicular to the magnetic field. However, for a long alkylboladiamine such as spermine, worm-like micelles formed. The phase behavior at high temperature is discussed in terms of molecular volume.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Equipe Interfaces et Systèmes Dispersés, BIA, INRA, rue de la Géraudière, F-44316 Nantes, France.
| | | | | |
Collapse
|